
Georgia Institute of Technol<>gy
School of Electrical and Computer Engineering

elRoy

A Systolic Processor Array

CompE 4510 Senior Design

Winter 1995

Darrell Stogner
Craig Ulmer

I Table of Contents I
Background, Purpose, and Status 1

Fast Statistics 2

I. Theory: Systolic Array Theory 4

I. Theory: Matrix-Vector Multiplication 6

I. Theory: Discrete Convolution 10

II. Architecture: System Design and Architecture 16

III. Synthesis: Synthesis and Partitioning 22

IV. Programming: Programming elRoy 25

N. Programming: Assembly Instrnction Format 26

IV. Programming: Assembly Language Instructions 27

N. Programming: Cell Microcode Format 28
IV. Programming: Translations Using the TIM Assembler 29

N. Programming: Assembly Programs 30

V. Testing: Testing 32

V. Testing: Theoretical Speed Comparisons 33

Conclusions 34

Appendix A: Tim Assembly

Appendix B: Test Programs

Appendix C: Circuit Schematics

Appendix D: Bibliography

I Background, Purpose, and Status I
Traditionally, the rule of thumb for creating high speed computation bound programs falls to the

saying DM/ND: Don't Multiply, Never Divide. Even with optimizations in hardware
computation algorithms, the ALU's slowest operation is inevitably a form of multiplication or
division. Since multiplications and divisions are necessary for a large percentage of computational
problems, it would be beneficial to arrange the slowest operations in a way that the e.vents could
take place in parallel in order to minimize delay.

Systolic architectures allow such parallelism by breaking up computations, and arranging their
execution in a way that costly operations occur at the same time. Although the amount of
complexity in controlling the overall system increases largely, the benefits of parallel designs are
wo1thy enough to warrant the added difficulty.

The purpose of this project is to exploit systolic architecture to find a faster means for working
through high computation mathematical functions. The applications at which this project is geared
towards are generally found within the Digital Signal Processing (DSP) domain of problems. The
goals for this project include three specific applications that prove the aITay's design and
advantages:

1. Discrete Convolution operation
2. Matrix and Vector Multiplication
3. Matrix and Matrix Multiplication

The systolic array of specialized processors designed in this project should be thought of as a side
system much like a specialized coprocessor. For an actual implementation of this project, a main
controller processor would perform normal computer tasks, while delegating specific computation
tasks to the systolic array. This project uses a "simple" multi-cycle processor to handle the flow
of operation and control of the systolic array.

All components of the system have been tested and synthesized to hardware. Due to the size of
the project, the hardware emulators were not able to hold enough of the design to physically test
our implementation. Since we were mainly interested in the theory of the design, we performed
several rigorous test programs in the Synopsys VHDL environment to determine if our design
theories were correct. While the tests were not gate timing simulations, we were able to prove
that our theories of design were correct and valid. While it would have been desirable to see the
design fully running in hardware, we consider the concept to be more impo1tant than a physical
implementation.

I Fast Statistics

Overall
System:
Form :
Target Applications:
Data Width:
Instruction Width:
VHDL Design:
Synthesis Status:
Hardware Status:
Testing Status:

Control Processor
Function:
Register file:
ALU:
PC OPs:

Systolic Anay
Array Dimension:
Flow:
AnayForm:
Maximum Cells:
Data Inputs:
Cell Control:
Features:

Ccll
Features:

elRoy
Systolic Processor Anay, Additional multi-cycle control processor
High Computational Programming - DSP, Convolutions, Matrix
16-bit
32-bit
Structurally - Almost entirely to gate level
Entirely synthesized
Too large to fit anything of interest in emulator boards
VHDL Tested, All application goals assembled and tested

Flow Control, State Machine, Normal Ops
8 16-bit registers
Standard ops - Add,Sub,Stack,Or,Xor,Cmp,Copy
Jmp, Jsr, Rts, Ja,Je

Linear
Uni-directional
Adjustable -- Contains mutated Moving Results and mutated Fan Out
32 (Limited due to 16-bit architecture)
Serial Load and Broadcast Load
Single Microcode Instruction, Control Signals
Easily expandable

Flexible data.path based on Microcode Instruction
Adjustable FIFO Queue for inserting bubbles into array pipeline
Cells a.re all identical structurally - easier to mass produce

2

I

I. Theory

3

I Systolic Array Theory I
There are several mathematical operations that require multiple calculations for each result. These
calculations are often similar and can be done in parallel for a faster result. A systolic processor
array takes advantage of this fact and breaks up the monotonous task of handling dai:a by allowing
several specialized processors to munch on individual components of the data at the same time.

Perhaps the easiest example to view the beauty of a systolic array comes from the calculation of a
matrix-vector multiplication. For each answer, several values must be multiplied and accumulated.
A simple approach to building a system that implements this view is the fanout design (figure 1).
For each result we multiply an entire row of the matrix by the vector's column , then add
everything together with a specialized adder. Clearly, all of the multiplications for the particular
result occur at the same time, minimizing the overall system's multiplication delay.

Result

Cell 3 Cell 0

Control

Figure 1: Fanout Design

Although easier to build and track, the fan out approach suffers from a weakness in the result
adder:

1. The adder will turn into a large amount of logic since it must add more than two
numbers together.

2. The army will have to have a fixed number of cells. Since this prevents expandability,
the number oc cells cannot be tailor picked to fit job requirements.

4

The next strategy for designing the array consists of breaking the adder up into small stages that
can be implemented within each cell. In essence, this pipelines the cell array, allowing results to be
generated as they work their way through the array. This topology is refered to as a moving
results system(figure 2), since results move with input data through the cell array.

Result

+1----~+1----~+1----~

Cell 3 Cell 2 Cell 1 Cell 0

Control

Figure 2: Moving Results

This topology requires more control effo1t, but removes the problems associated with the fan out
approach. By manipulating how values are passed to the cells, we can implement a system that
works as a long pipe and generates an output for each input. In this manner, we can easily expand
the array to as many or as few cells as we require. An evolved version of the Moving Results
implementation serves as the heart of elRoy's computational heart.

Other topologies for array configurations involve multidimensional arrangements of cells. Many of
these designs involve careful timing models with bi-directional communication links between cells.
Although the key to improving systolic array performance is to increase the dimension of the
array, the practical features of parallel processing can be exploited with the simpler one
dimensional array.

5

Matrix-Vector Multiplication Theory I
The multiplication of a matrix by a vector is significantly sped up by the use of a systolic array of
processors. The parallelization of the process is limited by the number of processors in the link,
and typically by the speed of the interface. The design chosen here lends itself to a particularly
fast computational procedure, and is therefore limited only by the number of process.ors. In short,
elRoy's architecture is highly suitable to matrix vector operations.

The first step is to understand how the matrix will be stored in the machine. The typi.cal initial
reaction is to store it row by row in an array. After consideration of the multiplication process, it
was discovered that if the numbers were stored in the array column by column, instead of row by
row, the multiplication could be computed with architecture compatible with the convolution
operation. Once this had been determined, the algorithm was obvious:

Note: This assumes an M x N matrix, and an N length vector. See the Vector Multiplication
Diagrams.

Initialization: All accumulators and all registers must be set to zero.
1) The kth element of the vector is parallel-loaded into the Cell register.
2) The krh column of the matrix is loaded into the inputs of the systolic array sequentially.
3) The product of the two terms is calculated, and the result is added into the value held in

the accumulator.
4) If (k == N) goto 5, else goto 1.
5) Note that at this point the values in the each accumulator correspond to one of the elements in

your output vector. They are propagated through the accumulator into memory.

Note that the algorithm above assumes that you have at least M systolic processors.

In short, the vector multiplication algorithm works by accumulating answers in each cell. The
procedure is illustrated in figure 3. The arrangement of loading the cells is described in figure 4.

6

V[n]

U[4,n] U[3,n]~~U[2,n] ____ ~U[1,n]
16 bit 16 bit 16 bit 16 bit
multiply multiply multiply multiply

accumulate accumulate accumulate accumulate

Y[4] Y[3] Y[2] Y[1]

Figure 3: Vector Multiplication Confi!~uration

r
m e a Vector Multiplication

s s s s
n f b

a b C d r
e f g h s

j k t

t t t t m n 0 u
0 k g C

u u u u
p h d

Figure 4: Vector Multiplication

If the number of rows in the matrix exceeds the total number of processors, then a control process
must exist to process each column in chunks. This can be conveniently handled by the operating
system. It will be necessary for the OS to efficiently break up the columns into blocks of
manageable size, and to keep track of where each set of results needs to be stuck in the output
vector. Another problem best handled by software is the fact that the final outputs as they are
read off will be in reverse order. It is possible to place the results on a stack, and then pop them
off one by one, but this is a needless waste of processor time. A good OS can place the output
results into the correct memory address. Generally speaking, given a system with X systolic
processors, and a matrix with M rows and N columns, the number of calculation steps to
obtain the final product is:

The total speed is also affected by the time required to propagate the column elements through
the processor array. This gives a final calculation time of:

[(Trunc(~) + 1) • N • cycle_speedJ • [M • propagation_speedJ

Matrix-Matrix Multiplication

The Matrix-Matrix multiplication operation is essentially the Matrix-Vector multiplication
problem placed within a loop. If we treat the columns of the second matrix as individual vectors,
we can easily apply the above operation several times over to produce the proper res.ults.

9

I Discrete Convolution Theory I
To provide efficiency in computation as well as compatibility with other processor functions, the
philosophy behind the discrete convolution operation is to treat the array of cells as a. pipeline.
Each cell focuses on a paiticular stage in the pipeline, while data is fed into the array serially. The
result is an output for every cycle once the pipeline is fully initialized. In order to build the
convolution, the fan out implementation was first examined.

In the fan out design, each of the cells is preloaded with a static value of H. and input Xis fed
serially from the left. In each cell, the shifting value Xis multiplied by the cell's static value of H.
The results of all cells are added together to produce one value of the output.

The range of H for this implementation is unfortunately limited to the number of cells in the
system, assuming the convolution is a one pass algorithm. As well, for each zero value in the H
equation, an entire cell must be wasted on a calculation that will always result in zero. Take for
example the following equation.

h[n] = Ao[n] + Oo[n -1] + Oo[n- 2] + Bo[n - 3]

Implementing it on the initial design, the first cell would be loaded with A, the second 0, the third
0, and the fourth B. The zero coefficients make the second and third cells perform operations in
which the result is already known.

In order to make better use of the cells, it is more efficient to simply place bubble stages in the
data stream so zero terms do not waste cell computation time. To do the bubbling, a FIFO queue
is placed in each cell that would delay the input from passing on to the next cell before the proper
time has passed. The queue would have to be setup for each time the overall convolution is
performed, but allows for a greater range of flexibility in the system. This idea is similar to
placing a variable amount of NOP's in microprocessor code in order to fix timing sequences.

An acceptable approach to the problem of upgradability is to do the summations in small doses as
the terms become available. elRoy's convolution strategy is to pass a running sum of terms
through each stage and provide each stage with the appropriate values at the correct times.

10

The following equations illustrate the convolution process.

x[n] =A8[n] + 08[n - l] + B8[n- 2] + C8[n-3] +D8[n-4]

h[n] = E8[n] + F8[n - l] + G8[n - 2] + H8[n - 3]

y[n] = x[n]*h[n]

Since h[n] of the convolution can be thought of as a device that shifts and scales the output by
h[n]'s terms, the following table represents the output.

y[O] =
y[l] =

y[2] =

y[3] =
y[4] =
y[5] =

y[6] =

yl7] =

EA

EO

EB

EC

ED

+ FA

+ FO

+ FB

+ FC

FD

+ GA

+ GO + HA

+ GB + HO

+ GC + HB

GD + HC

HD

From this table, it is clear that there involves a good bit of symmetry in the output of the
convolution. There are two basic keys to building the system. The first fact is that each column of
the table has the same corresponding coefficient of h[n]. The second fact is that the coefficients
of x[n] are found in order vertically for each column. This brings about the idea that the h[n]
values may be serially loaded, and that if the operations were timed correctly, the values of x[n]
could be broadcast to all of the cells.

11

x[O]-.----~--~--~
h[3]

16 bit
multiply

h[2]
16 bit
multiply

h[1]
16 bit
multiply

h[O] ..
16 bit
multiply

accumulate accumulate accumulate accumulate y[Q] I------.. t-----11~ I-----..

Figure 5: Discrete Convolution Confi 1guration

Discrete Convolution [a Ob c d]*[G f g h]

Figure 6: Convolution Pipe

We apply the facts of the convolution to the following procedure, as illustrated in figures 5 and 6.

1) Zero all of the accumulators.

2) Slide x[n] into the dynamic register of the cells so that the cells will appear with A in the far
right cell, and D in the far left cell. This is done by serial insertion.

3) Set up the zero bubbles. For this example this is done by instructing the second processor from
the light to add one extra wait state (via the fifo queue) before it puts out and output.

4) Load the first value of h[n] (or E in this case) in parallel to all of the cell's static register.

5) Multiply the static register by the dynamic register in each cell, and add it to the accumulator of
each cell.

6) Shift all of the accumulator values one step to the right. (i.e., into an accumulator or fifo)

7) Repeat from step 4 until all operations are done. This should be monitored by the control unit.
The number of results= length(x) + length(h) - 1.

Since x[n]*h[n] = h[n]*x[n], the sequences h[n] and x[n] could also exchange roles in the above
scenario. Ideally, the sequence that is longer, but still smaller than the number of cells should be
held in the cells (x[n] in the previous scenario).

The largest benefit of the system is that an output is cranked out every cycle without a need for
one large adding system. Additionally, the hardware is compatible with the other implemented
matrix operations.

14

II. Architecture

15

I System Design and Architecture

The architecture used to implement elRoy consists of a main controlling processor, a systolic
linear array of cells, and a memory unit. Data values within the system are all 16-bit, two's
compliment, integer numbers.

I

As mentioned earlier, the cells in the systolic array follow a form of the moving results
architecture. However, since different operations require different architectures, elRoy's cells must
allow a flexible and controllable datapath. The elRoy system achieves thjs by passing microcode
words to cells as changes in the cell control are required. The main processor controls not only
the configuration of the cells, but also the entire data flow for the overall system.

Main Processor(figure 9)
The main processor is a small scale processor that interprets code and controls the whole system.
It contains an ALU, an register file with 8 registers, a state machine that controls the system, and
logic to handle bus arbitration and data flow. All components in the main processor were designed
down to the gate level, except for the state machine. The state machine is a simple model with the
normal Fetch,Decode,and Execute stages, along with additional stages for some cell operations.

Cell Array
The cell array is a linear arrangement consisting of up to 32 identical cells. Each cell has a bank of
dip switches dete1mining the cell's local 5-bit address. An extra parallel load bit in the address
indexing scheme allows the cells to all accept information from the same source.

Individual Cell(figure 8,10)
An individual cell contains the logic to determine if it is being spoken to by the main processor, as
well as the ability to interpret micro-code instructions. The cell contains two registers RA and RB
that hold the 16-bit data values that are to be multiplied. The RA register serves as a means of
serial loading from the previous register, while the RB register reads 16-bit data values broadcast
to all cells. The result of the multiplication can be accumulated, added to the previous cell's
accumulator value, or simply passed along to the next cell. A FIFO queue can additionally be used
to add delay stalls to the passing of results. The FIFO queue has an adjustable value of up to 7
stalls between cells. Components for the cell were all originally written exclusively to the gate
level. To optimize the synthesis process, the adder and multiplier units were changed to simple
VHDL models.

Mem01)'.
Memory consists of two 32-bit data pathways to the main processor, as well as some standard
memory control signals. While the original model consisted of a signal 32-bit bi-directional data
pathway, the model was changed to two uni-directional 32-bit pathways for simplicity and clarity.
The memory can only access even addresses, since elRoy only deals in 16-bit data values.

16

16 bit
input

--
32 bit
Accumul ate Ir ,..

'---

16 bit 16 bit 16 bit
input pass input pass input pass - -c[3] - c[2] - c[1] - c[O]
132 bit 32 bit 132 b1t
accurrulate accumu latE iaccumulat, 16 bi t
oass - oass - 10ass - n"tnut - -

a a j I I I a a j I I I I I J • j I I I

10 bit 10 bit 10 bit 10 bit
Enable instruction Enable instruction Enable instruction Enable inslruction

I address compare I I address compare I I ad dress compare I I address compa,B

il ~ ~ ~ ~· ,I 11 ii

16 bit address/ instruction

16 bit data

control ---
-

16 bit Memory Memory
1l

address Read Write
Acknowledge ,, ,, ,,

memory -

Figure 7: elRoy Flow Diagram

-...

--

16 bit
b1-direc1ional
memory bus

16 bit

input

RA

16 bit
register

R
RB load
external

32 bit

accumulat

ACC

ACC load

external

ACC Gate

cell 3 bit

instruction delay

decode/ register

execute

Figure 8: Individual Cell

16 bit

input pass

fjfo 7

fifo 6

fifo 5

fifo 4

fifo 3

fifo 2

fifo 1

fifo o

ALU

add

subtract

xor

or

and

stack

flags

ALU/
EGFIL

REGFILE

registers

control
logic

Jump
Detect

PC Adder Control
Logic

Figure 9: Main Processor Components

VHDL Adder

Control Logic

Register

CELL UNIT

Registers

Control Logic

Address Decode

Control Logic

Instruction
Registers

Figure 10: Cell Componeints

III. Synthesis

21

I Synthesis and Partitioning

The synthesis process involves talcing a high level VHDL description of an ASIC de~.ign and
translating it into gate-level netlists. The gate-level netlists are modeled in various technology
libraries. These net-lists can then be exported to hardware for the purpose of testing. The
Synopsys VHDL Compiler can be used to synthesize ASICs.

I

The synthesis can be optimized for a variety of factors such as speed, area and power
consumption. Constraints are used to control which factors the compiler emphasizes. Speed or
timing constraints are used to specify maximum delay through a particular path (usual the critical
path). The compiler will usually attempt to get as close as possible to the specified goal. Area
constraints specify the maximum amount of space a design is allowed to take up. This is usually
given in term of a total gate count. Power constraints refer to the maximum amount of power the
ASIC can dissipate.

Synthesis libraries contain infonnation that the compiler needs in order to best create a netlist for
a given design. Technology libraries contain much information, including the area, propagation
delay and power consumption of a given cell. This information allows the compiler to make the
con-ect choices based on the operating constraints.

In eIRoy, the synthesis process was relatively straightforward. Our initial design was in most
places taken down to the gate level. The one exception, the shift-add multipUer, was replaced by
the synthesis multiplier for speed purposes. In most cases this made synthesizing elRoy easier.
Still , since this was such a new process problems arose that required resynthesizing.

After running through the synthesis tutorial, we started off by synthesizing the lower level
components using the design compiler. We worked our way up the design slowly until the full
design had been synthesized. At this point, much time was spent attempting to translate the
synthesized netlists back into the sge environment. Unfonunately the symbol library for the
XyUnx parts was corrupted.

It was discovered that the xblocks synthetic library was not supported yet by the partitioning
software, so the design was resynthesized. It was then discovered that using the FPGA compiler
would generate better results. Un.fortunately an old .synopsys_dc.setup was used and the xblocks
synthetic library was still in the file. The design was synthesized yet again using the FPGA
compiler with no xblocks.

At this point a week was spent mopping up the original design (a state machine had been added ,
and much debugging had taken place since the beginning of the quarter). The new design was
then resynthesized. The paititioning softwai·e had not yet been installed, so some time was spent
generating .mra and .sim files from the synthesized design, and then testing these files. Only
limited testing was done before the partitioning software was installed (i.e. the multiplier and
adder in the cell).

22

Another unfortunate problem was found at this point. The naming convention used by Xylinx for
the gate level parts was found to be the exact same naming convention used by us (part name,
inputs and outputs). Using search and replace on all our VHDL files fixed this problem, and the
design was resynthesized yet another time.

We then used silicon concepts partitioning software. The software essentially takes a netlist
description of gates and translates it into an internal format. The netlist is then run through
prepartitioning and partitioning in order to isolate all of the structures in the hardware that require
special handling. You then 'create hardware' which pops up a description of the zycad box. The
partitioned hardware can then be assigned to zycad cards. The design is then routed, and finally
compiled.

MANY problems were encountered with the partitioning hardware. The most crippling problem
encountered was the translator, which had trouble reading in the design. Slightly over two weeks
were spent fixing problem after problem, until the thing would finally read in. Unfortunately at
this point we realized just how large our design had become. The full array was out of the
question. In fact only the main processor OR one cell could fit at any given time. Fmthermore,
the ma.in processor used tri-states, which the router did not seem to like. Also, the size of the
multiplier was too large for one chip. Cf, however, the design was broken down, it broke into
gates. This meant too many VOs. We were finally able to get the thing to actually fit into one
chip. The routing and compiling were done overnight in the background, and the necessai·y files
to go to the zycad boxes sit on our account, which is where the project stands now.

In general the synthesis tools were excellent. Synopsys did an excellent job. The compiler
required a large address space, but that was not a problem once our accounts on the Suns were
activated. The silicon graphics software was rather poor. We got the impression that we were
working with a beta version (for instance, multiple error messages that differed only in grammar
would be returned). The translator was simply awful. The software looked like it was written for
a Macintosh.

23

IV. Programming

24

I Programming elRoy

Since the elRoy system contains multiple processors, there are several issues that users must face
when writing programs to control elRoy. For the average user, elRoy provides a minimal
assembly instruction set that handles the challenging task of concurrency within array tasks.
However, elRoy also provides a means of programming at a lower system level for advanced
users with specific needs. This allows users both flexibility and security in using elRoy today and
in the future.

Overall Strategy

The elroy system was designed to appear as a single unit to the programmer. While program
execution is sometimes handed over to the processor array, execution all appears to take place
within the main processor. The user has standard programming hardware available such as a
register file, an ALU, a stack, and subroutine support. Additionally, the main processor can be
used to set up the systolic processor array. Cells in the array are configured through microcode
words routed from the main processor.

Since configuring the cells in the systolic array is often a tedious and challenging task, commonly
used cell commands are predefined in the assembly language to aid programmers. However, the
user still has the ability to configure the cells by hand as necessary. While the microcode words
are generally difficult to program, it is important that users be able to manipulate the hardware in
order to allow elRoy to be adapted to fit future challenges.

25

I

I Assembly Instruction Format I
The assembly insu·uction is broken into two 16 bit fields: the insu·uction resides in the top 16 bits
and any data values exist in the lower 16 bits.

Instruction Fields
Op Code Destination Source 1 Source 2 Data Value

4 bits 4 bits 4 bits 4 bits 16 bits

The destination and source fields represent both the registers in the main processor as well as data
paths to particular cell busses. There are eight registers RO through R7 within the main control
unit. These registers are general purpose read/write registers that the ALU and memory have
access to.

There are also five special registers that control cell functions.

ACCIN: Accumulate In (Read only) : Uses the result of the array as the source
for writing to memory

ACCOUT: Accumulate Out (Write Only) : Loads the Accumulate Out data register
with data value specified

CINST: Cell Insuuction (Write Only) :Writes data value to the cell instruction
register

RA: RA Bus (Write Only) : Pipe data value to RA input of left cell

RB: RB Bus (Write Only) : Pipe data value to RB bus

26

I Assembly Language Instructions

ALU / Register Operations:
XORR: (destination) - (source 1) XOR (source 2) -
ADDR: (destination) = (source 1) + (source 2)
SUBR: (destination) = (source 2) (source 1)

COPYR: (destination) = (source 1)
ANDR: (destination) = (source 1) AND (source 2)
ORR: (destination) = (source 1) OR (source 2)
NOP:

ALU/ Data Value Operations
XORD: (destination) = (source 1) XOR Data Value
ADDD: (destination) = (source I) + Data Value
SUBD: (destination) = (source 1) Data Value
ANDD: (destination) = (source 1) AND Data Value
COPYD: (destination) = Data Value
ORD:

Memory Operations:
LOAD:

WRITE:

Branch Operations:
JMP:
CMP:
CMPD
JE:
JA:
JSR:
RETURN:

Cell Instructions:

(destination)

(destination)

[destination]

16 bit value
(source 1)

(source 1)
16 bit value
16 bit value
16 bit value

= (source 1)

[source 1)

(source 1)

- (source 2)

- data

CSETDEL: (cell) 3 bit value
CLRA:

CLAA: (cell)
CPASS:
CCLEAR: (cell)
CLOAD: (source I)

CLOADD: 16 bit data value

27

OR Data Value

Loads destination register from
address in source register

Writes to the value in source r,~gister
to the address in destination register

Jump to 16 bit address
Subtract but do not store, setting flags.
Subtract but do not store, setting flags
Jump to 16 bit address if Zero flag set
Jump to 16 bit address if Positive flag set
Jump to subroutine at 16 bit address
Return from subroutine

Sets delay in selected cell to 3 bit value
Load RA into pipe, holding previous

accumulates, and cleaiing RB's.
Load RB and accumulate
Pass accumulates out/ produce answers
Clear all cell settings (RA/RB/ ACC/Delay)
Give cell data lines the data value from

the address in source register
Give cell data lines the 16 bit data value

I

J Cell Microcode Format

The microcode instruction that is sent to a cell consists of 16 bits. The description is as follows.

16 bit Cell Instruction

Cell ID RA Atttibutes

6 bits 1 bit

Cell ID Field

Parallel Load Cell Address

1 bit 5 bits

RA Attributes

Load External on Clock

1 bit

RB Attributes

RB Attributes

2 bits

Load External on Clock Zero Value

1 bit 1 bit

Accumulate Attributes

Accumulate Attributes

3 bits

Load External on Clock Zero Value Sum witti Multiply Result

1 bit I bit l bit

Delay

Load from Microcode Word Delay Value

1 bit 3 bits

28

Delay

4 bits

I

Translations Using the TIM Assembler

The TIM assembler is used to translate elRoy assembly code into a machine language form that
the system can run . While the TIM assembler provides an acceptable translation of hstruction to
hexadecimal values, it lacks some of the required addressing details needed by elRoy.

Since the assembly programs had to be run in VHDL, they needed to be translated from
hexadecimal to a form that Synpopsys could understand. A C program (see appendix) was written
to translate the assembly listing files into code that could be easily imported into Synopsys. One
of the problems with the TIM assembler in its use with elRoy is that TIM assumes that the
program counter fetches values in 32-bit chunks. Unfortunately, elRoy was designed to address
memory in a logical 8-bit fashion due to the needs of data flow. Where TIM counts its memory
locations by ones, elRoy needs values to be counted by fours.

The C program addresses this problem by adjusting every memory reference by multiplying it by
four. While it doesn't make much logical sense to have to essentially compile an assembly program
and then parse it again to fix errors, there was no adequate way to force TIM to address memory
the way elRoy needed.

The assembly definition file is listed in the appendix.

29

I Assembly Programs

For the three program goals of the project, specific assembly test programs were co11ect to prove
the theory of design. All source code is listed in the appendix.

Convolution

I

For the convolution program, the system needed to load an H array into the cells and then present
an X army through broadcasting. Additionally, the non-trivial task of writing assembly to pack the
H array was also tackled. Cell utilization was maximized by having the assembly program examine
the H array and determine if it could figure out a bubble system to manage zeros in the H array. In
doing this, the system proved that the assembly language could set the cell delays without human
interaction.

Sample data was applied in several versions of the assembly to prove that the algorithm and
system did in fact do a proper convolution. On one run, a square wave was chosen as the X array,
and a single square pulse was chosen for H. As expected, the square wave was convolved into a
triangle wave (a pulse convolved with a pulse of equal width results in a triangular pulse with
scaled height). The same square wave was then applied to a first difference filter ([1 -1]) , resulting
in spikes corresponding to the changes in the input. Other test runs were performed with arrays
designed to take advantage of the packing algorithm, and the results were verified with
MATLAB.

Matrix-Vector Multiplication
The matiix-vector program explored an alternate configuration for the ceU array. The accumulates
for each cell were set to load and accumulate internally, and inputs were slided in serially after
every multiplication. The algorithm outlined in the theory section of this report was applied to the
assembly language. After allowing the program to run, memory was examined and the proper
values were discovered in the proper locations.

Matrix-Matrix Multiplication
The matrix-matrix assembly was created by adding particular code around the matrix-vector
algorithm. Specifically, looping was implemented to achieve the desired result. The stack had to
be used for temporary space during this operation, due to the lack of registers. The sample case
chosen for this operation was a 4x9 matrix times a 9x4 matrix. The results were again found to be
correct after verifying the results with MATLAB. For a time, larger matrices were considered as
candidates for the multiplication, but the burden of time involved in verifying 81 or more answers
allowed the 4x9 case to be adequate enough to prove the architecture.

30

V. Testing

31

I Testing I
Testing the elRoy system was taken very seriously due to the theoretical nature of the project.
While testing the hardware implementation was not possible due to size constraints in the
emulator boxes, the Synopsys environment was found to provide an accurate means of verifying
the design's concepts. Testing was broken up into two stages within Synopsys: component testing
and overall system testing.

Since a large portion of the design was written in low level logic, it was necessary to test all of the
individual parts that would normally be represented by behavioral VHDL code. Tests were
peiformed to cover as many parts as possible without compromising the accuracy of the tests.
Several examples of the tests are included in the appendix. While the tests were tedious, they
proved that elements worked as they were designed. The next stage of testing investigated
whether what was designed was what really needed to be done.

The largest amount of debugging time was a result of the overall system testing. Wh'.lle elements
of the design often worked as individual paits, it was discovered that the communication between
each part was sometimes mismatched. Testing the overall system came late in the project due to
the need for all parts to be defined and working. Additionally, the proper assembly code had to be
written to test the operation of the machine. Inevitably, several unknowns had to be tested at the
same time.

The first and most important test program to be run on the machine was a simple convolution
operation (listed in the appendix). Since the algorithm is fairly complex and operation intensive,
the majority of the errors in the state machine and data path were found after several sessions of
debugging. The convolution assembly was shown to produce the correct answers as well as pack
arrays as designed. A great deal of time was then spent on verifying the Matrix-Vector and
Matrix-Matrix multiplications. After modifications were made within the TIM assembler and the
overall machine, all three alg01ithms were determined to produce correct results. All answers
were verified in MATLAB.

Since the three program goals were met with great success, it was determined that our theories of
machine design as well as machine implementation were correct.

32

I Theoretical Speed Comparisons I
A few 'C' programs were written to benchmark the multipliers on the Pentium. These were tested
on the machines in the VLSI lab (60 MHz). The program took 38.2 seconds to calculate 100
million multiplies of two variables of type int. This comes out to 22 clock cycles per multiply.
elRoy currently takes 18 clock cycles for a multiply-accumulate chunk. Given two functions
with lengths Mand N, the Pentium would take (N)(M)(22)(clock period). elRoy, with an a.irny of
size X would take (N)(M)(18)(clock period)/ X. The table below charts out the ratio of
calculation times required for various values of X and the two clock rates (in MHz):

Ratio (Pentium/elRoy) Number of Cells elRoy Clock Rate Pentium Clock Rate

0.15 4 2 66

0.3 4 2 33

0.74 4 10 66

2.37 64 2 66

4.74 64 2 33

11.85 64 10 66

47.41 256 10 66

94.81 512 10 66

625.76 1,024 33 66

The gain is remarkable. Also note that elRoy cuITently uses an unoptimized algorithm for the
multiplies. A faster algorithm would greatly reduce the clock cycles required per multiply and
enhance the speedup factor. Also, these factors due not include the pipelining introduced by
the FIFO queue in each cell. For very specialized input vectors, the time savings approaches
another factor of seven per cell. The 652.67 in the last example becomes a staggering
4,485,447.68. Note also that these numbers do not reflect memory reads and writes.

33

I Conclusions I
The elRoy system provides a great deal of insight into the amount of thought required in building
parallel systems. While the benefits for building such systems are obvious in special tiigh
calculation jobs, the level of complexity jumps in every level of computer usage, from the design
to the programming language. However, once these issues are dealt with, their lesso::1s can be
applied to several similar applications.

Although the project was too large to fit into the hardware emulators, we were still able to verify
the theory of design through software emulation. Since the implementation was elaborated down
to the gate level, the simulations generated results that correspond to those expected. with the
actual hardware implementation.

Overall, elRoy was a large challenge for the design team because it journeyed into an area with no
obvious guidelines or models. The model for the system was constructed bottom up as we blindly
felt our way through often unstable requirements. As a result, the design unde1went several
revisions, each adding new characteristics to the overall system. We feel that it is nearly
impossible to design an experimental system such as elRoy without redesigning the machine as
you work along.

The end product satisfies our original goals. The system is easily expandable and allows a flexible
architecture to perform several high computation algorithms. All three specified mathematical
programs were assembled, tested, and verified for our architecture. While elRoy's use in the real
world is limited to education, it serves as a convenient model for the advantages of a mixture of
various architectures. In the least, it has served as a back bone for our design team, and its design
can never be fully documented.

34

Appendix A: TIM Assembly Definitions

35

HALE Listing: asm.src Mar 12 11:52:13 1995

Ljne ASSEMBLY L"iliGUAGE DEFINITION FILE FOR ==>elRoy< ==

1 TITLE
2 WORD
3 WIDTH
4 LINES
5

ASSEMBLY LANGUAGE DEFINITION FILE FOR ==>elRoy<==
32
72
5D

Page

6 ; ///I // / I I I II// I I/ / I I IIII I I//I / /I I I I II / I I II// I //I II // I / I I/II I II I
7 F i le: ASM.SRC Pu rpose: Assembly definitions for the elRoy pr
8 Craig Ulmer/ Darrell Stogner CompE 45
9 No Modifications without AuLhors' consent Mar

10 ; IIII II /I/ I // I I I II I / II III I /IIIIII I I I II I I I IIII I IIII I II III IIIII/II
11
12 NUMCELLS :
13

EQU 1-1#0D04 ; Nwnber of ce l ls in the system

14 ·******•************************•**********•********************

15 ;Standard REGISTER ASSIGNMENTS
16 ·**~**************

17
18
19
20
21
22
23
24

RD :
Rl:
R2 :
R3 :
R4 :
RS:
R6 :
R7:

EQU 8#000D
EQU B#OOOl
EQU 8#00 10
EQU 8#0011
1::QU 8#0100
EQU 8#0101
EQU 8#0110
EQU 8#0111

25 · ***

26 ; SPECIAL FUNCTION REGI STERS

ACCIN: EQU B#lOOO ACCUMULATE IN I\TRITE ONLY
ACCOlJI': EQU B#lOOl ACCUMULATE OU'l' READ ONLY
CINST: EQU B#l010 CELL INSTRUCTION
RA : EQU B#lOll DATA FOR RA
RB : EQU B#lO l 1 DATIi FOR RB
CDELINT: EQU B#ll OO DELAY INTERNAL
l::X~'DA1'A: E()U HU1 01 USE A l 6BIT DATA VALUE

; CELL FUNCTION EQUATES

27
28
29
30
31
32
33
34
35
36
37
38
39
40
4 1
42
43
44

• ***•·····················
CELLO : EQU B#000 000
CF.J.I. l : EQU R.0 00 001
CEI,L2: EQU 8#0 00 01 0
CELL3: EQU B#0 00 0 11
CELLP: EQU 8#100 000 ; PARIILLEL LOAD AU, CELLS

1

asm.lst
I HALE Listing: asm.src Mar 12 11:52:13 1995 Page

Line ASSEMBLY LANGUAGE DEFINITI ON FILE FOR ==>elRoy<==

45 ; INS'l'RUC~ ION OPCODE LABELS - MUST BE 4 - BITS
46 ;T**

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

LOR: EQU
LXOR: EQU
LADD: EQU
LSUB: EQU
LAND: EQU
LCOP: EQU
LPUSH: EQU
LPOP: EQU
; JUMP INS1'RUCTIONS
WMP : EQU
WA: EQU
WE: EQU
LCMP : EQU
LRTS: EQU
LJSR: EQU

; LO/ID INSTRUCTIONS
L LO/\D: EQU
LWR I TE: EQU

; SETUP
NULL: EQU
OPCODE: SUB
BLANK16 : EQU
DW: DEF

Bl!OOOO
B#OOOl
B#OOlO
8#0011
8#0100
8#0101
B#OllO
B#Olll

B#1000
B#10D1
8#1010
8#1011
8#1100
8#1110

B#1101
B#llll

B#OOOO ; 4 -BIT ZERO VALUE
4VLCOP ;4 - BIT OPCODE FIELD
16H#OOOO ;16 - BIT FIELD
16VH#OOOO , 16VIHOOOO ;32-BIT DATA DIRECTIVE

72 ;***•***********·*******

73 ; .\SSEMBLY LANGUAGE INS1'RUCTIONS
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

...........•...•..........•............•....•..•...•....•......
; Register
XDRR:
ADDR:
SUBR :
COPYR:
ANDR :
ORR:

t o Register ALU ops
DEF LXOR,4VH#0,4VHI0,4VH#O,BLANK16
DEF LADD, 4VH#O, 4VH#O, 4VH#O, BLANK16
UEF LSU!l, 4VH#O, 4VHIO, 4VH110, BLANK16
DEF LCOP, 4VH#D, 4VHIO, NU LL, BLANK16
DEF LAND,4VH#0,4VHJ0,4VH#0,BLANK16
DEF LOR,4VH#O, 4VH#O, 4VH#O,BLANK16

; Register Ops with 16 bit da t a
XORD: DEF
A:>DD: flF.F
SUBD: DEF
COPYD: DEF
/\NDD: DEF
ORD: DEF

LXOR, 4VH#O, EXTDA1'A, 4VH#O, 16VHIO OOO
LADD,4Vl-!#0,EXTDATA,4VH# 0,1 6VHl0 000
LSUB, 4VH#D, EXTDATA, 4VH# 0, 16VHi 00 00
LCOP,4VH#O,EXTDATA,NULL, 16Vl-!#00 00
LAND,4VH#O,EXTDATA,4VH#0 , 16VHl0 000
LOR, 4VH#O, EX'J'D/\TA, 4VH#O, l 6VH# O OCO

2

AsstfA$L '/ [ktirirl-iovt File

HALE Listing: asm. src Mar 12 11 : 52:13 1995

Line ASSEMBLY LANGUAGE DEFINITION FILE FOR =->e]Roy<==

89
90
91
92
93
94
95
96
97
98
99

CMPD: DEF LCMP,NULL,EXTDATA,4VHi0,16VHI0000

; MEMOPS
LOAD: DEF LLOAD,4VH,0,4VHi0,NULL,BLANK16
WRITE: DEF LWRITE,NULL, 4VHi0,4VHHO,BLANK16
LOADD : DEF LLOAD, 4VH#O, EXTDATA,NULL,, 16VH#0000

; BRANCHING
JMP: DEF WM?,NULL,NULL, NULL,16VH#0000
CMP: DEF LCMP,NULL,4VHI0,4VHHO,BLANK16
JE: DEF LJE,NULL,NULL,NULL,16VHIOOOO
JA: DEF LJA,NULL,NULL,NULL, 16Vl!IOOOO
JSR: DEF LJSR, NULL,NULL,NULL,16VH#0000
RETl.J"RN: DEF LRTS,NULL ,NULL,NULL,BLANK1 6

; Other stuEf
NOP: DEF LOR,NULL,NULL,NULL,BLANK16
TIMSUCKS: DEF 16VH#0000,16VH#OOOO

CELL ASSEMBLY LANGUAGE INSTRUCTIONS

CELL INSTRUCTION FORMAT (16 BITS):
HIGH

6 CELL #

1 RA
2 RB

2 ACCUMULATE

1
5

CELL PARALLEL LOAD
CELL ADDRESS
LOAD EXTERNAL
LOAD EXTERNAL
SET TO ZERO
LOAD EXTERNAL
SET TO ZERO

Page

LOAD T
WRITE
Load D

OR RO WIT
For data

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
11~
116
11
11 8
119
1 20
121
1n
12 3
12 4

12 5
12 6

12 7

1
4

ACC GATE
DELAY

ADD MUL~I?LY RESULT TO ACCUMULA
LOAD NEW DELAY VALUE
DELAY VALUE

LO'l'i

SE'l' DELAY Ill CELL
User specifies cell and delay value

128
129 CSETDEL:
13 0
)31

DEF
CELLI LOAD

LLOAD, CINST, EX1'DATA , NUl,L, 6VB#000000, BJOOOOO

13 2 ; SET DELAY Ill Cl-:LL BASED ON INTERNAL VALUES

asm.lst
I HALE Listing: asm.src Mar 12 11 :52:13 1995

Line ASSEMBLY LANGUAGE DEFINITION FILE FOR ==>elRoy<==

Page

133
134
135 CSETDELI:
136
137

RA holds the cell ID
RB holds the cell's delay

DEF LLOAD, CDELINT, 4VHII-O, 4VHi0 , BLANK16

138 ; LOAD RA PIPE
139

HOLDS ON TO PREVIOUS ACCUMULATE -- RB is Zero
LOAD DEST CELL I!

140 CLRA:
141
142

DEF LLOAD , CINST ,EXTDATA,NULL,CELLP,8#1 000100000

143 LOAD RB AND ACCUMULATE EXTERNALLY - FOR CONVOLUTION, Ace from
144 LOAD DEST CELLH
145 CLAAE:
146
147

DEF LLOAD,CINST,EXTDATA,NULL,CELLP,B # 0101010000

148
149

; LOAD RB AND ACCUMULATE INTERNALLY - FOR MULTIPLICATION Ace fro

15 0 CLAAI:
151
152

DEF
LOAD DEST CELLH
LLOAD,C INST,EXTDATA,NULL,CELLP ,B#0100010000

153
154

; LOAD ACCUMULATOR - RA Constant,RB Zeto,Load external Ace, Pass

155
156
157
158
159
160
161
162
163
164

LOAD DEST CELLH
CLACC: DEF LLOAD,ClNST,EXTDATA,NULL,CE~LP,B#0011010000

PASS OUT ACCUMULA~ES - - GIVES ANSWERS
LOAD DSST CELLH

CPASS: DEF LLOAD,CINST,EXTDATA,NULL,CELLP, Bff0011010000

CEl,1., CLEAR - - WIPES OUT DELAY AND ACCUMULATE, SETS RB TO ZERO
LO/\D DEST CELLH

165 CCLEAR:
166 END

DEF LLOAD,CINST,EXTDATA,NULL,6VB#OOOOOO,B#00101

asm.lst ~ =:_._.
Symbol Table: asm. src Page 5

ACCIN A 00000008 ACCOUT A 00000009 ADDO D ADDR D
ANDO D ANDR D BLANK16 A 00000000 CCLEAR D
CDELINT A OOOOOOOC CELLO A 00000000 CELLl A 00000001 CELL2 A 00000002
CELL3 A 00000003 CEL LP A 00000020 CINST A 0000000A CLAAE D
CLAAI D CLACC D CLRA D CMP D
CMPD D COPYD D COPYR D CPASS D
CSETDEL D CSETDELI D DW D EXTDATA A 0000000D
JA D JE D JMP D JSR D
LADD A 00000002 LAND A 00000004 LCl1P A 0000000B LCOP A 00000005
LJA A 00000009 LJE A 0000000A LJl1P A 00000008 LJSR A OOOOOOOE
LLOAD A 0000000D LOAD D LOADD D LOR A 00000000
LPOP 11 00000007 LPUSH A 00000006 LR'l'S A OOOOOOOC LSUB A 00000003
LWRITE A OOOOOOOF LXOR A 00000001 NOP D NULL A 00000000
NUMCELLS 11 00000004 OPCODE D ORD D ORR D
RO A 00000000 Rl A 00000001 R2 A 00000002 R3 A 00000 003
R4 A 00000004 RS A 00000005 R6 A 00000006 R7 A 00000007
RA A 0000000B RB A 0000000B RE'l'URN D SUBD D
SUBR D TIMSUCKS D WR ITE D :XORD D
XORR D

Def i n i ti on Phase complete.
O en:-or(s) detected.

Appendix B: Test Programs

36

convolve.1st
HALE Listing: convolve.asm Mar 12 14: 56: 45 1995 Page

Gf\vol~ +10V\ r~6R.Afv'\

Th.u .p~("AM

-ttie_ de~s11~c

AnAly~e.s ~N J..,{ Ar(A_y 1 ~J ures "14.+

Cd/ we,~9',fs., AND Gttv~lve. ¾-e-
HANJ> X ArrAt~.

I~ dl{e. le, ~

PA(k~7 tl{7()of'~ t,t.
r/.e tr~~.-i, ~J bK h/k5

1he Gr'1.p/e,K~ J df M:S pr~,-4~

f1(°1 (}Aek,~J I}~" r: /t-<. ~

~" K f lM I ~es cef (-1.(S llj e h7

ltz -fire ~vo/ ,d,"'1. Pi"pe ft~ e .

I Addr

-I-I - I - I-

hitecture

4500 / 4510

- / - / - /-/-

00000 DAOOOOA8
alues

by

"" "" '""· "

00001 5000004C
00002 DlOOOOOO
00003 21010001
g

00004 20000002
00005 52000000
00006 5500004£
00007 56000000

00008 53DOOOOO
era

00009 31Dl0001
ne
OOOOA AOOOOOlfl
ertion
0000B 26D60001
ted
OOOOC D4000000
0000 D 20D00002
OOOOE BOD40000
OOOOF /\0000017

Line CONVOLUTION Program

1 TITLE CONVOLUTION Program
2 LIST F,W
3 LINES 50

; / - / -/- / - / - l - l - l - l-/-/ - /-l - l-f -1 - I - I-I-I - I -I-I - I - I-I - I-I - I-I - I-I - I-/

5 ; Convo l uti on Assembly Program for use wi th elRoy Systolic Array Arc

Craig Ulmer/ Darrel l Stogner COMPE

7
8 ; No modifications or duplication s without the authors' consent
9 ;l-l-/-l-l-l - l - l-l - l-/-l-l - l - l - 1-I - I - I-/ - I - I-I-I-I - /-I - I-I - I - /-/ - /- /

10
11 BEGI NCODE: CCLEAR clear out the cells of all v

12
13 ; " " " • """ " • "" • " " • • " "" """""""" •"" •" """ """" "• "· "" • """ " • "" " """ " " "• """ "•"

14 Find Delays
l ~ '!'his algorithm Einds out what the delays should b e in edc;h cell

16 scann ing through Hand look: ng f o r zeros .
17 Registers: R6: # elements we' ve co,mted
18 RS : Address of new RA values
19
7.0
21
22
23
24

2 5
26
27
28

COPYD
LOAD
ADDD

ADDD
COPYD
COPYD
COPYD

R4 : Temp l oad value o f ~
R3: # delay for curren t
R2 : Curren t Ce 11 number
Rl: # elements in E array
RO: H array address

RO, CONSTHPOS% : Loads t he location of H
Rl , RO Loads H I..engt h into Rl
Rl, Rl, H#O OOl Offset the H length by 1, for loopin

R0,RO,H#0002 Set H pointer to Eirst elemen t
R2,H#OOOO Current Cell is #0
R5,RAVALS%: Set. RS ~ o n e x t RA wriLe address
R6,H#OOOO Set elemB,ts counted to 0

29
30
31
32
33
34 ACTIVELOOP:COPYD R3,H#OOOO Set the numbe r o f zeros counter Lo z

35
36 NEXTEL:

17 ,]F.

38 ADDD

39 LOAD
40 ADDD
41 CMPD
42 JE

SUBD Rl, Rl,HffOOOl

OONF.F.LE% :

R5, R6, H#OOOl

R4,RO
RO,RO, H#0 002
R4,H#OOOO
r0UND2ERO% :

Decrease the number o f elements by o

If no more elements. ao on t o RA ins

I ncrease the number of elements coun

Load t he next value ot H into R4
Increase the pointer o f H
See if element of H is zero
l[zero , deal with it

convol ve.lst
HALE Listing: convolve . asm Mar 12 14:56:45 1 995 Page 2 HALE List i ng: convolve.asm Mar 12 14:56:45 1995 Page

Addr

00010 F0540000
ratch pad
00011 25D5 0002
00012 DC230000
00013 22D20001
00014 BOD20004
cell
00015 A0000026
00016 80000008

0001 7 BCD30007
our delay
00018 AC000010

0
000 1 9 23D30001
0001A 80000009

check
0001 B 5CD0004C
OOOlC D1000000
0001D BC160000
OOOlE AC000026
ctly

0 00 1 F 5~DOOOOO

,pad out
0002 0 FC540000

00021 2SD50002
00022 22D20001
0002 3 BCD20004
00024 AC000026
0002 5 80000020

00026 DAD08220
00027 52DOOOOO
0002 8 SSD0004E
0002 9 0B500000
0002A 25DS0002
0002B 22D20001
0002C BOD20004
0002D A000002F
0002 E 80000029

Li.ne CONVOLUTION Program

43
44
45 SETDEL : WRITE R5, R4

46
47
48
49

so
51
52
53

ADDO
CSETDELI
ADDO
Cl-'.PD

JE
JMP

5 4 FOUNDZ ERO:

55 JE

56
57
58
59

ADDD
JMP

RS,R5 , H#0002
R2, Rl
R2,R2 , H#0001
R2, NUMCELLS

DORAS%:
ACTIVELOOP%:

CMPD R3, H#0007

SETD EL %:

R3,Rl ,H# 0001
NEXTEL%:

Cur r ent e lement was no n -zero
Remember this RA value, p l ace on sc

Point to the ne xt RA scrap pad
Se t the c u rren t cell delay
Set t o the n e xt cel l
See i(we've hit the last possible

If yes, do a truncated convoluti.on
If not, start the loop again

Found a zero, add it to the list
Check to see if we've gotten all of

Too many Zeros, we must use an R~ as

Otherwise, increase the delay by one

We've fin i shed with the h elemen:s,

60 OONEELE:
61 LOAD
62 CMP

COPYD RO,CONSTHPOS% : ; Re load H position to get leng th
Rl,RO Get length of H again
Rl,R5 Compare with e lements we counted

63 JE DORAS%: If equa l, then we filled array perfe

64
65 COPYD
66
67

R4, HWOOO

68 PADZEROS: WRITE R5,R4

69
70
71
72
73
7 4
75

ADDO
ADDO
CMPD
JE
JMP

RS,R5 ,H tl0002
R2,R2,H#0001
R2,NUMCELLS
DORAS%:
PADZEROS%:

76 DORAS: CLRA
77
78

COPYD
COPYD

R2, HiOOOO
RS, RAVALS% :

79 LOADRASLOOP: LOAD RA,R5
80 ADDO RS,R5,H40002
81 ADDO R2,R2,H#0001
82 CMPD R2.NUMCELLS
83 JE DOCONV%:
84 JMP LOADRASLOOP%:

Set the RA write value to zero

We did not completely fill the array

Write to the next RA scrap place

Po i nt to the nex t RA scrap place
Point to the next cell
See if we've hit the last cell yet
Yes, l oad the RA pipe
No, continue paddi n g

Begin loading the RA pipe
Begin at fi rst. cell
Set first address or RA scraLch pad
Load i n the n ext RA to a cell
Increment poi~ter to next RA scratch
Look at nexl cell
See if we've loadP.d r.111
If so, Begin che convolulion
If not, keep looping

Addr

r ation

0002F 53D00057
00030 ;200004·1
00031 51D0004 C
00032 D0200000
00033 22D20002

I

00034 D1100000
00035 31D10001
00036 59000000
00037 27100000
00038 F0370000
00039 23D30002

0003A DAD08150

ough
0003B DB200000
0003C F0380000
0003D 23D30002
0003E 22D20002
0003F 30D0000c
00040 9000003B

00041 llBDOOOOO
00042 F0380000
00043 23D30002
00044 31D10001

Line CONVOLUTION Program

85
86
87

88
89

90
91
92
93
94
95
%
97
98

99

Do Convolution
Th is section of the cod e actually perf orms the convolut i on ope

Registers : R7: Length o f Y
R6 : # elements we've counled
RS:--- Address of new RA values
R4:--- Temp l oad valu e of H
R3: Y Position
R2: X Posit.ion
Rl: Length of H-1
RO: Length of X

100 ; Convolut i on Assembly
101 DOCONV: COPYD R3 , CONSTYP0S%: ; Load Loaction of Y Arr.ay (Result)
102
103
104
105
106
107
108
1 09
1 10
111
112
113
114
115

116
117
118
119
1 20
121
122
123
12 4
125
126

COPYD
CO PYD
LOAD
I\DDD
LOAD
SUED
CO PYD
ADDR
WR ITE
/\DOD

CLAAE

STILLX:
WRIT E
/\DOD
/\DOD
SUBD
JA

S'l'ILLH:
WRITE
ADDO
SUED

R2,CONSTXPOS%:
Rl, CONS'l'HPOS%:
RO, R2
R2,R2,H#0002
Rl, Rl
Rl,Rl,H#OOOl
ACC OUT, HffOOOO
R7,Rl,RO
R3, R7
R3 , R3, Htto002

LOAD RB , R2
R3,ACCIN
R3, R3, Hff0002
R2, R2, Hff 0002
RO , RO,HffOOOl
STI LLX%:

LOAD:) RB, H#OOOO
R3,ACCIN
R3 , R3, 1-1#0002
Rl, Rl, IHOOOl

Load locat ion
Load Location
Get the leng th
Point to fi r st
Get the length
Set to H-1

of x array
of H array

of X
ele.llent o (X
of H

Set t.he Ace to always be zero
Add length X + l ength H - 1.
Write l ength Y to [irst Y address
Incr ease Y pointer

Set up for the convolution operation

There are s ti ll X values to send thr

Load the next x val into RB
Write t he result to next y
Increase y p ointer
Increase x pointer
Decrease x cou n tPr
If not zero, keep churning

Load ze r o into t he RB pipe
Write ~esult out to next y
Increase they pointer
Decrease the h counter

convolve.1st
HALE Listing: convolve.aso. Mar 12 14:56:45 1995 Page 4 ISyrrbol Table: convolve .asm Page 5

Addr Line CONVOLUTION Program ACCIN A 00000008 ACCOUT A 00000009 ACTIVELO A 00000008 ADDO D ADDR
D ANDO D ANDR D

00045 90000041 127 JA STILLH%: If not zero, keep churning BEGINCOD A 00000000 BLANK15 A 00000000 CCLEAR D CDELINT A OOOOOOOC CELLO
128 A 00000000 CELLl A 00000001 CELL2 A 00000002

00046 80000046 129 DONE . JMP DONE% : CELL3 A 00000003 CELL? A 00000020 CINST A 0000000A CLAAE D CLAAI
130 D CLACC D CLRA D

00047 00090001 131 CONSTXPOS: TIMSUCKS H#0009, HIDOOl CNP D CMPD D CONSTHPO A 0000004C CONSTX PO A 00000047 CONSTYPO
00048 00020003 132 TIMSUCKS H# 0002,HI0003 A 00000057 COPYD D COPYR D
00049 00040005 133 TIMSUCKS H#0004 , Hl0005 CPASS D CSETDEL D CSETDELI D DOCONV A 0000002F DONE
0004A 00060007 134 TIMSUCKS H#0006,Hl0007 A 00000046 DONEELE A 0000001B DORAS A 00000026
0004B 00080009 135 TIMSUCKS H#0008,Hi0009 mr D EXTDATA A 0000000D FOUNDZER A 00000017 JA D JE
0004C 00030001 136 CONSTHPOS : TIMSUCKS !1#0003, H#OOOI D JMP D JSR '.)

0004D 00020003 137 TIMSUCKS H#0002,Hl0003 LADD A 00000002 U\ND A 00000004 LCMP A 0000000B LCOP A 00000005 WA

0004E 00000000 138 RAVAJ.S: TIMSUCKS A 00000009 ~JE A 0000000A LJMP A 00000008
000 4F 00000000 139 TU!SUCKS WSR A OOOOOOOE LLOAD A 0000000D LOAD D LOADD D LOADRJISL
00050 00000000 140 TIMSUCKS A 00000029 ~OR A 00000000 LPOP A 00000007
00051 00000000 141 TIMSUCKS LPUSH A 00000006 LRTS A OOOOOOOC :.,SUB A 00000003 LWRITE A 0000000F LXOR
00052 00000000 142 TIMSUCKS A 00000001 NARG A 00000000 NEXTEL A 00000009
00053 00000000 143 TIMSUCKS NOP D NULL A 00000000)ll)MCELLS A 00000004 OPCODE D ORD
00054 00000000 144 TIMSUCKS D ORR D PADZEROS A 00000020
00055 00000000 145 TIMSUCKS RO A 00000000 Rl A 00000001 R2 A 00000002 R3 A 00000003 R4
00056 00000000 146 TIMSUCKS A 00000004 RS A 0000D005 R6 !\ 00000006
00057 00000000 147 CONSTYPOS : TIMSUCKS R7 A 0000000./ RA A 00000008 RAVALS A 0000004E RB A 0000000B RETURN
00058 00000000 148 TIMSUCKS D SETDEL A 00000010 STILLH A 00000041
00059 00000000 149 TIMSUCKS S7ILLX A 0000003B SUBD D SUBR D TIMSUCKS D WRITE
OOOSA 00000000 150 TIMSUCKS D XORD I) XORR D
000 5B 00000000 151 TUISUCKS
ooosc 00000000 152 TIMSUCKS Assembly Phase complete.
0D05D 00000000 153 TIMSUCKS 0 error(a) detected.
DOOSE 00000000 154 TIMSUCKS
OOOSF 00000000 155 THISUCKS
000 60 00000000 156 TIMSUCKS
00061 00000000 157 TUISUCKS

158

M1r-rRix -~ ~r t\'i l f; pt CA+ \&>Y\ tt~,'11f"'\-

Se& ~p -/lie Arm! lo Woi.k i/S Ir

\hc_f C< ~~ lftj:i~fJc~ /r1r11~. T'1e M/ffrq(

et!M.pon-ertl fs llre lorAcleJ (~ ~,,A{!r I vt~
-Uie vecf-Dr- I.S bro.Jc~f- -I,; k~ ce{fs .

fZes'< /If ,,, 07 ..,, .. ,t,p/Y.
"ne v cper~+,~,., [K• llf.lt•lr;')(

co/"''""'.

vector.1st
HAL~ Listing: vectoc.asm Mar 13 14:15:28 1995 Page

wh:..~
Addr Line ~ X Pcogram

-/-(-/-!-

hitecture

4500/4510

- / - (-/ -/ -

2

1

00000 DAD000A8

00001 50D0002D
00002 51D00040
00003 D2000000
00004 D3100000
00005 20D00002
00006 21D10002
00007 57300000
00008 54D00000
00009 24D40002

OOOOA 37D70001
OOOOB 90000009
ooooc 55000000
0000D 26540000
OOOOE 35D50002
OOOOF 57200000

~~
1 TJTLE ~ Ptogram
2 LJST F,W

LJNES 50
; / - l - / - l - l - l - l - l - l - l -/ - l - l - /-l -l- l-l-l-l-!-l-l-l -l- /-l - / - l-1-l - !-I-I

Matri x Mult Assemb l y Program for use with elRoy Systo l ic Array Arc

Craig Ulme r / Darrell SLogne J COMPE

7

8 ; No modifications or duplicat:ons wi thout the authors' consent
; / - l - !-! -l- l - / - /-l-l-/-l - l - l - l -l- /-/-/-l-l-l - l - l-/ -/- l-/-l - / -l- 1-I-I

10
11
12

13 ; Multiply Mattx X by Vector V
14
15
16

Registers: R7: Constant Rows of X

17
18

19
20
21
22
23

24
25 BEGINCOD: CCLtAR
26
27 INITCODE:
28
29
30
31
32
33
34
35 INITLOOP:

36
37
.l8
39
4 0
41
42

COPYD
COPYD
LOAD
LOAD
ADDD
ADDD
CO PYR
COPYD
ADDD

SUBD
JA
COPYH
ADDR
SUBD
CO PYR

R6: X Last Address of a looµ X SlarLing + #Cols -

RS : X starting address
R4: • Columns of X • 2 = Rows of. V • 2

R3: RA Loop Rows= Rows of V
R2: Multiply Loop Ra..rs = Rows of X
Rl: Current V Addcess
RO: Cu rrenL X Addcess

RO,CONXPOS%:
Rl,CONVPOS%:
R2,RO
R3,Rl
RO,RO, H#0002
Rl, Rl, H#0002
R7 ,R3
R4,H•0000
R4, R4 , H#0002

R7 ,R7, H.0001
INITLOOP%:
RS,RO
R6.R5. R4
R5,R5,H#0002
R7 ,R2

c l ear out the cells of al l values

RO=X starting Addtess
Rl =V starting Address
R2=Ro,,is of. X
R3=Rows of v / Cols of X
RO=First X data
Rl =First V data
R7='.l'emp counter of X columns
R4=Col*2 offset begins at zero
One more element - > o ffse t by rLwo

Decrease columns counted
I (still. a column, loop
R'::l=F i rst X data addtess
R6=Address of 2nd row , lst column
Kludge RS for looping
R7=Number of Rows Ln X

__ ._;~ vector.I st
HALS Listing: vector . asm Mar 13 14 : 15:28 1995 Page 2 HALE Listing: vector.asm Mar 13 14 : 15:28 1995 Page 3

Addr Line MATRIX Program ."-ddr Line MATRIX Program

00010 DAD08290 43 ADORA: CLRA Set to load RA pipe, holding ACC 00036 00190021 85 TIMSUCKS H#0019,H#0021
s 00037 00220023 86 TIMSUCKS H#0022,H#0023
00011 25D50002 44 ADDO RS, RS, !U0002 Increase X origin by one spot 00038 00240025 87 TIMSUCKS H#0024,H#0025
00012 B0560000 45 CMP RS, R6 See if we've hit the last place 0003 9 002 60027 88 TIMSUCKS H#0026,H#0027
00013 A0000024 46 JE PASSOUTS%: If so, go to the results pass 0003A 00280029 89 TIMSUCKS H#0028, H#0029
00014 50500000 47 COPYR RO,RS if not, load the next stating X 0003B 00310032 90 TIMSUCKS H#0031,H#0032
pos 0003C 00330034 91 TIMSUCKS H#0033,H#0034
000 15 53700000 48 COPYR R3, R7 Reset the row counLer 0003D 00350036 92 TIMSUCKS H#0035,H#003G
00016 DBOOOOOO 49 AD:JLOOP: LOAD RA,RO load next X into the RA pipe 0003E 00370038 93 1'IMSUCKS H#0037,H#0038
00017 2004 0000 50 ADDR RO, RO, R4 Move one row do·.-.rn 0003F 00390000 94 TIMSUCKS H#0039,l!#OOOO
00018 33D3 0001 51 SUBD R3, R3, H# 0001 Decrease the row counter 00040 00090001 95 CONVPOS: TIMSUCKS H#0009,H#0001
000 19 90000016 52 JA ADDLOOP'II: If not last one, keep looping 00041 00020003 96 TIMSUCKS H#0002,H#0003

53 00042 00040005 97 TIMSUCKS H#0004,H#0005
0001A 50D00004 54 PAOCELLS: COPYD RO,NUMCELLS Get the number of cells 00043 00060007 98 TIMSUCKS H#0006,H#0007
00018 30700000 55 SUBR RO,R7,RO RO-Num Cells - ~ows 00044 00080009 99 TIMSUCKS H#0008,H#0009
OOOlC A0000020 56 PADLOOP: JE DOMUL'l'%: Perfect fit, do the mult 100
00010 DBDOOOOO 57 LOADD RA, H#OOOO Load a dummy into the RA pipe 101
0001.E 30D00001 58 SUBD RO,RO,HIIOOOl Decrease counter 00045 00000000 102 CONYPOS: TIMSUCKS
OOOff 8000001C 59 JMP PADLOOP'I;: Keep looping 0004 6 00000000 103 TIMSUCKS

60 00047 00000000 104 TIMSUCKS
00020 DAD08110 61 DOMULT: CLAAI Sel (or Multiply 00048 00000000 105 TIMSUCKS
00021 DBlOOOOO 62 LOAD RB, Rl RA loaded, Load the next part of 00049 00000000 106 TIMSUCKS

V 0004A 00000000 107 TIMSUCKS
00022 21010002 63 ADDO Rl,Rl,H#0002 Po i nt to the next value of V 0004B 00000000 108 1' IMSUCKS
00023 80000010 64 JMP ADORA!/;: Do the next column 0004C 00000000 109 TIMSUCKS

65 0004D 00000000 110 TIMSUCKS
00024 50D00045 66 PASSOU'l'S: COPYD R0,CONYPOS%: Start at beqi nning Y 0004E 00000000 111 TIMSUCKS
00025 F0070000 67 WRITE RO, R7 Write# rows to first position 0004F 00000000 112 TIMSUCKS
00026 DAD080D0 68 CPASS Set to pass out answers 00050 00000000 113 TIMSUCKS
00027 20D00002 69 PASSLOOP : ADDO RO,RO,H#0002 Po i nt to first~ data value 114
00028 F0080000 70 WRITE RO, ACCIN Wr i te current r e sult out
00029 DBOOOOOO 71 LOADD RB, H#OOOO Force a value to pop out
00021'\ 37D70001 72 SUBD R7,R7,H#0001 Decrease the counter
0 0023 90000027 73 JI\ PASSLOOP% :
0002C 8000002C 74 DONE: JMP DONE% :

75
0002D 0004 0001 76 CONXPOS: 1'1MSUCKS Htt0004, HttOOOl
0002=: 00020003 77 TlMSUCKS H#0002,H#0003
0002F 00040005 78 1'1MSUCKS H#0004, H# 0005
00030 00060007 7 9 1'1MSUCKS H#0006, H#000 7
00031 00080009 80 TlMSUCKS H#0008, lltt 0009
00032 00110012 81 TlMSUCKS H#OOll, H#0012
00033 00130014 82 TJMSUCKS H#0013, H#0014
00034 00150016 83 1' IMSUCKS H#0015,H#0016
0 0035 0017 0018 84 TJMSUCKS H#OO J 7, H#0018

vector.1st
Symbol Table : vector.asm Page 4

!'.CCIN A 00000008 ACCOUT A 00000009 ADDD
D

I) ADDLOOP A 00000016 ADDR
D l\.DDRA A 00000010 ANDO

!'.NDR 0 BEGINCOD A 00000000
A 000 OOOCC CELLO A 00000000 CELL)

CELL2 A 00000002 CELL3 A 00000003
D CLAA I D CLACC

BLANK16 A 00000000 CCLEAR
A 00000001

CELLP
D

A 00000020 CINST

D CDELINT

A 0000000A CLAAE

CLRA 0 CMP D CMPD
D

D CONVPOS A 00000040 CONXPOS
A 000 0002D CONYPOS A 00000045 COPYD

CO PYR D CPASS D CSETDEL D CSETDELI D DOMULT
A 000 0002 0 DONE A 00 00002C DW D

EXTDATA A 0000000D INITCODE A 0000000 1 INITLOOP A 00000009 JA
D JMP D JSR D

LADD A 00000002 LAND A 00000004 LCMP A 0000000B LCOP
A 000 000C9 LJE A 00000 00 A LJMP A 000000 08

LJS R l-. OOOOOOOE LLOAD A 0000000D LOAD D LOADD
A 000 00000 LPOP A 00000007 LPUSH A 00000006

LRTS A OOOOOOOC LSUB A 00000003 LWRITE A OOOOOOOF LXOR
A 000 00000 NOP D NULL A 00000000

NUMCEL LS l-. 00 000004 OPCODE D ORD D
SA OOOOOO JA PADLOOP A 0000001C PASSLOOP A 00000027

PASSOUTS l-. 00000024 POP D PUSH D
A 00000001 R2 A 00000002 R3 A 00000003

ORR

RO

R4 A OOOOOC04 HS A 00000005 R6 A 00000006 H7
A 0000000B RB A 0000000B RETURN D

SUBO
D

D

XORR
SUBR

D

Assembl y Phase complete.
0 ~rror(s) detected.

D TIMSUCKS D WRITE

0 JE

A 00000005 WA

0 LOR

A 00000001 NARG

0 PADCEL~

A 00000000 Rl

A 0000000-/ HA

D XORD

matrix.1st
HALE Listi~g: matrix.asm Mar 13 14:12 : 02 1995 Page 1

Addr

/-/-1-/-/ -

chitecture

4500 /4510

I-I-I-I-I -

*2

00000 51DOOO~A
00001 D3100000
00002 21Dl0002
00003 D2100000
00004 21D 1 0002

00005 57D0005D
00006 56000017
00007 D6600000
00008 F0760000
00009 27070002

Line MATRIX Program

1 TITLE MATRIX Program
2 LIST F,W
3 LINES 50
4 ;l-l-l-l-l-l-l- l-l-l-l- l-l -l-l-l-l - l -!-l-l - l -l- 1- I-I - I -I- I-I-I-I-I-

5

G

7

Matrix Mult Assembly Program for use with el Roy Systol.ic Array Ar

Craig Ulmer/ Darrell Stogner COMPE

8 ; No modifications or duplications without the authors' consent
9 ;I-I-I-I-I-I - I - I - I-I-I-I-I-I !-l-l - l - 1- l -l-l -l-l-l -l-l -l-l-l- l-l-l-

10
11
12

13
14
15
16
17

1B
19

20
21
22
23
24

25
26

27
2B

Multiply Matrx X by Matrix M
Note: thi s will generate a transposed versi~n of Y

Registers: R7: ConsLanL Rows of X
R6: X Last Address of a loop X Starting+ #Cols

RS : X starting address
R4: # Colrnnns o f X ' 2 = Rows of v • 2

R3 : RA Loop Rows= Rows o f V
R2: Columns of M counter
Rl: Current V Address
RO: CurrenL X Address

Initialize the M Matr :ix counters

29 INITCODE: COPYD Rl,CONMPOS%: Rl=M starting Address
30 LOAD R3,Rl R3=Rows o(M / Cols of X
31 ADDO Rl,Rl , H#0 002 Rl =Address of M's Colunns
32 I,OAD R2,Rl R2~Col wnns of M

33 ADDO Rl, Rl, HI0002 Rl=Address of (irst M data
34
35

36 ; Write out Y's ROWS.COLS values
37

38 INITY : COPYD R7,CONYPOS%: Get the l ocation of Y
39 COPYD R6, CONXPOS'I;: Get the location of X
40 LOAD R6,R6 Get Lhe ff rows from X
41 WRITE R7,R6 Wr i te the J rows to Y
42 ADDO R7,R7,H#0002 Po i nt to address of Y's Co l s

MArr.,{ MPr11<-,I #,,,r11-,-..,_

I

HALE List i ng: matrix.asm Mar 13 14:12:02 !9 95 Page 2

Addr

OOOOA F0720000
00008 60700000

ooooc 57300000
0000D 54000000
OOOOE 24040002

OOOOF 37070001
00010 9000000E

00011 DADOOOA8
00012 50000037
00013 D7000000
00014 20000004
000 15 55000000
00016 26540000
00017 35D50002

0001B DAD08290
00019 25050002
0001A 80560000
00018 A000002C
OOOlC 50500000
OS

00010 53700000

~~~~--~--
OOO l E D8000000 
OOO i F 20 040000 
00020 33D30001 
00021 9000001E 

Line MATRIX Program 

43 
44 
45 
46 

WRITE 
PUSH 

R7, R2 
R7 

Write the I cols to Y 
Put the Y address on the stack 

47 
48 

Calculate the address offset of one row of: X 

49 
50 
51 

52 
53 
54 
55 

COFI:S E:'l': 

COFFLOOP : 

COPYR 
COPYD 
ADDO 

SUBD 
JA 

R7, R3 
R4, Hrncoo 
R4,R4,Hl0002 

R7, R7,Hl0001 
COFI:LOOP%, 

56 
57 

Main loop for matrix 

58 MA'l'LOOP, CCLEAR 
59 COPYD R0,CONXP0S%: 
60 LOAD R7,RO 
61 ADDO RO,RO,Hl0004 
62 COPYR RS, RO 
63 ADDR R6,R5,R4 
64 SU8D RS, RS, H.0002 
65 
66 

R7=Temp counter of X co lumns 
R4aCol'2 offset begins at zero 
One more e lement -> offset by +two 

Decrease columns counLed 
If still a column, l oop 

Cle0r out all cel ls - new vector 
Get x starting address 
R7 = Num Rows of X 
Set to first data value of X 
Set to first data value of X 
R6=address of 2nd row, 1st column 
Kludge RS for looping 

67 
68 

A new vector of M. Mus t rein i tialize the cells and counters 

G9 ADDRA: 
70 
71 
72 
73 

74 
7 5 
76 

CLRA 
ADDD 
CMP 
JE 
COPYR 

COPYR 

R5,R5,H#0002 
RS, R6 
PASSOU':'S%: 
RO,RS 

R3,R"/ 

77 ; IndLvidual vector l oop 
78 

79 ADDLOJ P: LOAD RA,RO 
80 ADDR R0,RO,R4 
81 SUBD R3,R3,HijQ QOl 
82 JA ADDLOOP%: 
83 
84 

Set to load RA pipe, holding ACCS 
Increase X origin by one spot 
See if we've hit the last place 
If so, go to the results pass 
if not, l oad the next slating X p 

Reset the ro~ coun t er 

l oad next X into the RA pipe 
Move one row down 
Decrease the row counter 
If not last one , keep looping 



i95/037I3l 
16:27:19: I matrix.1st {0, "' .~j 

~;~-

HALE Listing: matrix asm Mar 13 14:12:02 1995 Page 3 HALE :..isting: matrix. asm Mar 13 14: 12: 02 1995 Page 4 

Addr Line MATRIX Program Addr Line MATRIX Program 

85 ; Pad out the array if more Cells then# multiplying 0003C 00090011 127 TIMSUCKS fU0009, H#OOll 
86 ------------~---~-------------------~~~~~~~~~~~-~~~~~------------- 0003D 00120013 128 T:MSUCKS HI0012,H#0013 

00038 00140015 129 T I MSUCKS HI0014,HH0015 
00022 50D00004 87 PADCELLS: COPYD RO,NUMCELLS Get the number of cells 0003F 00160017 130 TIMSUCKS III0016,H#0017 
00023 30700000 88 SUBR RO, R7, RO RO=Num Cells - Rows 00040 00180019 131 TI MSUCKS 1110018,H#0019 
00024 A0000028 89 PADLOOP : JE OOMULT%: Perfect fit, do the mult 00041 00210022 132 TI MSUCKS 1110021,H#0022 
00025 D8D00000 90 1,0ADD RA,11#0000 Load a dummy into the RA pipe 00042 00230024 133 TI MSUCKS llto023,HH0024 
0002 6 30D0000 L 91 SUBD RO, R0,11#0001 Decrease counter 00043 00250026 134 TIMSUCKS 1110025 ,H H0026 
00027 80000024 92 JMP PADLOOP%: Keep looping 00044 00270028 135 TIMSUCKS 1140027, H#0028 

93 00045 00290031 136 TIMSUCKS Ht0029, H#0031 
94 ,--------------------------------------------------------------~~~- 00046 00320033 137 TIMSUCKS lli0032,HH0033 

00047 00340035 138 TIMSUCKS HIC034, H#0035 
95 ; Do the actual multiplication 00048 00360037 139 'rIMSUCKS HI003 6, Hff 003 7 
96 ------------------------------------------------------------------ 00049 00380039 140 TlMSUCKS fl! 003 8, H#003 9 

0004A 00090004 141 CONllPOS: TIMSUCKS HI0009, H#0004 
00028 DAD08110 97 DOMULT: CLAAI Set for Multiply 00048 00010002 142 TIMSUCKS HIOOOJ, H#0002 
00029 D8100000 98 LOAD RB,Rl RA loaded, Load the next part of 0004C 00030004 143 'l'IMSUCKS fU0003, HH0004 

M 10004D 00050006 144 TIMSUCKS HI0005, H#OOO 6 
0002A 21D10002 99 ADDD Rl, Rl, H#0002 Point to the next value of M 00048 00070008 145 TIMSUCKS H!0007,H#0008 
00028 80000018 100 JMP ADORA%: Do the next column 0004F 00090011 146 TIMSUCKS HI0009, HHOO l l 

101 00050 00120013 147 TIMSUCKS H#0012, HH0013 
102 -~~~~---~~~~---------~--~-~~~--~--~------~~~~~~~~~~-~~~----------- 00051 00140015 148 TIMSUCKS Hl0014,H#00 15 

00052 00160017 149 TIMSUCKS HI0016,H#001 7 
103 ; Write out answers 00053 00180019 150 TIMSUCKS Hi0018, HH0019 
104 --------------------------------------------------------~-~~~----- 00054 00210022 151 TIMSUCKS HI0021, H#0022 

00055 00230024 152 TIMSUCKS HI0023, !1#0024 
0002C 70000000 105 PASSOUTS: POP RO Pop off the Y- 1 address 00056 00250026 153 TIMSUCKS HI 002 5, HH002 6 
0002D DAD080D0 106 CPASS Set to pass out answers 00057 00270028 154 TIMSUCKS 11!0027, H#002 8 
000 2 E 20000002 107 PASSLOOP: ADDD RO,RO,H#0002 Point to next Y data value 00058 00290031 155 'rIMSUCKS l!i0029,H#0031 
0002F F0080000 108 WRITE RO,ACCIN Write current result out 00059 00320033 156 TIMSUCKS H.0032, H#003 3 
00030 DBDOOOOO 109 LOADD RB,HifOOOO Force a value to pop out 0005A 00340035 157 TIMSUCKS Hi003 4, Hff 003 5 
00031 37D70001 110 SUBD R7, R7, ;J#QOOl Decrease the counter 00058 00360037 158 TIMSUCKS Hi003 6, l-lH003 7 
00032 9000002E 111 JA PASSLOOP%: Keep looping if not zero 0005C 00380039 159 TIMSUCKS 1110038, H#0039 
00033 60000000 112 PUSH RO Push the Y address fo r storage 160 

113 0005D 00000000 161 CONYPOS: TlMSUCKS 
114 ---------------------------------------------------~~~~~~~~~~~~--- 0005E 00000000 162 TIMSUCKS 

0005F 00000000 163 TIMSUCKS 
115 ; Figure out next Column of M 00060 00000000 1 64 TIMSUCKS 
116 ·-----------------------------------------~~~~~~~------------------ 00061 00000000 165 TIMSUCKS 

00062 00000000 166 'l'IMSUCKS 
00034 32D20001 117 MATEND : SUBD R2, R2, H# OOO l Decrease M' s Column counter 00063 00000000 167 TIMSUCKS 
00035 90000011 118 JA MATLOOP% : Jf more columns, keep looping 00064 00000000 168 TIMSUCKS 

119 
0003 6 80000036 120 DONE: JMP DONE%: 

121 
00037 00040009 122 CONXPOS: 1'1MSUCKS H#0 004, H#0009 
OOOJ 8 00010002 12J 'l'lMSUCKS IHO OO l , HH0002 
00039 00030004 124 TTMSUCKS H#000 3. Hrn004 
0003 A 00050006 125 TJMSUCKS H#0005 , H#0006 
0003 B 00070008 126 'rIMSUCKS H#0007, H#0008 



matrix.I st -
IIALE Listing: matrix. asm Mar 13 14:12:02 1995 Page 5 Symbol Table: matrix . asm Page 6 

Addr Line MATRIX Program ACCIN A 00000008 ACCOUT A 00000009 ADDO D AODLOOP A OOOOOOlE 1\DDR 

0 ADORA A 00000018 ANOD D 
00065 00000000 169 TIMSUCKS ANDR ::> BLANK16 A 00000000 CCLEAR D COELINT A OOOOOOOC CELLO 
00066 00000000 )70 TIMSUCKS A 00000000 CELLl A 00000001 CELL2 A 00000002 
00067 00000000 171 TIMSUCKS CELL3 A 00000003 CELLP A 00000020 CINST A 00000001\ CLAAE D CLAA: 
00068 00000000 172 TIMSUCKS D CLACC D CLRA D 
00069 00000000 173 TIMSUCKS CMP D CMPO D COFFLOO P A OOOOOOOE COFFSET A OOOOOOOC CONMPOS 
0006A 00000000 174 T IMSUCKS A 00000041\ CONXPOS A 00000037 CONYPOS A 00000050 
0006B 00000000 )75 TIMSUCKS COPYO ::> COPYR D CPASS D CSETDEL 0 CSETOELI 
0006C 00000000 176 TI MSUCKS D DOMULT A 00000028 DONE A 00000036 
00060 00000000 177 TIMSUCKS DW ::> EXTOATA A 00000000 I NITCODE A 00000000 INITY A 00000005 JA 
0006E 00000000 178 TIMSUCKS D JE D JMP D 
00D6F 00000000 179 TIMSUCKS JSR :> LADD A 00000002 LAND A 00000001. LCMP A 0000000B LCOP 
00070 00000000 180 TIMSUCKS A 00000005 LJA A 00000009 LJE A 00000001\ 
00D71 000 00000 181 TIMSUCKS WMP A 00000008 WSR A OOOOOOO E LLOAD A 00000000 LOAD D LOADD 
00072 00000000 182 TIMSUCKS D LOR A 00000000 LPOP A 00000007 
00073 00000000 183 TIMSUCKS LPUSH A 00000006 l,RTS A OOOOOOOC LSUB A 00000003 LWRITE A OOOOOOOF LXOR 

184 A 00000001 MATEND A 00000034 MATLOOP A 00000011 
NARG A 00000000 NOP D NULL A 00000000 NUMCELLS A 00000004 OPCODE 
D ORD D ORR D 
PADCELLS A 00000022 PADLOO? A 00000024 PASSLOOP A 0000002E PASSOUTS A 0000002C POP 

M~ -re\,. 
D PUSH D RO A 00000000 

f14re1x' M~r tpf ,c11 +,"~ 
Rl A 00000001 R2 A 00000002 R3 A 00000003 R4 A 00000004 RS 

A 00000005 R6 A 00000006 R7 A 00000007 
RA A 0000000B RB A 0000000B RETURN D SUBO D SUBR 

D TIMSUCKS D WRITE D 
XORD D XORR D 

Assernbly Phase complete . 
o error(s ) detected. 

SiM;fA<' -fo fl4Artltt- Vee f-~, prir11~1 b""t 
L0Dp5 -Ke fllyvr~-H.~ ,le f)er-fo,M 4/{ "perAi,~".f 

Ref 4. / fr .r1 re s-l-eJ ,~ 1r,t.n>p::,se/ ~,., . 



Appendix C: Circuit Schematics 

37 



a: 
0 

"' "' w 
u 
0 
a: ... 
z 
< 
:i; 

< Ill 

. 
i 

Ill 

u 0 

• 
! 

<') 

(J C 



A 

B 

C 

D 

2 3 

I;_, .U.U OP(2:0) 

D O<Jl{l5'0)1 JZ/11 9) 10A_IN(15.0) 
I 08_1'(15.0) 

I U.U_OONE 

oe8(u:t I j ~~~~ 
ALU DOHE------' 

~..@---

2 

STACK_OP 
CLOCK 
RESET 

3 

U PROC 

4 5 6 7 8 

All{ .- (l~Me, 
A 

G 

~ DOA ADDf<(2ct) 

088 AOOR(2:0) ·• 
OBA(I S:O) l------------ml 

0 88(15:0) 

W_DATA(ts:O) 

IR(2;0) 

O_Ol/T(I S:0)._---'-,....""'---------1 

W_ENA8LE 
CLOCK 
RESET 

TER B 

C 

D 

4 5 6 7 8 



2 3 4 

AlU_Ofl(0)-1 

A 
D_».(15:0 j 

"""' D_o..rTC,6:0) 
ENABLE CLOCK7-nCLOCK 

RESET RESET 

STACK• J' 

IrD_J:Rl5 

OA,_JN( IS:01 
D Ol1T(15:0) 

OB IN(1S:ot 

ANO COM 

DA,JN( l5:0j 

OB_IN(IS:O) 
RESl.l.T(15:0) 

ALU OP(0) I I lsueTRACT 

B 

O_otJT(15:0)I BWt:91 

XOR COMPONENTS 

o_OVT(U:o)I THJS'P> I 

OR COMPONENTS 

C 

D 

2 3 4 

5 6 

DOlff(1S:OII ~ 

O_ IH(1$:1t) FLAC__l.EAO F ZERO 

~

ENABLE 
CLOCK 
RESET 

A.AG_NOT ZERO F _N2ERO 
FUO POSfTlVE - - - F PCS 

FUO NEGATIVE F NEG 

AG R£GISTtR 

(n0\ 
'--..._./ '----.__,/ 

PRo.ECT ElROY 

PART: ALU 

PURPOSE: o .... HII ALU ""°' Flag, 

LASTMOOlnE0 Januiuv2•.1t9S 

7 

t4Lu{ 

~ 
DES10 NERS Cr,tg Ulrner & D,1rTel l Stog,w 

5 6 7 

8 

A 

B 

C 

D 

8 



~ 

A 

B 

L!J! 

D_IN(15) 

C 

D 

1 2 

., '+ 

1------1(3) 

~----...--- - 1(2) 

t---T(O) 

A 
t------ - - ----tB 

3 4 

Zl-----1(1) 

:, 

T1 (3 )---------i 

T1 (2) ---------i 

T1 (1 )---------i 

T1 (0)---------i 

T(3:0)___ 1• - IN(3:0) 

ENABLE 
CLOCK 
RESET 

0 

REGISTER4 

LU 

I 

FLAG_ZERO 

FLAG NOT ZERO 

FLAG_POSITIVE 

FLAG_NEGATIVE 

D_OUT(3:0),1-----·11(3:0) 

Pl~ (IAG-S 

5 6 7 

0 

A 

B 

C 

D 

8 



A 

B 

C 

D 

2 3 

(RtsET ; 

~~------
~ 

Ftl
D_lll(U:O) 

~I ___ __,_ EN.ABLE 
CLOCK 
RESET 

REGISTER16 

fil 

ta:.ur..1ER1 

4 5 

o_OUT(1 "''I BEQJYAU]S-O) I 1,_1N(11,01 
I SEL 

IH~ljOllt._ 1' 

D_OUT(1S:O) 

JRIAI 

6 

sa 

~----tf--tt----l ENABLE 0 _0Ul(15:1) D_OUT(IS:O) O_IH(U :O) 

f<e, 1s+r 
7 

" ~ O_OUT(1S:O) 

m 

Ft]Dlll(15•0! 

I - Ir-----~ = 
RESET _RI___ •-----==----~ m 

~ENABLE 

FlEO-"'(IS:0) 
I ENABLE 

CLOCK 
RESET 

Ft]"-··••·•· I EN.lSLE 
CLOCK 
RE5ET 

ffi" •(150) llt.N•BLE 
CLOCK 
RESET 

rno_,,( .... 
II ~~~~E 

RESET 

rnOIM(ISO) 
111 1 ~~~~ 

- RESET 

~

Dbil{IS·O) 

~--~-lt--tENlBLE 

I ~~~ 

109! 

RE01$TER1I 

~ 

'11:.u1::.r£R16 

ft• 

REGISTER16 

'!>_ 

RECUSTER16 

fil_ 

AEGiSTEffi& 

fil 

REGlSTER 16 

m, 

SE.L(2:0) ~SEL(:1.:0) 
~ - - _ ENABLE 

uut•• rnisi _Jf I lj~ 
f~:~: -~-
O OUT{2)"---
D_OUT•t),t- --
O_OUT(O) ----

EN.lBl(-ICN.lOlE 

D_OU1(1&0)1 (IEGSYNCll'OI 111 I ,~~N(IIO) " ~ D OUT(IS:O) 

rRIAS 

~~:(ISO) 

D_OUT(1S0)1 BfGfY611Ji9I Ill I f ;~N(IIO) •='"'"-~ 
O_OUT(IS:O) 

TRUl.f 

~:;t"°' 

oou,11&•11 Bf93Y&IJnl 1111, I 1~~~N(no1 fMr~::

11 

0_~1•u} O_IN(IS:O) 

S[L 

o_our1uo11 HY61!ii2I 11111, I ~~N(t101 IMr:: 
16 

o_OUT(IS+ 

DOUT(1&011 BfGJY&C1
5
YI 111111 I 1~;~N(1S,01 

DOUT(ISO)I BfG9Y611Jl91 11 1111 1 I ,~N('50) 

·-~~~dll D_OUT(7) 
D OUT(I) 
O_OUT(S) 
0 OUT(4) _ 
O_OUT(l 
O OUT{:il) 
O_OUT(I 
O_OUT(0) 

1088 _.lOORit ·O 

ENABLE 

,m,,.,._,, =+ 
0 OUT!I$ 0) 

...Ifill 

lt<l:01" 1 

D OUT(li:O) 

....IBM 

Ul~".IIIU. 

SEL(20) 

EMABlE 

O_OUT(7)1 
D OUT(6) 
D_OUT(S) I 
D_OUT(4) 
D OUT(:J) 
0 OUT(2) 
D_OUT(l) 
D_OUT(O) __ 

D IN(l5 :0) 

SCL 

D IN(IS:O) 

r- ISEL 

D_IN(15.0) ,i: 
~ 06.! SEL 088 SE 

2 3 4 5 6 

IKl::>ll"it._ll 

O_OUT(1S.O) 

"""' 

""'"""" -- -~ 

D OOT(U:O) 

m"" 

ltml,IAll 1' 

D_OUT(IS:O) 

TAR3 

1 ~1.11.ll_J, 

0 OUT(U:O) 

TRl81 

1,v::;.111,1 1;_ 16 

O_OUTCU:01 

TR"" 

'~""'-" ~ 
o_ou·r11s:01 

.!Rt~ 

7 

-h/rL 
8 

~ 

A 

B 

C 

D 

8 



2 3 4 

OBA(S", 

FLl G _l_ OAU(1 S) D_OU1( 1S) 

Al 
SH 

mmiiEID---
0BA(4i 1--lii.'o G _l_ OAHtr(14) l O_OUT(H) 

----llmliEID---

DBA(3i H~~.,, G_j OAH( t3J l D OUT(U) 

ll!l!l!i!m)-

08A(2J G _l_ OAU(1 2 OlO l D_OUT(12) 

sl 
SH 

s ' 

OBA(! 
GJ_ OATA(11 D _OUT(11 ) 

OBA(O G OATA(I0 O_OUT(IO) 

OATA(l•r--+--7 Z O_OUT(l) 

C 

o~~~l I I Z O OUT(2) 

088(1>--+--, 
0ATA(I ) Z O_OUT(IJ 

------0._0UT(Oj 

D 
SET DEL INT 

2 3 4 

5 6 

DATAO)~O Ol/T(OJ 
SEL 

s, 

SEL 
OATA•>~D_Ol/T('J 

DAT~)---t-----i~~ zt-- D OUT(71 

OATA41) O_OUT(I) 

DATA(S) D_OUT(S) 

on 
~-_/ 

5 6 

(_ \)p.r-A ~ \ec. ~ 

PROJECT ELROY 

PART : COAT A_Sl LECT 

7 

~ 

PURPOSE: S.-CI eel IMtructio. ngl1ttr toUtCe 

LAST MO0JAED: .U~ry 24, 1995 

OESIG~ERS: c,alg Ulmef a. Oantll s1091..-

7 

8 

8 

IA 

18 

C 

D 



co u Cl 

co 

i-. .., 

.... ~ ~ 

~ 

<O 

"' "' 

0 

: ~ 

"' ! ! 
s z 

; 
i!l 

N f ~ N 
~ 
tt 

co u Cl 



a, <.J C 

a, u 0 



A 

B 

C 

DI 

2 

Rp INST 

RD DAT~ 

Cl~ 

_BE__g_T 

2 

AAB_IN 

3 

M;.!! 

3 I 

4 

4 

S_HfQH(l5:0) 

S_LOW(15:0 ) 

SEL 

1ATA REG 

I 

\ (\ 
5 6 8 

A 

O_OUT(1S:O)~ 

RUCTIOH REGtSlER 

I I ±I *oBTERIO 
O_OVT(l 5:0) f 2fJS·O) 

O_OUT(IS:O)~ 

B 

1.UA REOtSTEA 

C 

00\ 
PROJCCT ElROV 7 PART ARB IN 

PURPOSE Hardie In~ ttig!SC•n .,,4 m•moty bua 

LAST WOOFIEO: J.....,..ry 2', IMS 

\ 
~ ) I OESKJHERS : Craig Ulll'llt & ~11•» S,ogMr ID 

5 I 6 I 7 I 8 



A. 

B 

C 

DI 

2 

ARB_OUT 

l?C At)DR :=; ISHIGH(UO) 
~ ,-.--- IS_LOW(IS.-OI 

SEL 

~

SHKlH(IS:O) 

S LOW(150) ... 
SELECT QATA, 

2 

3 4 

D_OUT(1':0) 

mess 

O_OUT{15;0 ) 

OURC 

I 3 I 4 

f5K.S Af"b 't/41 
5 6 7 8 

A. 

B 

C 

~OJECT ELAO'f 

l oo~ PARl : ARB OUT 

PURPOSE . Hancti. ouq>ut reglst.ns and m-o,y ~ 

LAST MOOlrtC0' J•-•ry 24. 1t9S 

\ ~ ) II DESIGNERS , c .. 1gu1-,&o.,,..,s,,.n« __J ID 

I 5 I 6 I 7 8 



A 

B 

C 

D 

2 

INSTR:~~====1: 

~

S_HIGH(31 ,0) 

S L0Wf31:0) 

"5 SEL 

C DATA LOAD ~ 

INSTRUCT(6) ~ -----~ I 

f3ES~R~DY 

~C_INST(l,:O) 

OIP(t:0) 

C INST LOAD 

~~~ri' 

2

3 4 5 6

,.

O _OUT(IS:0)1 I IRl P4SS,1J·01>

I I° A(1S:O)

O_OUT(IS:O) BP Bf§{U:9\o 8(15:0)

!I!!

D_OUT(310)I :::::: : ' I' Hk>H(310)
j I

S_LOW(31 :0)

SEL a<<yNuu••LJ_J 1 I 6RN612
0(31 :0)

HSTRUCT(4)

INSTRUCT(9 :0) NSTRUCT(9 : 0)

_12BJT_2T01

0 OUTjll :0)

o out1:,1:01 I eurn-m I

RESULT_AEAOY--

CLOCK-------- H--'

OEUY(Z:0)1---------------------------------------J""""""'..._ ________ _.
FFO_RESET

on , PROJECT BROY

PART: CEU

PURPOSE : l"dlvldu•I ctll ~

LAST IIOOlrlEO: Jamurv 24, I 99$

7

0 " -~--,·•·-·-·~-
3 4 5 6 7

LELL-
8

A

_ __ J2,

D OUT(ll :OI .ll..i!
B

RESULT FIF

C

D

8

2 3

C-~-~-LQ~

A C_INSl(1!i,>---------------------,

L!~

B

R

C

D

2 3

4 5

c _,~P) ~ I(]

C INST(lO) I 1 1 I~~~)
R£S£T

JI[

Ceo)vi~ t f'<L.+\~ V\
6 7 8

\flu,k l~'i~~~

o OUT(1S:oi l UJI J!iiOI l .._t1s:01
INSTWCT(I)

- INSTtuC:T(I)

~

O OUT(l:fl)

m ™::~™•'''~~21
00

•:::••

0

• I OEL_TMP(I) A(I) 8(20)1--------mmmw
DEL T"MP(O) A(O)

~--+~---_---1_.:

!.l.!

4 5 6 7 8

A

B

C

D

< a, (J C

i i i . • •
§ ~ ii • • ! ~ ~

! i ~ ~ ! ; [
<

•• gm~ ! ~ s
i t ~l~i

! i' 5
f g d~~ i ih-g , g!,I

Ill I I I Il l I Ill
I

711 I r
! i

I
:
~ ~ r71 - ,...:=;-i • • ~

[• [f g 0 0 • ' ,
I ij I i ~ l ~

'
' f [B~ ! ~ : ...

' i im: 1 r~m r ! s. inm
~ 15' s ..
I ~~m

II Lj.J I 11 4-1 II -+J II
I

' I ' i

I ~

I

I --. 1 1
~~C~EE~g

~ l !,!,!!!,m
! . - ! :

I ..
~ •• s !

I

l iii

Ill u 0

A

--

B

--

C

--

D

I I

ILOAD{31 :0D IS_HIGH(31 :0)

IBEQl31; 0l

[LOAD_EXT

[ENABLE

S_LOW(31 :0)

SEL

....

MUX 32BIT _2TO1

MEMORY SOURCE

I .. I .,

o_OUT(31 :oJI SQURCEf3J·O) lo IN(31 :0)

I :__JCNABLE I CLOCK
RESET

CLOCK >-- ------- - - --- - - --- - - - - - - - - - --- --'

!RESET) ---- --- ----- --- - --- --- - - ----- - - -'

1 l 2 I 3 l 4 I 5

1 u I J u

~(o Cei(
A

I--

REGISTER32 B

o_OUT(31 :o) I jnFo oum1 :Ol >

1_1

-
C

-
D

I 6 l 7 I 8

Appendix D: Bibliography

38

J Bibliography

Ashenden, P. J. , The VHDL Cookbook, 1st ed., University of Adelaide, South Australia,
Department of Computer Science, 1990.

Baker, Louis, VHDL Programming, John Wiley & Sons, Inc., New York, New York, 1993.

Kung, H. T., Warp Experience: We Can Map Computations Onto a Parallel Computer
Efficiently, Carnegie Mellon University, Department of Computer Science, 1988.

I

Kung, H. T., Why Systolic Architectures?, Carnegie Mellon University, Department of Computer
Science, 1982.

Mead, C., Conway, L., Introduction to VLSI Systems , Addsion- Wesley Publishing, 2nd. ed. ,
1980.

Patterson, D. A. , and Hennessy, J. L., Computer Organization and Design: The
Hardware/Software Interface, Morgan Kaufmann Publishers, San Mateo, California, 1994.

Schafer, R. W., and Openheim, A. V., Discrete-Time Signal Processing, Prentice Hall,
Englewood Cliffs, NJ, 1989.

Strang, Gilbert, Linear Algebra and Its Applications,3rd ed., Harcourt Brace Jovanovich College
Publishers, Orlando, FL, 1986.

Synopsys, Inc., Synopsys: VSS Family Tutorial, 1994.

Texas Instruments, User's Guide: Digital Signal Processing Products, Texas Instruments
Incorporated, 1990.

Wakerly, J. F., Digital Design Principles and Practices, Prentice Hall , Englewood Cliffs, New
Jersey, 1990.

39

	filt_elroy_final-01
	filt_elroy_final-02
	filt_elroy_final-03
	filt_elroy_final-04
	filt_elroy_final-05
	filt_elroy_final-06
	filt_elroy_final-07
	filt_elroy_final-08
	filt_elroy_final-09
	filt_elroy_final-10
	filt_elroy_final-11
	filt_elroy_final-12
	filt_elroy_final-13
	filt_elroy_final-14
	filt_elroy_final-15
	filt_elroy_final-16
	filt_elroy_final-17
	filt_elroy_final-18
	filt_elroy_final-19
	filt_elroy_final-20
	filt_elroy_final-21
	filt_elroy_final-22
	filt_elroy_final-23
	filt_elroy_final-24
	filt_elroy_final-25
	filt_elroy_final-26
	filt_elroy_final-27
	filt_elroy_final-28
	filt_elroy_final-29
	filt_elroy_final-30
	filt_elroy_final-31
	filt_elroy_final-32
	filt_elroy_final-33
	filt_elroy_final-34
	filt_elroy_final-35
	filt_elroy_final-36
	filt_elroy_final-37
	filt_elroy_final-38
	filt_elroy_final-39
	filt_elroy_final-40
	filt_elroy_final-41
	filt_elroy_final-42
	filt_elroy_final-43
	filt_elroy_final-44
	filt_elroy_final-45
	filt_elroy_final-46
	filt_elroy_final-47
	filt_elroy_final-48
	filt_elroy_final-49
	filt_elroy_final-50
	filt_elroy_final-51
	filt_elroy_final-52
	filt_elroy_final-53
	filt_elroy_final-54
	filt_elroy_final-55
	filt_elroy_final-56
	filt_elroy_final-57
	filt_elroy_final-58
	filt_elroy_final-59
	filt_elroy_final-60
	filt_elroy_final-61
	filt_elroy_final-62
	filt_elroy_final-63
	filt_elroy_final-64
	filt_elroy_final-65
	filt_elroy_final-66
	filt_elroy_final-67

