Georgia Institute of Technology

School of Electrical and Computer Engineering

elRoy

A Systolic Processor Array

CompE 4510 Senior Design

Winter 1995

Darrell Stogner Craig Ulmer

Table of Contents

Background, Purpose, and Status	1
Fast Statistics	2
I. Theory: Systolic Array Theory	4
I. Theory: Matrix-Vector Multiplication	6
I. Theory: Discrete Convolution	10
II. Architecture: System Design and Architecture	16
III. Synthesis: Synthesis and Partitioning	22
IV. Programming: Programming elRoy	25
IV. Programming: Assembly Instruction Format	26
IV. Programming: Assembly Language Instructions	27
IV. Programming: Cell Microcode Format	28
IV. Programming: Translations Using the TIM Assembler	29
IV. Programming: Assembly Programs	30
V. Testing: Testing	32
V. Testing: Theoretical Speed Comparisons	33
Conclusions	34
Appendix A: Tim Assembly	
Appendix B: Test Programs	
Appendix C: Circuit Schematics	
Appendix D: Bibliography	

. . .

Background, Purpose, and Status

Traditionally, the rule of thumb for creating high speed computation bound programs falls to the saying DM/ND: Don't Multiply, Never Divide. Even with optimizations in hardware computation algorithms, the ALU's slowest operation is inevitably a form of multiplication or division. Since multiplications and divisions are necessary for a large percentage of computational problems, it would be beneficial to arrange the slowest operations in a way that the events could take place in parallel in order to minimize delay.

Systolic architectures allow such parallelism by breaking up computations, and arranging their execution in a way that costly operations occur at the same time. Although the amount of complexity in controlling the overall system increases largely, the benefits of parallel designs are worthy enough to warrant the added difficulty.

The purpose of this project is to exploit systolic architecture to find a faster means for working through high computation mathematical functions. The applications at which this project is geared towards are generally found within the Digital Signal Processing (DSP) domain of problems. The goals for this project include three specific applications that prove the array's design and advantages:

- 1. Discrete Convolution operation
- 2. Matrix and Vector Multiplication
- 3. Matrix and Matrix Multiplication

The systolic array of specialized processors designed in this project should be thought of as a side system much like a specialized coprocessor. For an actual implementation of this project, a main controller processor would perform normal computer tasks, while delegating specific computation tasks to the systolic array. This project uses a "simple" multi-cycle processor to handle the flow of operation and control of the systolic array.

All components of the system have been tested and synthesized to hardware. Due to the size of the project, the hardware emulators were not able to hold enough of the design to physically test our implementation. Since we were mainly interested in the theory of the design, we performed several rigorous test programs in the Synopsys VHDL environment to determine if our design theories were correct. While the tests were not gate timing simulations, we were able to prove that our theories of design were correct and valid. While it would have been desirable to see the design fully running in hardware, we consider the concept to be more important than a physical implementation.

Fast Statistics

Overall

System: Form:

Target Applications: Data Width: Instruction Width:

elRoy

Systolic Processor Array, Additional multi-cycle control processor High Computational Programming - DSP, Convolutions, Matrix 16-bit 32-bit

VHDL Design: Synthesis Status: Hardware Status: Testing Status: Structurally - Almost entirely to gate level Entirely synthesized

Too large to fit anything of interest in emulator boards VHDL Tested, All application goals assembled and tested

Control Processor

Function:Flow (
8 16-bRegister file:8 16-bALU:StandaPC OPs:Jmp, J

Flow Control, State Machine, Normal Ops 8 16-bit registers Standard ops - Add,Sub,Stack,Or,Xor,Cmp,Copy Jmp, Jsr, Rts, Ja,Je

Systolic Array Array Dimension: Linear

Flow: Array Form: Maximum Cells: Data Inputs: Cell Control: Features:

Uni-directional

Adjustable -- Contains mutated Moving Results and mutated Fan Out 32 (Limited due to 16-bit architecture) Serial Load and Broadcast Load Single Microcode Instruction, Control Signals Easily expandable

<u>Cell</u> Features:

Flexible datapath based on Microcode Instruction Adjustable FIFO Queue for inserting bubbles into array pipeline Cells are all identical structurally - easier to mass produce

I. Theory

2 J

Systolic Array Theory

There are several mathematical operations that require multiple calculations for each result. These calculations are often similar and can be done in parallel for a faster result. A systolic processor array takes advantage of this fact and breaks up the monotonous task of handling data by allowing several specialized processors to munch on individual components of the data at the same time.

Perhaps the easiest example to view the beauty of a systolic array comes from the calculation of a matrix-vector multiplication. For each answer, several values must be multiplied and accumulated.

A simple approach to building a system that implements this view is the fanout design (figure 1). For each result we multiply an entire row of the matrix by the vector's column, then add everything together with a specialized adder. Clearly, all of the multiplications for the particular result occur at the same time, minimizing the overall system's multiplication delay.

Although easier to build and track, the fan out approach suffers from a weakness in the result adder:

1. The adder will turn into a large amount of logic since it must add more than two numbers together.

4

2. The array will have to have a fixed number of cells. Since this prevents expandability, the number oc cells cannot be tailor picked to fit job requirements.

The next strategy for designing the array consists of breaking the adder up into small stages that can be implemented within each cell. In essence, this pipelines the cell array, allowing results to be generated as they work their way through the array. This topology is referred to as a moving results system(figure 2), since results move with input data through the cell array.

This topology requires more control effort, but removes the problems associated with the fan out approach. By manipulating how values are passed to the cells, we can implement a system that works as a long pipe and generates an output for each input. In this manner, we can easily expand the array to as many or as few cells as we require. An evolved version of the Moving Results implementation serves as the heart of elRoy's computational heart.

Other topologies for array configurations involve multidimensional arrangements of cells. Many of these designs involve careful timing models with bi-directional communication links between cells. Although the key to improving systolic array performance is to increase the dimension of the array, the practical features of parallel processing can be exploited with the simpler one dimensional array.

Matrix-Vector Multiplication Theory

The multiplication of a matrix by a vector is significantly sped up by the use of a systolic array of processors. The parallelization of the process is limited by the number of processors in the link, and typically by the speed of the interface. The design chosen here lends itself to a particularly fast computational procedure, and is therefore limited only by the number of processors. In short, elRoy's architecture is highly suitable to matrix vector operations.

The first step is to understand how the matrix will be stored in the machine. The typical initial reaction is to store it row by row in an array. After consideration of the multiplication process, it was discovered that if the numbers were stored in the array column by column, instead of row by row, the multiplication could be computed with architecture compatible with the convolution operation. Once this had been determined, the algorithm was obvious:

Note: This assumes an M x N matrix, and an N length vector. See the Vector Multiplication Diagrams.

Initialization: All accumulators and all registers must be set to zero.

- 1) The kth element of the vector is parallel-loaded into the Cell register.
- 2) The kth column of the matrix is loaded into the inputs of the systolic array sequentially.
- 3) The product of the two terms is calculated, and the result is added into the value held in the accumulator.
- 4) If (k == N) goto 5, else goto 1.
- 5) Note that at this point the values in the each accumulator correspond to one of the elements in

your output vector. They are propagated through the accumulator into memory.

Note that the algorithm above assumes that you have at least M systolic processors.

In short, the vector multiplication algorithm works by accumulating answers in each cell. The procedure is illustrated in figure 3. The arrangement of loading the cells is described in figure 4.

Figure 3: Vector Multiplication Configuration

Vector Multiplication

Figure 4: Vector Multiplication

If the number of rows in the matrix exceeds the total number of processors, then a control process must exist to process each column in chunks. This can be conveniently handled by the operating system. It will be necessary for the OS to efficiently break up the columns into blocks of manageable size, and to keep track of where each set of results needs to be stuck in the output vector. Another problem best handled by software is the fact that the final outputs as they are read off will be in reverse order. It is possible to place the results on a stack, and then pop them off one by one, but this is a needless waste of processor time. A good OS can place the output results into the correct memory address. Generally speaking, given a system with X systolic

processors, and a matrix with M rows and N columns, the number of calculation steps to obtain the final product is:

 $Trunc(\frac{M}{x}) \bullet N$

The total speed is also affected by the time required to propagate the column elements through the processor array. This gives a final calculation time of:

 $[(Trunc(\frac{M}{X})+1) \bullet N \bullet cycle_speed] \bullet [M \bullet propagation_speed]$

Matrix-Matrix Multiplication

The Matrix-Matrix multiplication operation is essentially the Matrix-Vector multiplication problem placed within a loop. If we treat the columns of the second matrix as individual vectors, we can easily apply the above operation several times over to produce the proper results.

Discrete Convolution Theory

To provide efficiency in computation as well as compatibility with other processor functions, the philosophy behind the discrete convolution operation is to treat the array of cells as a pipeline. Each cell focuses on a particular stage in the pipeline, while data is fed into the array serially. The result is an output for every cycle once the pipeline is fully initialized. In order to build the convolution, the fan out implementation was first examined.

In the fan out design, each of the cells is preloaded with a static value of H, and input X is fed serially from the left. In each cell, the shifting value X is multiplied by the cell's static value of H. The results of all cells are added together to produce one value of the output.

The range of H for this implementation is unfortunately limited to the number of cells in the system, assuming the convolution is a one pass algorithm. As well, for each zero value in the H equation, an entire cell must be wasted on a calculation that will always result in zero. Take for example the following equation.

 $h[n] = A\delta[n] + 0\delta[n-1] + 0\delta[n-2] + B\delta[n-3]$

Implementing it on the initial design, the first cell would be loaded with A, the second 0, the third 0, and the fourth B. The zero coefficients make the second and third cells perform operations in which the result is already known.

In order to make better use of the cells, it is more efficient to simply place bubble stages in the

data stream so zero terms do not waste cell computation time. To do the bubbling, a FIFO queue is placed in each cell that would delay the input from passing on to the next cell before the proper time has passed. The queue would have to be setup for each time the overall convolution is performed, but allows for a greater range of flexibility in the system. This idea is similar to placing a variable amount of NOP's in microprocessor code in order to fix timing sequences.

An acceptable approach to the problem of upgradability is to do the summations in small doses as the terms become available. elRoy's convolution strategy is to pass a running sum of terms through each stage and provide each stage with the appropriate values at the correct times.

The following equations illustrate the convolution process.

$$\begin{aligned} x[n] &= A\delta[n] + 0\delta[n-1] + B\delta[n-2] + C\delta[n-3] + D\delta[n-1] \\ h[n] &= E\delta[n] + F\delta[n-1] + G\delta[n-2] + H\delta[n-3] \\ y[n] &= x[n]*h[n] \end{aligned}$$

4

Since h[n] of the convolution can be thought of as a device that shifts and scales the output by h[n]'s terms, the following table represents the output.

From this table, it is clear that there involves a good bit of symmetry in the output of the convolution. There are two basic keys to building the system. The first fact is that each column of the table has the same corresponding coefficient of h[n]. The second fact is that the coefficients of x[n] are found in order vertically for each column. This brings about the idea that the h[n] values may be serially loaded, and that if the operations were timed correctly, the values of x[n] could be broadcast to all of the cells.

Figure 5: Discrete Convolution Configuration

[a 0 b c d]*[e f g h]

Figure 6: Convolution Pipe

We apply the facts of the convolution to the following procedure, as illustrated in figures 5 and 6.

1) Zero all of the accumulators.

2) Slide x[n] into the dynamic register of the cells so that the cells will appear with A in the far right cell, and D in the far left cell. This is done by serial insertion.

3) Set up the zero bubbles. For this example this is done by instructing the second processor from the right to add one extra wait state (via the fifo queue) before it puts out and output.

4) Load the first value of h[n] (or E in this case) in parallel to all of the cell's static register.

5) Multiply the static register by the dynamic register in each cell, and add it to the accumulator of each cell.

6) Shift all of the accumulator values one step to the right. (i.e., into an accumulator or fifo)

7) Repeat from step 4 until all operations are done. This should be monitored by the control unit. The number of results = length(x) + length(h) - 1.

Since x[n]*h[n] = h[n]*x[n], the sequences h[n] and x[n] could also exchange roles in the above scenario. Ideally, the sequence that is longer, but still smaller than the number of cells should be held in the cells (x[n] in the previous scenario).

The largest benefit of the system is that an output is cranked out every cycle without a need for one large adding system. Additionally, the hardware is compatible with the other implemented matrix operations.

II. Architecture

System Design and Architecture

The architecture used to implement elRoy consists of a main controlling processor, a systolic linear array of cells, and a memory unit. Data values within the system are all 16-bit, two's compliment, integer numbers.

As mentioned earlier, the cells in the systolic array follow a form of the moving results architecture. However, since different operations require different architectures, elRoy's cells must allow a flexible and controllable datapath. The elRoy system achieves this by passing microcode words to cells as changes in the cell control are required. The main processor controls not only the configuration of the cells, but also the entire data flow for the overall system.

Main Processor(figure 9)

The main processor is a small scale processor that interprets code and controls the whole system. It contains an ALU, an register file with 8 registers, a state machine that controls the system, and logic to handle bus arbitration and data flow. All components in the main processor were designed down to the gate level, except for the state machine. The state machine is a simple model with the normal Fetch, Decode, and Execute stages, along with additional stages for some cell operations.

Cell Array

The cell array is a linear arrangement consisting of up to 32 identical cells. Each cell has a bank of dip switches determining the cell's local 5-bit address. An extra parallel load bit in the address indexing scheme allows the cells to all accept information from the same source.

Individual Cell(figure 8,10)

An individual cell contains the logic to determine if it is being spoken to by the main processor, as well as the ability to interpret micro-code instructions. The cell contains two registers RA and RB that hold the 16-bit data values that are to be multiplied. The RA register serves as a means of serial loading from the previous register, while the RB register reads 16-bit data values broadcast to all cells. The result of the multiplication can be accumulated, added to the previous cell's accumulator value, or simply passed along to the next cell. A FIFO queue can additionally be used to add delay stalls to the passing of results. The FIFO queue has an adjustable value of up to 7 stalls between cells. Components for the cell were all originally written exclusively to the gate level. To optimize the synthesis process, the adder and multiplier units were changed to simple VHDL models.

Memory

Memory consists of two 32-bit data pathways to the main processor, as well as some standard

memory control signals. While the original model consisted of a signal 32-bit bi-directional data pathway, the model was changed to two uni-directional 32-bit pathways for simplicity and clarity. The memory can only access even addresses, since elRoy only deals in 16-bit data values.

Figure 7: elRoy Flow Diagram

Figure 8: Individual Cell

Figure 9: Main Processor Components

Control Logic

Control Logic

Instruction Registers

Register

Address Decode

Figure 10: Cell Components

III. Synthesis

Synthesis and Partitioning

The synthesis process involves taking a high level VHDL description of an ASIC design and translating it into gate-level netlists. The gate-level netlists are modeled in various technology libraries. These net-lists can then be exported to hardware for the purpose of testing. The Synopsys VHDL Compiler can be used to synthesize ASICs.

The synthesis can be optimized for a variety of factors such as speed, area and power consumption. Constraints are used to control which factors the compiler emphasizes. Speed or timing constraints are used to specify maximum delay through a particular path (usual the critical path). The compiler will usually attempt to get as close as possible to the specified goal. Area constraints specify the maximum amount of space a design is allowed to take up. This is usually given in term of a total gate count. Power constraints refer to the maximum amount of power the ASIC can dissipate.

Synthesis libraries contain information that the compiler needs in order to best create a netlist for a given design. Technology libraries contain much information, including the area, propagation delay and power consumption of a given cell. This information allows the compiler to make the correct choices based on the operating constraints.

In elRoy, the synthesis process was *relatively* straightforward. Our initial design was in most places taken down to the gate level. The one exception, the shift-add multiplier, was replaced by the synthesis multiplier for speed purposes. In most cases this made synthesizing elRoy easier. Still, since this was such a new process problems arose that required resynthesizing.

After running through the synthesis tutorial, we started off by synthesizing the lower level components using the design compiler. We worked our way up the design slowly until the full design had been synthesized. At this point, much time was spent attempting to translate the synthesized netlists back into the *sge* environment. Unfortunately the symbol library for the Xylinx parts was corrupted.

It was discovered that the xblocks synthetic library was not supported yet by the partitioning software, so the design was resynthesized. It was then discovered that using the FPGA compiler would generate better results. Unfortunately an old .synopsys_dc.setup was used and the xblocks synthetic library was still in the file. The design was synthesized yet again using the FPGA compiler with no xblocks.

At this point a week was spent mopping up the original design (a state machine had been added, and much debugging had taken place since the beginning of the quarter). The new design was

then resynthesized. The partitioning software had not yet been installed, so some time was spent generating *.mra* and *.sim* files from the synthesized design, and then testing these files. Only limited testing was done before the partitioning software was installed (i.e. the multiplier and adder in the cell).

Another unfortunate problem was found at this point. The naming convention used by Xylinx for the gate level parts was found to be the exact same naming convention used by us (part name, inputs and outputs). Using search and replace on all our VHDL files fixed this problem, and the design was resynthesized yet another time.

We then used silicon concepts partitioning software. The software essentially takes a netlist description of gates and translates it into an internal format. The netlist is then run through prepartitioning and partitioning in order to isolate all of the structures in the hardware that require special handling. You then 'create hardware' which pops up a description of the zycad box. The partitioned hardware can then be assigned to zycad cards. The design is then routed, and finally

compiled.

MANY problems were encountered with the partitioning hardware. The most crippling problem encountered was the translator, which had trouble reading in the design. Slightly over two weeks were spent fixing problem after problem, until the thing would finally read in. Unfortunately at this point we realized just how large our design had become. The full array was out of the question. In fact only the main processor OR one cell could fit at any given time. Furthermore, the main processor used tri-states, which the router did not seem to like. Also, the size of the multiplier was too large for one chip. If, however, the design was broken down, it broke into gates. This meant too many I/Os. We were finally able to get the thing to actually fit into one chip. The routing and compiling were done overnight in the background, and the necessary files to go to the zycad boxes sit on our account, which is where the project stands now.

In general the synthesis tools were excellent. Synopsys did an excellent job. The compiler required a large address space, but that was not a problem once our accounts on the Suns were activated. The silicon graphics software was rather poor. We got the impression that we were working with a beta version (for instance, multiple error messages that differed only in grammar would be returned). The translator was simply awful. The software looked like it was written for a Macintosh.

IV. Programming

Programming elRoy

Since the elRoy system contains multiple processors, there are several issues that users must face when writing programs to control elRoy. For the average user, elRoy provides a minimal assembly instruction set that handles the challenging task of concurrency within array tasks. However, elRoy also provides a means of programming at a lower system level for advanced users with specific needs. This allows users both flexibility and security in using elRoy today and in the future.

Overall Strategy

The elroy system was designed to appear as a single unit to the programmer. While program execution is sometimes handed over to the processor array, execution all appears to take place within the main processor. The user has standard programming hardware available such as a register file, an ALU, a stack, and subroutine support. Additionally, the main processor can be used to set up the systolic processor array. Cells in the array are configured through microcode words routed from the main processor.

Since configuring the cells in the systolic array is often a tedious and challenging task, commonly used cell commands are predefined in the assembly language to aid programmers. However, the user still has the ability to configure the cells by hand as necessary. While the microcode words are generally difficult to program, it is important that users be able to manipulate the hardware in order to allow elRoy to be adapted to fit future challenges.

Assembly Instruction Format

The assembly instruction is broken into two 16 bit fields: the instruction resides in the top 16 bits and any data values exist in the lower 16 bits.

Instruction Fields

Op Code	Destination	Source 1	Source 2	Data Value	
4 bits	4 bits	4 bits	4 bits	16 bits	

The destination and source fields represent both the registers in the main processor as well as data paths to particular cell busses. There are eight registers R0 through R7 within the main control unit. These registers are general purpose read/write registers that the ALU and memory have access to.

There are also five special registers that control cell functions.

ACCIN: Accumulate In (Read only) :Uses the result of the array as the source for writing to memory

ACCOUT: Accumulate Out (Write Only) : Loads the Accumulate Out data register with data value specified

CINST: Cell Instruction (Write Only) : Writes data value to the cell instruction register

RA: RA Bus (Write Only) : Pipe data value to RA input of left cell

RB: RB Bus (Write Only) : Pipe data value to RB bus

Assembly Language Instructions

ALU / Register Operations:

XORR:	(destination)	=	(source 1)	XOR	(source 2)
ADDR:	(destination)	=	(source 1)	+	(source 2)
SUBR:	(destination)	=	(source 2)	-	(source 1)
COPYR:	(destination)	=	(source 1)		
ANDR:	(destination)	=	(source 1)	AND	(source 2)
ORR	(destination)	-	(source 1)	OR	(source 2)

or a contraction of the second	(acounter on)	(000000)	0 (00
NOD.			
NUL.			

ALU / Data Value Operations

XORD:	(destination)	=	(source 1)	XOR	Data Value
ADDD:	(destination)	=	(source 1)	+	Data Value
SUBD:	(destination)	=	(source 1)	-	Data Value
ANDD:	(destination)	=	(source 1)	AND	Data Value
COPYD:	(destination)	=	Data Value		
ORD:	(destination)	=	(source 1)	OR	Data Value

 Memory Operations:
 LOAD:
 (destination) [source 1]
 Loads destination register from address in source register

 WRITE:
 [destination] (source 1)
 Writes to the value in source register to the address in destination register

27

Branch Operations:

JMP:	16 bit value		
CMP:	(source 1)	-	(source 2)
CMPD	(source 1)	-	data
JE:	16 bit value		
JA:	16 bit value		
JSR:	16 bit value		
RETURN:			

Cell Instructions: CSETDEL: (cell) 3 bit value CLRA:

CLAA: (cell)

Jump to 16 bit address Subtract but do not store, setting flags. Subtract but do not store, setting flags Jump to 16 bit address if Zero flag set Jump to 16 bit address if Positive flag set Jump to subroutine at 16 bit address Return from subroutine

4100 -)

Sets delay in selected cell to 3 bit value Load RA into pipe, holding previous accumulates, and clearing RB's. Load RB and accumulate

CPASS: CCLEAR: (cell) CLOAD: (source 1)

CLOADD: 16 bit data value

Pass accumulates out / produce answers Clear all cell settings (RA/RB/ACC/Delay) Give cell data lines the data value from the address in source register Give cell data lines the 16 bit data value

Cell Microcode Format

The microcode instruction that is sent to a cell consists of 16 bits. The description is as follows.

16 bit Cell Instruction

Cell ID	RA Attributes	RB Attributes	Accumulate Attributes	Delay
6 bits	1 bit	2 bits	3 bits	4 bits

Cell ID Field

Parallel Load	Cell Address
1 bit	5 bits

RA Attributes

Load	External	on	Clock
1 bit			

RB Attributes

Load External on Clock	Zero Value
1 bit	1 bit

Accumulate Attributes

Load External on Clock	Zero Value	Sum with Multiply Result
1 bit	1 bit	1 bit

Delay

Load from Microcode Word	Delay Value
1 bit	3 bits

Translations Using the TIM Assembler

The TIM assembler is used to translate elRoy assembly code into a machine language form that the system can run. While the TIM assembler provides an acceptable translation of instruction to hexadecimal values, it lacks some of the required addressing details needed by elRoy.

Since the assembly programs had to be run in VHDL, they needed to be translated from hexadecimal to a form that Synpopsys could understand. A C program (see appendix) was written to translate the assembly listing files into code that could be easily imported into Synopsys. One of the problems with the TIM assembler in its use with elRoy is that TIM assumes that the program counter fetches values in 32-bit chunks. Unfortunately, elRoy was designed to address memory in a logical 8-bit fashion due to the needs of data flow. Where TIM counts its memory locations by ones, elRoy needs values to be counted by fours.

The C program addresses this problem by adjusting every memory reference by multiplying it by four. While it doesn't make much logical sense to have to essentially compile an assembly program and then parse it again to fix errors, there was no adequate way to force TIM to address memory the way elRoy needed.

The assembly definition file is listed in the appendix.

For the three program goals of the project, specific assembly test programs were coded to prove the theory of design. All source code is listed in the appendix.

Convolution

For the convolution program, the system needed to load an H array into the cells and then present an X array through broadcasting. Additionally, the non-trivial task of writing assembly to pack the H array was also tackled. Cell utilization was maximized by having the assembly program examine the H array and determine if it could figure out a bubble system to manage zeros in the H array. In doing this, the system proved that the assembly language could set the cell delays without human interaction.

Sample data was applied in several versions of the assembly to prove that the algorithm and system did in fact do a proper convolution. On one run, a square wave was chosen as the X array, and a single square pulse was chosen for H. As expected, the square wave was convolved into a triangle wave (a pulse convolved with a pulse of equal width results in a triangular pulse with scaled height). The same square wave was then applied to a first difference filter ([1 -1]), resulting in spikes corresponding to the changes in the input. Other test runs were performed with arrays designed to take advantage of the packing algorithm, and the results were verified with MATLAB.

Matrix-Vector Multiplication

The matrix-vector program explored an alternate configuration for the cell array. The accumulates for each cell were set to load and accumulate internally, and inputs were slided in serially after every multiplication. The algorithm outlined in the theory section of this report was applied to the assembly language. After allowing the program to run, memory was examined and the proper values were discovered in the proper locations.

Matrix-Matrix Multiplication

The matrix-matrix assembly was created by adding particular code around the matrix-vector algorithm. Specifically, looping was implemented to achieve the desired result. The stack had to be used for temporary space during this operation, due to the lack of registers. The sample case chosen for this operation was a 4x9 matrix times a 9x4 matrix. The results were again found to be correct after verifying the results with MATLAB. For a time, larger matrices were considered as candidates for the multiplication, but the burden of time involved in verifying 81 or more answers allowed the 4x9 case to be adequate enough to prove the architecture.

Testing

Testing the elRoy system was taken very seriously due to the theoretical nature of the project. While testing the hardware implementation was not possible due to size constraints in the emulator boxes, the Synopsys environment was found to provide an accurate means of verifying the design's concepts. Testing was broken up into two stages within Synopsys: component testing and overall system testing.

Since a large portion of the design was written in low level logic, it was necessary to test all of the individual parts that would normally be represented by behavioral VHDL code. Tests were performed to cover as many parts as possible without compromising the accuracy of the tests. Several examples of the tests are included in the appendix. While the tests were tedious, they proved that elements worked as they were designed. The next stage of testing investigated whether what was designed was what really needed to be done.

The largest amount of debugging time was a result of the overall system testing. While elements of the design often worked as individual parts, it was discovered that the communication between each part was sometimes mismatched. Testing the overall system came late in the project due to the need for all parts to be defined and working. Additionally, the proper assembly code had to be written to test the operation of the machine. Inevitably, several unknowns had to be tested at the same time.

The first and most important test program to be run on the machine was a simple convolution operation (listed in the appendix). Since the algorithm is fairly complex and operation intensive, the majority of the errors in the state machine and datapath were found after several sessions of debugging. The convolution assembly was shown to produce the correct answers as well as pack arrays as designed. A great deal of time was then spent on verifying the Matrix-Vector and Matrix-Matrix multiplications. After modifications were made within the TIM assembler and the overall machine, all three algorithms were determined to produce correct results. All answers were verified in MATLAB.

Since the three program goals were met with great success, it was determined that our theories of machine design as well as machine implementation were correct.

Theoretical Speed Comparisons

A few 'C' programs were written to benchmark the multipliers on the Pentium. These were tested on the machines in the VLSI lab (60 MHz). The program took 38.2 seconds to calculate 100 million multiplies of two variables of type int. This comes out to 22 clock cycles per multiply. elRoy currently takes 18 clock cycles for a multiply-accumulate chunk. Given two functions with lengths M and N, the Pentium would take (N)(M)(22)(clock period). elRoy, with an array of size X would take (N)(M)(18)(clock period) / X. The table below charts out the ratio of

calculation times required for various values of X and the two clock rates (in MHz):

Ratio (Pentium/elRoy)	Number of Cells	elRoy Clock Rate	Pentium Clock Rate
0.15	4	2	66
0.3	4	2	33
0.74	4	10	66
2.37	64	2	66
4.74	64	2	33
11.85	64	10	66
47.41	256	10	66
94.81	512	10	66
625.76	1,024	33	66

The gain is remarkable. Also note that elRoy currently uses an unoptimized algorithm for the multiplies. A faster algorithm would greatly reduce the clock cycles required per multiply and enhance the speedup factor. Also, these factors due not include the pipelining introduced by the FIFO queue in each cell. For very specialized input vectors, the time savings approaches another factor of seven per cell. The 652.67 in the last example becomes a staggering 4,485,447.68. Note also that these numbers do not reflect memory reads and writes.

Conclusions

The elRoy system provides a great deal of insight into the amount of thought required in building parallel systems. While the benefits for building such systems are obvious in special high calculation jobs, the level of complexity jumps in every level of computer usage, from the design to the programming language. However, once these issues are dealt with, their lessons can be applied to several similar applications.

Although the project was too large to fit into the hardware emulators, we were still able to verify the theory of design through software emulation. Since the implementation was elaborated down to the gate level, the simulations generated results that correspond to those expected with the actual hardware implementation.

Overall, elRoy was a large challenge for the design team because it journeyed into an area with no obvious guidelines or models. The model for the system was constructed bottom up as we blindly felt our way through often unstable requirements. As a result, the design underwent several revisions, each adding new characteristics to the overall system. We feel that it is nearly impossible to design an experimental system such as elRoy without redesigning the machine as you work along.

The end product satisfies our original goals. The system is easily expandable and allows a flexible architecture to perform several high computation algorithms. All three specified mathematical programs were assembled, tested, and verified for our architecture. While elRoy's use in the real world is limited to education, it serves as a convenient model for the advantages of a mixture of various architectures. In the least, it has served as a back bone for our design team, and its design can never be fully documented.

Appendix A: TIM Assembly Definitions

HALE I	isting:	asm.src		Mar 12 11:52:13 1995	Page 1	HALE L	isting: as	n.src	Mar 12 1	1:52:13 1995
Line	ASSEMBL	LY LANGUAGE	DEFINITION FI	LE FOR ==>elRoy<==		Line	ASSEMBLY I	LANGUAGE E	DEFINITION FILE FOR ==>	elRoy<==
1	TITLE	ASSEMBLY	LANGUAGE DEFI	NITION FILE FOR ==>elRoy<=		45	; INSTRUC	FION OPCOD	E LABELS - MUST BE 4-B	ITS
2	WORD	32				46	. * * * * * * * *	* * * * * * * * * *	****	******
3	WIDTH	72				47	LOR:	EQU	B#0000	
4	LINES	50				48	LXOR:	EQU	B#0001	
5						49	LADD:	EQU	B#0010	
6	;/////	111111111	///////////////////////////////////////	///////////////////////////////////////	///////	50	LSUB:	EQU	B#0011	
7	; File	e: ASM.SRC	Purpose: Asse	embly definitions for the e	elRoy pr	51	LAND:	EQU	B#0100	
8	; Crai	Lg Ulmer / 1	Darrell Stogne	er	CompE 45	52	LCOP:	EQU	B#0101	
9	; NO M	Addification	ns without Aut	hors' consent	Mar	53	LPUSH:	EQU	B#0110	
10	://///	11/1/1/1/1	///////////////////////////////////////	///////////////////////////////////////	1111111	54	LPOP:	EQU	B#0111	
11						55	; JUMP IN:	STRUCTIONS	5	
12	NUMCELI	LS: EQU	H#0004 ;	Number of cells in the sys	stem	56	LJMP:	EQU	B#1000	
13						57	LJA:	EQU	B#1001	
14	******	********	* * * * * * * * * * * * * * *	*************************	****	58	LJE:	EQU	B#1010	
15	; Standa	ard REGISTE	R ASSIGNMENTS			59	LCMP:	EQU	B#1011	
16	******	********	* * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * *	60	LRTS:	EQU	B#1100	
17	R0:	EQU	B#0000			61	LJSR:	EQU	B#1110	
18	R1:	EQU	B#0001			62				
19	R2:	EQU	B#0010			63	; LOAD IN	STRUCTIONS	3	
20	R3:	EQU	B#0011			64	LLOAD:	EQU	B#1101	
21	R4:	EQU	B#0100			65	LWRITE:	EQU	B#1111	
22	R5:	EQU	B#0101			66				
23	R6:	EQU	B#0110			67	; SETUP			
24	R7:	EQU	B#0111			68	NULL:	EQU	B#0000	;4-BIT ZEF
25	; ** * * * *	*********	* * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * *	69	OPCODE:	SUB	4VLCOP	;4-BIT OPC
26	; SPECI	EAL FUNCTION	N REGISTERS			70	BLANK16:	EQU	16H#0000	;16-BIT F1
27	******	* * * * * * * * * * *	* * * * * * * * * * * * * * *	**************************	* * * * * * * *	71	DW:	DEF	16VH#0000,16VH#0000	;32-BIT DA
28	ACCIN:	EQU	B#1000	; ACCUMULATE IN - WRIT	TE ONLY	72	. *******	* * * * * * * * * * * *	***********************	***********
29	ACCOUT :	EQU	B#1001	; ACCUMULATE OUT - REAL	D ONLY	73	; ASSEMBLY	LANGUAGE	INSTRUCTIONS	
30	CINST:	EQU	B#1010	; CELL INSTRUCTION		74	. * * * * * * * * *	**********		
31	RA:	EQU	B#1011	; DATA FOR RA		75	; Registe	r to Regis	ster ALU ops	O DT NATEL C
32	RB:	EQU	B#1011	; DATA FOR RB		76	XORR:	DEF	LXOR, 4VH#0, 4VH#0, 4VH#	O, BLANKIO
33	CDELINI	E: EQU	B#1100	; DELAY INTERNAL		11	ADDR:	DEF	LADD, 4VH#0, 4VH#0, 4VH#	O, BLANKIO
34	EXTDATA	A: EQU	B#1101	; USE A LOBIT DATA VALU	UE	18	SUBR:	DEF	LSUB, 4VH#U, 4VH#U, 4VH#	FU, BLANK 10
35						19	COPYR:	DEF	LCOP, 4VHHU, 4VHHU, NULL	DIANKIO
30	,	TIRIORTON R	• • • • • • • • • • • • • • • •		*****	80	ANDR:	DEF	LAND, 4VH#U, 4VH#U, 4VH#	DIANK 10
37	; CELL	FUNCTION E	QUATES			81	OKR:	DEF	LOR, 4VHHU, 4VHHU, 4VHHU	, BLANKIO
38	1000110		D#000000			82	; Registe	r ops with	I TO DIL CIALA	140 1617U+000
39	CELLU:	EQU	B#000000			83	XURD:	DEF	LADD AULINO EXTDATA, 4V	11#0,16171#000
40	CELLI:	EQU	D#000001			84	ADDD:	DEF	LADD, 4VHHO, EXTDATA, 4V	74#0,16VN#000
41	CELLZ:	EQU	D#000011			C8	SUBD:	DEF	LCOD AVIIHO EVUDAUA M	ILT. 16ULIHOOO
42	CELLS:	EQU	D#1000011	DADALLET LOAD ALL	CELLC	80	CUPID:	DEF	LAND AVELAO EVEDADA AT	74H0 161744000
45	CELLP:	EQU	000001#0	; PARALLEL LUAD ALL (*******	87	ANDD:	DEF	LOP AUUHO EVEDIDA AUE	1#0 1600 #0000
44.4	,					88	UKD:	DEr	LOR, SVANO, EAIDAIA, SVI	10,10,10,000

asm.lst

Page 2 * * * * * * * * * * * * ERO VALUE CODE FIELD IELD DATA DIRECTIVE ** ** * * * * * * * * ** * * * * * * * * * * 00 00 00 00

HA

ALE L	isting: asm.src	Mar 12 11:52:13 1995 Page 3	HALE Listin
Line	ASSEMBLY LANGUAGE	E DEFINITION FILE FOR ==>elRoy<==	Line ASSE
89	CMPD: DEF	LCMP, NULL, EXTDATA, 4VH#0, 16VH#0000	133 ;
90			134 ;
91	; MEMOPS		135 CSET
92	LOAD: DEF	LLOAD, 4VH#0, 4VH#0, NULL, BLANK16 ; LOAD T	136
93	WRITE: DEF	LWRITE, NULL, 4VH#0, 4VH#0, BLANK16 ; WRITE	137 ;
94	LOADD: DEF	LLOAD, 4VH#0, EXTDATA, NULL, 16VH#0000 ; Load D	138 ; LC 139 ;
96	; BRANCHING		140 CLRA
97	JMP: DEF	LJMP, NULL, NULL, 16VH#0000	141
98	CMP: DEF	LCMP, NULL, 4VH#0, 4VH#0, BLANK16	142 ;
99	JE: DEF	LJE, NULL, NULL, 16VH#0000	143 ; LC
100	JA: DEF	LJA, NULL, NULL, 16VH#0000	144 ;
101	JSR: DEF	LJSR, NULL, NULL, 16VH#0000	145 CLAA
102	RETURN: DEF	LRTS, NULL, NULL, BLANK16	146
103			147 ;
104	; Other stuff		148 ; LC
105	NOP: DEF	LOR, NULL, NULL, BLANK16 ; OR RO WIT	149 ;
106	TIMSUCKS: DEF	16VH#0000,16VH#0000 ; For data	150 CLAP
107			151
108	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	152 ;
109	; CELL ASSEMBLY	LANGUAGE INSTRUCTIONS	153 ; LC
110	. * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	154 ;
111	; CELL INSTRUCTION	ON FORMAT (16 BITS):	155 CLAC
112	; HIGH		156
113	; 6 : 0	ELL# : I CELL PARALLEL LOAD	15/ ;
114	; 1. D	A 1 LOAD EVEEDNAL	158 ; PF
115		$\mathbf{P} \qquad \cdot 1 = \mathbf{I} \mathbf{O} \mathbf{A} \mathbf{D} \mathbf{E} \mathbf{Y} \mathbf{P} \mathbf{E} \mathbf{N} \mathbf{A} \mathbf{I}$	159 ;
117	, <u> </u>	\cdot 1 SET TO ZERO	161
118	· 2 · A	CCUMULATE : 1 LOAD EXTERNAL	162 .
119		: 1 SET TO ZERO	163 : CF
120	: 1 A	CC GATE : 1 ADD MULTIPLY RESULT TO ACCUMULA	164 :
121	; 4 ; D	ELAY : 1 LOAD NEW DELAY VALUE	165 CCLE
122	-	: 3 DELAY VALUE	166 END
123	; LOW		
124			
125	;		
126	; SET DELAY IN C	ELL	
127	; User specif.	ies cell and delay value	
128		CELL# LOAD	
129	CSETDEL: DEF	LLOAD, CINST, EXTDATA, NULL, 6VB#000000, B#00000	
130			
131			
132	; SET DELAY IN C	ELL BASED ON INTERNAL VALUES	

asm.lst

Page Mar 12 11:52:13 1995 ting: asm.src SSEMBLY LANGUAGE DEFINITION FILE FOR ==>elRoy<== RA holds the cell ID RB holds the cell's delay LLOAD, CDELINT, 4VH#0, 4VH#0, BLANK16 SETDELI: DEF LOAD RA PIPE -- HOLDS ON TO PREVIOUS ACCUMULATE -- RB is Zero CELL# LOAD DEST LLOAD, CINST, EXTDATA, NULL, CELLP, B#1000100000 LRA: DEF LOAD RB AND ACCUMULATE EXTERNALLY - FOR CONVOLUTION, Acc from CELL# LOAD DEST LLOAD, CINST, EXTDATA, NULL, CELLP, B#0101010000 LAAE: DEF LOAD RB AND ACCUMULATE INTERNALLY - FOR MULTIPLICATION Acc fro CELL# LOAD DEST LLOAD, CINST, EXTDATA, NULL, CELLP, B#0100010000 LAAI: DEF LOAD ACCUMULATOR - RA Constant, RB Zero, Load external Acc, Pass LOAD DEST CELL# LLOAD, CINST, EXTDATA, NULL, CELLP, B#0011010000 LACC: DEF PASS OUT ACCUMULATES -- GIVES ANSWERS CELL# LOAD DEST LLOAD, CINST, EXTDATA, NULL, CELLP, B#0011010000 PASS: DEF CELL CLEAR -- WIPES OUT DELAY AND ACCUMULATE, SETS RB TO ZERO CELL# LOAD DEST LLOAD, CINST, EXTDATA, NULL, 6VB#000000, B#00101 CLEAR : DEF

Symbol Table: asm.src

ACCIN	A	00000008	ACCOUT	A	00000009	ADDD
ANDD	D		ANDR	D		BLANK16
CDELINT	A	0000000C	CELL0	A	00000000	CELL1
CELL3	A	0000003	CELLP	A	00000020	CINST
CLAAI	D		CLACC	D		CLRA
CMPD	D		COPYD	D		COPYR
CSETDEL	D		CSETDELI	D		DW
JA	D		JE	D		JMP
LADD	A	00000002	LAND	Α	00000004	LCMP
LJA	А	0000009	LJE	A	0000000A	LJMP
LLOAD	A	000000D	LOAD	D		LOADD
LPOP	A	00000007	LPUSH	Α	00000006	LRTS
LWRITE	A	000000F	LXOR	Α	00000001	NOP
NUMCELLS	Α	00000004	OPCODE	D		ORD
RO	Α	00000000	R1	A	00000001	R2
R4	А	00000004	R5	A	00000005	R6
RA	A	000000B	RB	Α	0000000B	RETURN
SUBR	D		TIMSUCKS	D		WRITE
XORR	D					

Definition Phase complete. O error(s) detected.

asm.lst

			Pag	je	5
D		ADDR	D		
A	00000000	CCLEAR	D		
A	00000001	CELL2	А	000	00002
A	A0000000	CLAAE	D		
D		CMP	D		
D		CPASS	D		
D		EXTDATA	А	000	0000D
D		JSR	D		
A	000000B	LCOP	A	000	00005
A	00000008	LJSR	A	000	0000E
D		LOR	А	000	00000
A	000000C	LSUB	Α	000	00003
D		NULL	A	000	000000
D		ORR	D		
Α	0000002	R3	Α	000	00003
Α	00000006	R7	А	000	00007
D		SUBD	D		
D		XORD	D		

Appendix B: Test Programs

95/03/12 16:23:14

Convolution PROGRAM

This Program Analyzes AN M Array, figures out the delays AND Cell weights, AND Convolve the HAND X Arrays. The Complexity of this program to the Array PACKing Algorithm. The 15 due Packing Algorithm maximizes cell usage by determining bubbles in the convolution Pipeline.

convolve.lst

HALE List

-/-/-/-

hitecture

by

10 11 11 11 11 10 10 10 00001 50E 00002 D10 00003 211 g 00004 201 00005 52E 00006 55E 00007 56L 00008 53D ero 00009 31D ne 0000A A00 ertion 0000B 26D ted 0000C D4C 0000D 20D 0000E BOL 0000F A00

HALE 1	Listing: c	onvolu	/e.asm		Mar 12 14:	56:45 1995	5
Addr		Line	CONVOLUT	CION Pro	gram		
		1	TITLE (ONVOLUT	ION Program		
		2	LIST FU	N	rout trogram		
		2	LINES SO	1			
		1	./_/_/_	/_/_/_/_/_	1-1-1-1-1-1	-1-1-1-1-	1-
-1-1-	1-1-	4	, , , , , ,				
/ / /		5	· Convo	lution A	comply progr	am for use	0
hitor	Turo	5	, convo.	LUCION A	SSembry rrogr	an for use	1
niceci	Lure	6	. Crain	Illmor /	Darroll Stor	nor	
1500/	1510	0	, crary	Olmer /	Darrerr Slog	ner	
* 2007.	*	7					
		0	i No mor	Alfiosti	one or duplic	ations wit	th
		0	; INO INOC	////		ACTUMS WIT	1
		9	;/-/-/-,	/ - / - / - / -	/-/-/-/-/-/	-/-/-/-/-/	/
-/-/-	/ = / =	10					
00000	D3D00030	10	DECINOOI	DE COLE	2.12		
00000	DADUUUA8	11	BEGINCOI	DE: CCLE	AR		i
arues		10					
		12					
		13	;				
		14	; Find I	Delays			-
		15	; This	s algori	thm finds out	what the	a
ру						antitude Car	
		16	; scar	nning th	rough H and I	ooking to:	r
		17	; Re	egisters	: R6: # elem	ients we've	e
		18	;		R5: Addres	s of new l	RA
		19	;		R4: Temp 1	oad value	0
		20	;		R3: # dela	y for cur	re
		21	;		R2: Curren	t Cell nur	mb
		22	;		R1: # elem	ients in H	a
		23	;		RO: H arra	y address	
		24	;		M HA AN		81.78
and an and a		25			And and a state of the state of the		
00001	50D0004C	26	COPYD	RO,C	ONSTHPOS%:	; Loads	t
00002	D1000000	27	LOAD	R1, R	.0	; Loads	H
00003	21D10001	28	ADDD	R1, R	1,H#0001	; Offse	t
g	and the second						
00004	20D00002	29	ADDD	RO,R	0, H#0002	; Set H	p
00005	52D00000	30	COPYD	R2,H	#0000	; Curren	nt
00006	55D0004E	31	COPYD	R5, R	AVALS%:	; Set R	5
00007	56D00000	32	COPYD	R6,H	#0000	; Set e	le
		33					
80000	53D00000	34	ACTIVEL	OOP:COPY	D R3, H#00C	0 ; Set t	he
ero							
		35					
00009	31D10001	36	NEXTEL:	SUBD	R1, R1, H#000	1 ; Decre	as
ne							
0000A	A000001B	37	JE	DONE	ELE%:	: If no	m
ertion	n						
0000B	26D60001	38	ADDD	R6, R	6,H#0001	; Incre	as
ted							
0000C	D4000000	39	LOAD	R4, R	.0	; Load	th
0000D	20D00002	40	ADDD	RO, R	0,H#0002	; Incre	as
0000E	B0D40000	41	CMPD	R4, H	0000	; See i	f
0000F	A0000017	42	JE	FOUN	DZERO%:	: If ze	re

Page 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 with elRoy Systolic Array Arc COMPE nout the authors' consent 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 clear out the cells of all v lelays should be in each cell zeros. counted values f H ent per irray he location of H Length into R1 the H length by 1, for loopin pointer to first element Cell is #0 to next RA write address ements counted to 0 e number of zeros counter to z se the number of elements by o more elements, go on to RA ins se the number of elements coun he next value of H into R4 se the pointer of H element of H is zero o, deal with it

	HALE I	Listing: c	onvolv	ve.asm		Mar 12 14
	Addr		Line	CONVOLUTI	ON Progra	ım
			43			
			44			
	00010	F0540000	45	SETDEL:	WRITE	R5, R4
	ratch	pad				
	00011	25D50002	46	ADDD	R5, R5, F	1#0002
	00012	DC230000	47	CSETDEL	I R2, R3	
	00013	22D20001	48	ADDD	R2, R2, H	1#0001
	00014 cell	B0D20004	49	CMPD	R2, NUMO	ELLS
	00015	20000026	50	JE	DORASS .	
	00015	800000020	51	TMP	ACTIVEI	.0008.
	00010	00000000	52	OHE	ACTIVEL	1001 0.
			52			
	00017	00020007	53	DOINDZEDO	CMDD	D2 11#0000
	11000	BUDSUUUT	24	FOUNDZERO	: CEIPD	R5, H#0007
	our de	Proposio		75	ODDDD 0	
	00018	A0000010	55	JE	SETDEL	5 :
1	00019	23D30001	56	ADDD	R3, R3, H	1#0001
	0001A	80000009	57	JMP	NEXTEL	:
			58			
			59			
	check					
	0001B	50D0004C	60	DONEELE:	COPYD RO.	CONSTHEOS
	0001C	D1000000	61	LOAD	R1. R0	anter the period of a
	0001D	B0160000	62	CMP	R1. R6	
	0001E	A0000026	63	JE	DORAS% :	
	ctly					
			64			
	0001F	54D00000	65	COPYD	R4, H#OC	0.0
			66			
			67			
	, pad (out				
	00020	F0540000	68	PADZEROS:	WRITE	R5,R4
	00021	25D50002	69	ADDD	R5, R5, H	1#0002
	00022	22D20001	70	ADDD	R2, R2, H	1#0001
	00023	B0D20004	71	CMPD	R2, NUMC	ELLS
	00024	A0000026	72	JE	DORAS8:	
	00025	80000020	73	JMP	PADZERC)S8:
			74			
			75			
	00026	DAD08220	76	DORAS: C	LRA	
	00027	52D00000	77	COPYD	R2, H#00	000
	00028	55D0004E	78	COPYD	R5, RAVA	LS%:
	00029	DE500000	79	LOADRASLO	OP: LOAD	RA, R5
	0002A	25D50002	80	ADDD	R5. R5. H	#0002
	0002B	22D20001	81	ADDD	R2, R2, H	#0001
	0002C	B0D20004	82	CMPD	R2. NUMC	ELLS
	0002D	A000002F	83	JE	DOCONV?	:
	0002E	80000029	84	JMP	LOADRAS	LOOP%:
	Contraction of the second second					A REAL PROPERTY AND A REAL

convolve.1st

4:56	:45 1995 Page 2	HALE List
		Addr
	; Current element was non-zero ; Remember this RA value, place on sc ; Point to the next RA scrap pad ; Set the current cell delay ; Set to the next cell ; See if we've hit the last possible	nnnnnnn
	; If yes, do a truncated convolution ; If not, start the loop again	
7 ;	Found a zero, add it to the list Check to see if we've gotten all of	
;	Too many Zeros, we must use an RA as	
;	Otherwise, increase the delay by one	
;	We've finished with the h elements,	0002F 531 00030 521 00031 511
58:	; Reload H position to get length Get length of H again	00032 D02 00033 221
;;	Compare with elements we counted If equal, then we filled array perfe	00034 D13 00035 311 00036 591 00037 273
;	Set the RA write value to zero	00038 F03 00039 231
;	We did not completely fill the array	0003A DAI
;	Write to the next RA scrap place	
* * * * *	Point to the next RA scrap place Point to the next cell See if we've hit the last cell yet Yes, load the RA pipe No, continue padding	ough 0003B DB2 0003C F03 0003D 231 0003E 221 0003F 301 00040 900
;	Begin at first cell	00041 DBI
;	Set first address or RA scratch pad	00041 DBI
5;	Load in the next RA to a cell	00043 231
;	Look at next cell	00044 311
;	See if we've loaded all	
;	If so, Begin the convolution	
	rr noc, keep rooping	

ting: c	onvolv	ve.asm		Mar 12 14	:56:4	15 1995
	Line	CONVOLUT	ION Progr	cam		
	85					
	86					
	87					
	01	,				
	88	: Do Con	volution			
	89	: Th	is sectio	on of the c	ode a	actually
	90	; Re	gisters:	R7: Lengt	h of	Y
	91	-		R6: #	elema	ents we'
	92	:		R5: Ad	dress	s of new
	93	-		R4: Te	mp 1	bad valu
	94	;		R3: Y Pos	ition	1
	95	-		R2: X Pos	itio	1
	96	-		R1: Lengt	h of	H-1
	97			RO: Lengt	h of	Х
	98	. 28 22 18 34 10 M H				
	99					
	100			; Con	volut	tion Ass
000057	101	DOCONV :	COPYD R	3, CONSTYPOS	9: ;	Load Lo
000047	102	COPYD	R2, COL	VSTXPOS% :	;	Load lo
D0004C	103	COPYD	R1, CON	VSTHPOS%:	;	Load Lo
200000	104	LOAD	R0, R2		;	Get the
020002	105	ADDD	R2, R2	,H#0002	;	Point t
100000	106	LOAD	R1, R1		;	Get the
D10001	107	SUBD	R1, R1	,H#0001	;	Set to
000000	108	COPYD	ACCOU!	r,H#0000	;	Set the
100000	109	ADDR	R7, R1	RO	;	Add len
370000	110	WRITE	R3, R7		;	Write 1
030002	111	ADDD	R3, R3	,H#0002	;	Increas
	112					
008150	113	CLAAE			;	Set up
	114					
	115				;	There a
200000	116	STILLX:	LOAD	RB, R2	;	Load th
380000	117	WRITE	R3, ACC	CIN	i	Write t
030002	118	ADDD	R3, R3	,H#0002	5	Increas
D20002	119	ADDD	R2, R2	,H#0002	i	Increas
000001	120	SUBD	RO, RO	,H#0001	;	Decreas
00003B	121	JA	STILL	X%:	;	If not
	122					
000000	123	STILLH:	LOADD	RB, H#0000	;	Load ze
380000	124	WRITE	R3, AC	CIN	;	Write r
030002	125	ADDD	R3, R3	,H#0002	1	Increas
D10001	126	SUBD	R1, R1	,H#0001	÷	Decreas

Page 3 AL AL AN DI AN AN IN DI DI 10 10 10 10 01 01 01 AN IN AN AN AN AN performs the convolution ope ve counted RA values ie of H sembly paction of Y Array (Result) ocation of X array ocation of H array e length of X to first element of X e length of H H-1 e Acc to always be zero ngth X + length H - 1 Length Y to first Y address se Y pointer for the convolution operation are still X values to send thr he next x val into RB the result to next y se y pointer se x pointer se x counter zero, keep churning ero into the RB pipe result out to next y se the y pointer se the h counter

HALE List	ing: c	onvolv	e.asn	Ma	r 12 14:56:45 1995		Page	4	Symbol Tab	ble	: convolu	ve.asm						Page
Addr		Line	CONVOLUTIO	N Program					ACCIN	A	80000008	ACCOUT	A	00000009	ACTIVELO A	00000008	ADDD	D
00045 900	00041	127	JA	STILLH%:	; If not z	ero,	keep ch	nurning	BEGINCOD	A	ANDD 000000000	BLANK15	A	ANDR 000000000	CCLEAR D)	CDELINT	A
00046 800	00046	129	DONE: JMP	DONE	8:				CELL3	A	00000003	CELLP	A	00000020 CLPA	CINST A	A000000A	CLAAE	D
00047 000	90001	131	CONSTXPOS:	TIMSUCKS	H#0009, H#0001				CNP	D	CLIACC	CMPD	D	CLIKA	CONSTHPO A	0000004C	CONSTXPO	A
00048 000	40005	132		TIMSUCKS	H#0002, H#0003 H#0004, H#0005				CPASS	D	COPYD	D CSETDEL	D	COPYR	CSETDELI D)	DOCONV	A
0004A 000 0004B 000	60007 80009	134 135		TIMSUCKS	H#0006, H#0007 H#0008, H#0009				A 0000004 DV	16 D	DONEELE	A 00000 EXTDATA	01B A	DORAS 0000000D	A 00000026 FOUNDZER A	00000017	JA	D
0004C 000 0004D 000	30001 20003	136 137	CONSTHPOS:	TIMSUCKS TIMSUCKS	H#0003,H#0001 H#0002,H#0003				D LADD	A	JMP 00000002	D LAND	A	JSR 00000004	D LCMP A	0000000B	LCOP	A
0004E 000 0004F 000	00000	138 139	RAVALS:	TIMSUCKS					A 0000000	9 A	LJE 0000000E	A 00000	A00 A	LJMP 0000000D	A 00000008		LOADD	D
00050 000	00000	140		TIMSUCKS					A 0000002	29	LOR	A 00000	000	LPOP	A 00000007	0000003	LWRITE	Δ
00052 000	00000	142		TIMSUCKS					A 0000000	01	NARG	A 00000	000	NEXTEL	A 00000009	00000000	DWRITE	
00053 000	00000	143		TIMSUCKS					D NOP	D	ORR	D	A	PADZEROS	A 00000020)	OPCODE	D
00055 000	00000	145 146		TIMSUCKS					R0 A 0000000	A 04	00000000 R5	R1 A 00000	A 005	00000001 R6	R2 P A 00000006	00000002	R3	A
00057 000 00058 000	00000	147 148	CONSTYPOS:	TIMSUCKS					R7 D	A	00000007 SETDEL	RA A 00000	A 010	0000000B STILLH	RAVALS A A 00000041	0000004E	RB	A
00059 000 0005A 000	00000	149 150		TIMSUCKS					STILLX	A	0000003B	SUBD	D	XORR	SUBR I)	TIMSUCKS	D
0005B 000	00000	151		TIMSUCKS					Assembly P	Dha	se compl	oto						
0005D 000	00000	153		TIMSUCKS					0 erro	or (s) detect	ted.						
0005F 000	00000	155		TIMSUCKS														
00061 000	00000	150 157 158		TIMSUCKS														
14																		

convolve.lst

		20063102094000000000000000	second concessors and a second s
1	Pag	ge 5	
ADDD	D		ADDR
CDELINT	A	000000C	CELLO
CLAAE	D		CLAAI
CONSTXPO	A	00000047	CONSTYPO
DOCONV	A	0000002F	DONE
JA	D		JE

A 00000005 LJA

A 0000000F LXOR

A 00000003 R4

E RB A 0000000B RETURN TIMSUCKS D

WRITE

ORD

LOADRASL

vector.lst HALE List Addr MATRIX-Vector Multiplication Rogram -/-/-/-/hitecture 4500/4510 yp the Array to work As A multiplication program. The MAtrix Sels -/-/-/-/. Vector 80 18 88 18 18 88 18 88 81 Components are loaded in serially, while vector is brondcast to the cells. the Results in only one operation per matrix Column. ** ** ** ** ** ** ** ** 00000 DAI 00001 501 00002 511 00003 D20 00004 D31 00005 201 00006 211 00007 573 00008 54D 00009 24D 0000A 37D 0000B 900 0000C 550 0000D 265 0000E 35D 0000F 572

ting: v	rector	.asm		Mar	13 14:15:	28	1995
		Vector					
	Line	MATRIX Pro	ogram				
	1		POTY DW	aram			
	1	TIDE M	entries FIL	gran			
	2	LISI F,W					
	2	LINES SU	1 1 1 - 1	1 1 1	1 1 1 1	1-1	1 1
	4	;/=/=/=/-	/ = / = / = / =	-/-/-/	-/-/-/-	/ - /	-/-/-
-	E	Materia 1	Wilt los	ambler	Drogram	For	
-	C	; Mallix I	MULC ASS	sembry	Program	101	use
2	6	. Craig II	lmor / r	Darrol	1 Chomor		
0	0	, crary u.	Imer / L	Jarrer	i scogner		
0	7						
	0	i No modi	Flastics		dunlinati		
	0	; NO MOUL	LICALION	IS OF	upricati	ons /	WILLI
	9	; / = / = / = / = .	/ - / - / - / -	-/-/-/-/	-/-/-/-/-	/ -/	-/-/-
-	1.0						
	10						
	11						
	12	;					
	1.2						
	13	; Multipl	y Matrx	Y Y Y	vector v		
	14	;		22			
	15	; Reg	isters:	R/: (constant .	ROW	sor
	16	i		R6: 1	X Last Ad	dre	ss of
	17	;		R5: 1	X startin	ga	aares
	1.8	;		R4:	# Columns	or	X *
	1.0						-
	19	;		R3: 1	RA LOOD		Row
	20	;		R2: 1	Multiply	LOO	p Row
	21	;		R1: (Current V	Ad	aress
	22	;		R0: (Current A	Ad	aress
	23	;					
	~ .						
	24	PROFILEOR					
8A0000	25	BEGINCOD:	CCLEAR			i	clea
	26			-			
D0002D	21	INTTCODE:	COPYD	RO,CO	UNXPOST:	i	RU=X
D00040	28		COPYD	RI,CO	UNVPOST:	;	R1=V
000000	29		LOAD	R2, R	0	;	R2=R
100000	30		LOAD	R3,R	1	;	R3=R
D00002	31		ADDD	RO,R	0,H#0002	;	RO=F
D10002	32		ADDD	R1, R	1,H#0002	i	RI=F
300000	33		COPYR	R7,R.	3	;	R /=T
D00000	34		COPYD	R4,H	#0000	î	R4=C
D40002	35	INITLOOP:	ADDD	R4, R	4,H#0002	i	0ne
D70001	36		SUBD	R7, R	/,H#0001	;	Decr
000009	37		JA	INIT	LOOP%:	;	If s
000000	38		COPYR	R5, R	0	;	R5=F
540000	39		ADDR	R6.R	5.R4	;	R6=A
D50002	40		SUBD	R5, R	5,H#0002	i	Klud
200000	41		COPYR	R7,R	2	;	R7=N
	42						

Page 1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 with elRoy Systolic Array Arc COMPE nout the authors' consent 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 X a loop = X Starting + #Cols* S 2 = Rows of V * 2s = Rows of V IS = Rows of X r out the cells of all values starting Address starting Address lows of X lows of V / Cols of X 'irst X data first V data emp counter of X columns ol*2 offset begins at zero more element-> offset by +two ease columns counted till a column, loop 'irst X data address Address of 2nd row,1st column lge R5 for looping Jumber of Rows in X

HALE Listing: vector.asm

Addr		Line	MATRIX Pr	ogram	
00010	DAD08290	43	ADDRA:	CLRA	
S					
00011	25D50002	44		ADDD	R5, R5, H
00012	B0550000	45		CMP	R5, R6
00013	A0000024	46		JE	PASSOUTS
00014	50500000	47		COPYR	R0, R5
pos					
00015	53700000	48		COPYR	R3, R7
00016	DB000000	49	ADDLOOP:	LOAD	RA, RO
00017	20040000	50		ADDR	R0, R0, R4
00018	33D30001	51		SUBD	R3, R3, H
00019	90000016	52		JA	ADDLOOP
		53			
0001A	50D00004	54	PADCELLS:	COPYD	R0, NUMCH
0001B	30700000	55		SUBR	R0, R7, R0
0001C	A0000020	56	PADLOOP:	JE	DOMULT%
0001D	DBD00000	57		LOADD	RA, H#000
0001E	30D00001	58		SUBD	RO, RO, H
0001F	8000001C	59		JMP	PADLOOP
		60			
00020	DAD08110	61	DOMULT:	CLAAI	
00021	DB100000	62		LOAD	RB, R1
V					
00022	21D10002	63		ADDD	R1, R1, H
00023	80000010	64		JMP	ADDRA%:
		65			
00024	50D00045	66	PASSOUTS:	COPYD	RO, CONYI
00025	F0070000	67		WRITE	R0, R7
00025	DAD080D0	68		CPASS	
00027	2000002	69	PASSLOOP:	ADDD	RO, RO, H
00028	F0080000	70		WRITE	R0, ACCIN
00029	DBD00000	71		LOADD	RB, H#000
0002A	37D70001	72		SUBD	R7, R7, H
0002B	90000027	73		JA	PASSLOOI
0002C	8000002C	74	DONE :	JMP	DONE%:
		75			
0002D	00040001	76	CONXPOS:	TIMSUCKS	H#0004
0002E	00020003	77		TIMSUCKS	H#0002
0002F	00040005	78		TIMSUCKS	H#0004
00030	00060007	79		TIMSUCKS	H#0006
00031	00080009	80		TIMSUCKS	H#0008
00032	00110012	81		TIMSUCKS	H#0011
00033	00130014	82		TIMSUCKS	H#0013
00034	00150016	83		TIMSUCKS	H#0015
00035	00170018	84		TIMSUCKS	H#001

vector.lst

Mar 13 14:15:28 1995 Page 2 Addr ; Set to load RA pipe, holding ACC 00036 001 00037 002 ; Increase X origin by one spot 00038 002 #0002 ; See if we've hit the last place 00039 002 ·S8: ; If so, go to the results pass 0003A 002 ; if not, load the next stating X 0003B 003 0003C 003 ; Reset the row counter 0003D 003 ; load next X into the RA pipe 0003E 003 ; Move one row down 0003F 003 #0001 ; Decrease the row counter 00040 000 00041 000 ; If not last one, keep looping 者: 00042 000 ; Get the number of cells ELLS 00043 000 ; R0=Num Cells - Rows 00044 000 ; Perfect fit, do the mult ; Load a dummy into the RA pipe 00 #0001 00045 000 ; Decrease counter ; Keep looping 00046 000 8: 00047 000 ; Set for Multiply 00048 000 ; RA loaded, Load the next part of 00049 000 0004A 000 #0002 ; Point to the next value of V 0004B 000 ; Do the next column 0004C 000 0004D 000 ; Start at beginning Y 0004E 000 POS%: ; Write # rows to first position 0004F 000 00050 000 ; Set to pass out answers ; Point to first Y data value #0002 ; Write current result out 00 ; Force a value to pop out #0001 ; Decrease the counter P8: 4,H#0001 2,H#0003 4,H#0005 6,H#0007 8,H#0009 1,H#0012 3,H#0014 5,H#0016 7, H#0018

Line MATRIX Program

190021	85		TIMSUCKS	H#0019,H#0021
220023	86		TIMSUCKS	H#0022,H#0023
240025	87		TIMSUCKS	H#0024,H#0025
260027	88		TIMSUCKS	H#0026,H#0027
280029	89		TIMSUCKS	H#0028,H#0029
310032	90		TIMSUCKS	H#0031,H#0032
330034	91		TIMSUCKS	H#0033,H#0034
350036	92		TIMSUCKS	H#0035,H#0036
370038	93		TIMSUCKS	H#0037,H#0038
390000	94		TIMSUCKS	H#0039,H#0000
090001	95	CONVPOS:	TIMSUCKS	H#0009, H#0001
020003	96		TIMSUCKS	H#0002, H#0003
040005	97		TIMSUCKS	H#0004,H#0005
060007	98		TIMSUCKS	H#0006,H#0007
080009	99		TIMSUCKS	H#0008,H#0009
	100			
	101			
000000	102	CONYPOS:	TIMSUCKS	
000000	103		TIMSUCKS	
000000	104		TIMSUCKS	
000000	105		TIMSUCKS	
000000	106		TIMSUCKS	
000000	107		TIMSUCKS	
000000	108		TIMSUCKS	
000000	109		TIMSUCKS	
000000	110		TIMSUCKS	
000000	111		TIMSUCKS	
000000	112		TIMSUCKS	
000000	113		TIMSUCKS	
	111			

Symbol Table: vector.asm

ACC	IN		A	00	800000
D				p	DDRA
AND	R		D		
A	000	000	OC	C	ELLO
CEL	L2		A	00	000002
D				C	LAAI
CLR	A		D		
A	000	000	2D	C	ONYPOS
COP	YR		D		
A	000	000	20	Г	DONE
EXT	DAT	A	A	00	00000D
D				J	MP
LAD	D		A	00	000002
A	000	000	09	I	JE
LJS	R		A	00	00000E
A	000	000	00	I	POP
LRT	S		A	00	00000C
A	000	000	00	N	JOP
NUM	CEL	LS	A	00	000004
S A	000	000	1A	E	ADLOOP
PAS	SOU	TS	A	00	000024
A	000	000	01	F	22
R4			A	00	0000004
A	000	000	0B	F	RB
SUB	D		D		
D				X	CORR

Assembly Phase complete. 0 error(s) detected.

ACCOUT A 00000009 ADDD A 00000010 ANDD D BEGINCOD A 00000000 BLANK1 A 00000000 CELL1 A 000 A 00000003 CELLP CELL3 CLACC D D CMP D CMPD A 00000045 COPYD D CPASS D CSETDE A 0000002C DW D INITCODE A 00000001 INITLO D JSR D A 00000004 LCMP LAND A 0000000A LJMP A 000 LLOAD A 0000000 LOAD A 00000007 LPUSH A 000 A 00000003 LWRITE LSUB D NULL A 0000 OPCODE ORD D A 0000001C PASSLOOP A 000 POP D PUSH A 00000002 R3 A 0000 A 00000005 R6 R5 A 000000B RETURN D TIMSUC SUBR D D

vector.lst

				Pag	ge	4	
	D		ADDLOOP	A	000	00016	ADDR
.6	A 001	00000000	CCLEAR	D			CDELINT
	A	00000020	CINST	А	000	A0000	CLAAE
	D		CONVPOS	A	000	00040	CONXPOS
L	D		CSETDELI	D			DOMULT
0P	A	00000009	JA	D			JE
000	A 208	0000000B	LCOP	A	000	00005	LJA
	D		LOADD	D			LOR
0000 5 0000	006 A 000	5 0000000F	LXOR	A	000	00001	NARG
	D		ORR	D			PADCELL
000	D27 D D03	7 3	RO	A	000	00000	R1
	A	00000006	R7	A	000	00007	RA
KS	D		WRITE	D			XORD

95/03/13 16:27:19

HALE Listing: n	natrix.ası	m	Mar 13 14:12:0	2 1995	Page 1	HALE Listing: m	natrix.a	sm		Mar 13 14:12:0	02 1995
Addr	Line MA	TRIX Program				Addr	Line M	ATRIX Pr	ogram		
	1 00 77	TE MATRIX Dro	(Y Y C M)			00000 50720000	13		WRITE	R7 R2	· Writ
	2 1.1	ST F W	gram			0000B 60700000	44		PUSH	R7	; Put
	3 LTI	NES 50				00000 00700000	45				
	4 :/.	-/-/-/-/-/-/-/-	1-1-1-1-1-1-1	-1-1-1-1-1	-1		46 ;	~~~~~~	~~~~~~	~~~~~~~~~~	
1-1-1-1-						~~~~~~~					
	5 ; 1	Matrix Mult Ass	embly Program f	or use wit	h elRoy Systolic Array Ar		47 ;	Calcula	te the a	ddress offset of	of one r
chitecture							48 ;	~~~~~~	~~~~~~	~~~~~~~	~~~~~~
	6;0	Craig Ulmer / D	arrell Stogner		COMPE	~~~~~~					
4500/4510						0000C 57300000	49 (COFFSET:	COPYR	R7, R3	; R7=1
	7;					0000D 54D00000	50		COPYD	R4, H#0000	; R4=0
	8 ; 1	No modification	s or duplicatio	ns without	the authors' consent	0000E 24D40002	51 (:OFFLOOP:	ADDD	R4, R4, H#0002	; One
	9 ;/	-/-/-/-/-/-/-	1-1-1-1-1-1-1-1	-/-/-/-/	-/						
1-1-1-1-1-						0000F 37D70001	52		SUBD	R7, R7, H#0001	; Decr
	10					00010 9000000E	53		JA	COFFLOOPS:	; 11 5
	11				** ** ** ** ** ** ** ** ** ** ** ** **		55			~~~~~~~~~~~~~~	~~~~~~~
	12 ;					~~~~~~~~	,				
	13 . 1	Multiply Matry	X by Matrix M				56	Main lo	op for m	atrix	
	14 .	Note this wi	11 generate a t	ransposed	version of Y		57	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~	~~~~~~~~~~~~~~~~	~~~~~~
	15 :	NOCC. CHIS WI	IL generace a c	ranopooca	veroron or r	~~~~~~					
	16 :	Registers:	R7: Constant R	lows of X		00011 DAD000A8	58 M	ATLOOP:	CCLEAR		; Clea
	17 ;		R6: X Last Add	lress of a	loop = X Starting + #Cols	00012 50D00037	59		COPYD	R0, CONXPOS%:	; Get
*2						00013 D7000000	60		LOAD	R7, R0	; R7 =
	18 ;		R5: X starting	address		00014 20000004	61		ADDD	R0, R0, H#0004	; Set
	19 ;		R4: # Columns	of X * 2 =	Rows of V * 2	00015 55000000	62		COPYR	R5, R0	; Set
						00016 26540000	63		ADDR	R6, R5, R4	; R6=a
	20 ;		R3: RA Loop	Rows =	Rows of V	00017 35D50002	64		SUBD	R5, R5, H#0002	; Kluc
	21 ;		R2: Columns of	M counter			65				
	22 ;		R1: Current V	Address			66 ;	~~~~~~	~~~~~~	~~~~~~~~~~	~~~~~~
	23 ;		R0: Current X	Address		~~~~~~~				W. Wust maini	tializa
	24 ; "						6/;	A new V	ector of	M. Must reini	cialize
	25						00 ;	~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~	
	25					00018 0008290	69 1	DDRA.	CLRA		. Set
	20 ;~	~~~~~~~~~~~	~~~~~~~~~~~~			00019 25050002	70	ibbim.	ADDD	R5.R5.H#0002	: Inci
	27 .	Initialize the	M Matrix counte	ors		0001A B0560000	71		CMP	R5, R6	; See
	28 :~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NUNNUMBER COURSE		~~~~~~~~~~~~~~~~~~~~~~	0001B A000002C	72		JE	PASSOUTS%:	; If s
~~~~~~~~	,					0001C 50500000	73		COPYR	R0, R5	; if r
00000 51D0004A	29 IN	ITCODE: COPYD	R1, CONMPOS%:	; R1=M st	arting Address	os					
00001 D3100000	30	LOAD	R3, R1	; R3=Rows	of M / Cols of X	0001D 53700000	74		COPYR	R3, R7	; Rese
00002 21D10002	31	ADDD	R1, R1, H#0002	; R1=Addr	ess of M's Columns		75				
00003 D2100000	32	LOAD	R2, R1	; R2=Colu	mns of M		76	~~~~~~	~~~~~~		~~~~~~
00004 21D10002	33	ADDD	R1, R1, H#0002	; R1=Addr	ess of first M data	~~~~~~					
	34						77	Individ	lual vect	for loop	
	35 ;~	~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~	~~~~~~~~~~~~~~~~		78	~~~~~~	~~~~~~		~~~~~~
~~~~~~~~						~~~~~~~		Ent oop			1
	36 ;	Write out Y's R	OWS, COLS values	5		0001E DB000000	79 1	ADDLOOP:	LOAD	RA, RU	; 1040
	37 :~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0001F 20040000	80		CURD	D2 D2 U#0001	; Doci
00005 57000050	20 TN	TTTV. CODVD	D7 CONVDOCA.	. Cot the	location of V	00020 33030001	82		JA	ADDLOOP& -	· Tf :
00005 57000050	38 IN	COPYD	RT, CONTPOSS:	; Get the	location of Y	00021 900001E	83		UA	ADDIGOT 0.	,
00000 06600000	10	LOAD	RO, CONAFOSO:	· Cot the	# rows from X		84	~~~~~~~	~~~~~~~		~~~~~~
00008 50760000	41	WRITE	R7 R6	· Write t	he # rows to Y	~~~~~~~	0.1				
00009 27070002	42	ADDD	R7. R7. H#0002	: Point t	o address of Y's Cols						
00000 27270002	7.6			,	a name and the states						
		11	1 1 1								
		NATD	M	10							
		6 MILIX	- / ATRIX	(Pran	-Ada						

a lund logi Hul

matrix.lst

Page 2 te the # cols to Y the Y address on the stack ~~~~~~~~~~~~~~~~~~~~~~~~ row of X Temp counter of X columns Col*2 offset begins at zero more element-> offset by +two rease columns counted still a column, loop ar out all cells - new vector X starting address = Num Rows of X to first data value of X to first data value of X address of 2nd row, 1st column dge R5 for looping ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ the cells and counters ~~~~~~~~~~~~~~~~~~~~~~~ to load RA pipe, holding ACCS rease X origin by one spot if we've hit the last place so, go to the results pass not, load the next stating X p et the row counter ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ d next X into the RA pipe e one row down rease the row counter not last one, keep looping

HALE Listing: m	atrix.	.asm		Mar 13 14:12:02	2 1995 Page 3	HALE Listing:	matrix.asm	N	lar 13 14:12:02
Addr	Line	MATRIX Pr	ogram			Addr	Line MATRIX	Program	
	85	; Pad out	the arr	ay if more Cells	s then # multiplying	0003C 00090011	127	TIMSUCKS	H#0009,H#0011
	00	;~~~~~~	~~~~~~~	~~~~~~~~~~~~~~~~~		00030 00120015	120	TIMOUCKS	U#0014 U#0015
00000 5000004	07	DADOFTIC.	CODVD	DO NUMORITO	. Cot the number of colle	0003E 00140015	129	TIMOUCAS	U#0016 U#0017
00022 5000004	07	PADCELLS:	CUPID	RU, NUMCELLS	; Get the number of certs	0003F 00160017	130	TIMOUCKS	H#UULO, H#UUL/
00023 30700000	88	DADLOOD	SUBR	RU, R/, RU	; RU=Num Cells - ROWS	00040 00180019	131	TIMSUCKS	H#UU18, H#UU19
00024 A0000028	89	PADLOOP:	JE	DOMULTS:	; Perfect fit, do the mult	00041 00210022	132	TIMSUCKS	H#UUZ1, H#UUZZ
00025 DBD00000	90		LOADD	RA, H#0000	; Load a dummy into the RA pipe	00042 00230024	133	TIMSUCKS	H#U023, H#U024
00026 30000001	91		SUBD	RU, RU, H#0001	; Decrease counter	00043 00250026	134	TIMSUCKS	H#0025, H#0026
00027 80000024	92		JMP	PADLOOP*:	; Keep looping	00044 00270028	135	TIMSUCKS	H#0027, H#0028
	93					00045 00290031	136	TIMSUCKS	H#C029,H#0031
	94	;~~~~~~	~~~~~~~	~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00046 00320033	137	TIMSUCKS	H#0032,H#0033
~~~~~~						00047 00340035	138	TIMSUCKS	H#0034, H#0035
	95	; Do the	actual m	ultiplication		00048 00360037	139	TIMSUCKS	H#CO36, H#CO37
	96	;~~~~~~	~~~~~~~	~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~	00049 00380039	140	TIMSUCKS	H#0038, H#0039
~~~~~~						0004A 00090004	141 CONMPO	S: TIMSUCKS	H#0009, H#0004
00028 DAD08110	97	DOMULT:	CLAAI		; Set for Multiply	0004B 00010002	142	TIMSUCKS	H#0001, H#0002
00029 DB100000	98		LOAD	RB, R1	; RA loaded, Load the next part of	0004C 00030004	143	TIMSUCKS	H#C003,H#0004
М						0004D 00050006	144	TIMSUCKS	H#C005, H#C006
0002A 21D10002	99		ADDD	R1, R1, H#0002	; Point to the next value of M	0004E 00070008	145	TIMSUCKS	H#0007, H#0008
0002B 80000018	100		JMP	ADDRA%:	; Do the next column	0004F 00090011	146	TIMSUCKS	H#0009,H#0011
	101					00050 00120013	147	TIMSUCKS	H#0012,H#0013
	102	; ~~~~~~~~	~~~~~~~~~~	~~~~~~~~~~		00051 00140015	148	TIMSUCKS	H#0014.H#0015
~~~~~~~~						00052 00160017	149	TIMSUCKS	H#0016,H#0017
	103	· Write o	ut answe	rs		00053 00180019	150	TIMSUCKS	H#0018.H#0019
	104		~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		00054 00210022	151	TIMSUCKS	H#0021 H#0022
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	104	,				00055 00230024	152	TIMSUCKS	H#0023 H#0024
00000 7000000	105	DACCOUTC.	DOD	DO	. Don off the V-1 address	00055 00250024	152	TIMOUCKO	U#0025,11#0024 U#0025 U#0026
00020 70000000	105	PA330013:	CDACC	RU	, Fop off the fill address	00057 00230020	155	TIMOUCKS	U#0023, H#0020
0002D DAD00000	100	DACCI COD.	ADDD	DO DO 1140000	, Deint to next V data walve	00057 00270028	104	TIMOUCKS	H40020 H40021
COULE ZODOCOZ	107	PASSLOUP:	ADDD	RU, RU, HHUUUZ	; Point to next r data value	00058 00290031	155	TIMSUCKS	H#0029, H#0031
0002F F0080000	108		WRITE	RU, ACCIN	; Write current result out	00059 00320033	156	TIMSUCKS	H#UU32, H#UU33
00030 DBD00000	109		LOADD	RB, H#0000	; Force a value to pop out	0005A 00340035	157	TIMSUCKS	H#0034, H#0035
00031 37D70001	110		SUBD	R7, R7, H#0001	; Decrease the counter	0005B 00360037	158	TIMSUCKS	H#0036, H#0037
00032 9000002E	111		JA	PASSLOOP%:	; Keep looping if not zero	0005C 00380039	159	TIMSUCKS	H#0038, H#0039
00033 60000000	112		PUSH	RO	; Push the Y address for storage		160		
	113					0005D 0000000	161 CONYPO	S: TIMSUCKS	
	114	;~~~~~~	~~~~~~	~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0005E 00000000	162	TIMSUCKS	
~~~~~~~~						0005F 00000000	163	TIMSUCKS	
	115	; Figure	out next	Column of M		00060 00000000	164	TIMSUCKS	
	116	;~~~~~~	~~~~~	~~~~~~~~~~		00061 00000000	165	TIMSUCKS	
~~~~~~~						00062 00000000	166	TIMSUCKS	
00034 32D20001	117	MATEND:	SUBD	R2,R2,H#0001	; Decrease M's Column counter	00063 00000000	167	TIMSUCKS	
00035 90000011	118		JA	MATLOOP%:	; If more columns, keep looping	00064 00000000	168	TIMSUCKS	
	119								
00036 80000036	120 121	DONE:	JMP	DONES:					
00037 00040009	122	CONXPOS .	TIMSUCK	S H#0004 H#0009	3				
00038 00010002	123		TIMSUCK	S H#0001 H#000	2				
00039 00030004	124		TIMOUCK	S H#0003 H#000	1				
00033 00050004	125		TIMOUCA	C U#0005,H#0000					
0003R 00030000	120		TIMOUCK	C U#0007 U#000					
80001000 42000	120		TIMSUCK	.5 n#0007, H#0000	3				

matrix.lst

HALE Listing: matrix.asm

100	1.0		
A	-1	1	30
A	1	1.1	1

Line MATRIX Program

00065	00000000	169	TIMSUCKS
00066	00000000	170	TIMSUCKS
00067	00000000	171	TIMSUCKS
00068	00000000	172	TIMSUCKS
00069	00000000	173	TIMSUCKS
0006A	00000000	174	TIMSUCKS
0006B	00000000	175	TIMSUCKS
0006C	00000000	176	TIMSUCKS
0006D	00000000	177	TIMSUCKS
0006E	00000000	178	TIMSUCKS
0006F	00000000	179	TIMSUCKS
00070	00000000	180	TIMSUCKS
00071	00000000	181	TIMSUCKS
00072	00000000	182	TIMSUCKS
00073	00000000	183	TIMSUCKS
		184	

MATRIX MATRIX Multiplication

Similar to MATRIX. Vector program, but

matrix.lst

Mar 13 14:12:02 1995 Symbol Table: matrix.asm Page ACCIN D ANDR A 000000 CELL3 D CMP A 000000 COPYD D DW D JSR A 000000 LJMP D LPUSH A 000000 NARG D PADCELLS D R1 A 000000 RA D XORD Assembly Phase complete. 0 error(s) detected. Loops the Algorithm to perform All operations Results are stored in transposed form.

A	80000008	ACCOUT	A	00000009	ADDD	D		ADDLOOP	A	0000001E	ADDR
	ADDRA	A 0000001	8	ANDD	D					00000000	OPTIO
D		BLANK16	A	00000000	CCLEAR	D		CDELINT	A	000000000	CELLO
000	CELL1	A 0000000)1	CELL2	A 0000000	2					
A	0000003	CELLP	A	00000020	CINST	A	A0000000	CLAAE	D		CLAAI
	CLACC	D		CLRA	D						
D		CMPD	D		COFFLOOP	A	0000000E	COFFSET	A	0000000C	CONMPOS
04A	CONXPOS	A 0000003	37	CONYPOS	A 0000005	D					
D		COPYR	D		CPASS	D		CSETDEL	D		CSETDELI
	DOMULT	A 0000002	28	DONE	A 0000003	6					
D		EXTDATA	A	000000D	INITCODE	A	00000000	INITY	A	00000005	JA
	JE	D		JMP	D						
D		LADD	A	00000002	LAND	A	00000004	LCMP	A	0000000B	LCOP
005	LJA	A 0000000	9	LJE	A 0000000	A					
A	80000008	LJSR	A	0000000E	LLOAD	A	0000000D	LOAD	D		LOADD
	LOR	A 0000000	00	LPOP	A 0000000	7					
A	00000006	LRTS	A	0000000C	LSUB	A	0000003	LWRITE	A	0000000F	LXOR
001	MATEND	A 000000	34	MATLOOP	A 0000001	1					
A	00000000	NOP	D		NULL	A	00000000	NUMCELLS	A	00000004	OPCODE
	ORD	D	~	ORR	D						
C A	00000022	PADLOOP	Δ	00000024	PASSLOOP	A	0000002E	PASSOUTS	A	0000002C	POP
oa	DIICH	D	n	P()	A 0000000	0	000000000				
2	00000001	100	N	00000002	P3	A	00000003	R4	Δ	00000004	R5
A	00000001	NZ 0000000	A	00000002	A 0000000	7	00000000	1.3		00000001	1.5
005	RO	A 0000000	01	R/	A OUOUUUU	D		CUIDD	D		CUIRR
A	0000000B	RB	A	WDTEE	RETORN	D		SUBD	2		SODI
	TIMSUCKS	D	-	WRITE	D						
D		XORR									

Appendix C: Circuit Schematics

۸			00		U	0	
				K			8
PROJECT ELROY PART. MAIN_PROCESSOR PURPOSE: Serve as sample CPU and provide hos for cell array for cell array LASTMODIFIED: January 24, 1996 DESILNERS: Craig Urner & Darrell Stogner	MEM BUS OUTDIN	CELL INSTITUT	ACTINA OUTISSI	Rocess			7
	our_toers1:0)		(o veluno d	Y K			

8 29 file	
	A
	в
	c
	D

3	4	5	6	7
MUX2X1 DHI DLO Z SEL S 15	D_OUT(15)	G DATA(9) OHI DLO SEL	22X1 z D_OUT(9)	
MUX2X1 DHI DLO Z SEL SEL S 14	D_OUT(14)	G DATA(8) DHI DLO SEL S	22X1 Z Z 5	
MUX2X1 DHI DLO Z SEL S 13	D_OUT(13)	G DATA(7) DHI DLO SEL S	ZZX1 Z Z 4	
MUX2X1 DHI DLO Z SEL SEL S 12	D_OUT(12)	G DATA(6) DHI DLO SEL S	X2X1 Z Z Z Z	
MUX2X1 DHI DLO Z SEL SEL S 11	D_OUT(11)	G DATA(5) DHI DLO SEL S	ZZX1 ZD_OUT(5)	
MUX2X1 DHI DLO Z SEL SEL SEL	D_OUT(10)	G DATA(4) DHI DLO SEL S	22X1 ZD_OUT(4)	
MUX2X1 DHI DLO Z SEL SEL S 3	D_OUT(3)			
MUX2X1 DHI DLO Z SEL SEL S 2	D_OUT(2)			
MUX2X1 DHI DLO Z SEL S 1	D_OUT(1)	(PROJECT ELROY PART: CDATA_SELECT PURPOSE: Select cell Instruction register source
DHI DLO SEL S O	D_OUT(0)			LAST MODIFIED: January 24, 1995 DESIGNERS: Craig Ulmer & Darrell Stogner

3	4	

(7	1	AT
-	1	Л	21
		1.	V

sellawrits of stack set 7 sellawrits of stack set 7 sellawrits of wux, teleft 2701 sellawrits of stack set 6 stack set 6 stack set 7 sellawrits of staft 2701 sellawrits of staft 2701	
stack stat 7 stack stat 7 stack stat 6 stack stat 6 stack stat 6 stack stat 6 stack stat 6 stack stat 6 stack stat 3 stack stat 4 stack stat 4 st	

		T
3	Δ	
J	4	

Э	0	1

.

		Bus	Arb
5	6		7

PROJECT ELROY PART: ARB_OUT

PURPOSE: Handle output registers and memory bus LAST MODIFIED: January 24, 1995

DESIGNERS: Craig Ulmer & Darrell Stogner

5	6	

	Fo_ourtarie				FO OUTIN 9		[FO_OUT[31.8]					W LETLAD OR	la de anti-	
FIFOCELL	8	FIFOS	PB-OCELL		E.	FIELDA	 FIFOCELL		н		FIF Q2	PROCELL		14	F	- card
(o:1E)OV	oprie) No_EXT XXX XXX			(0.1.E)QV	ND_EXT ND_EXT NDLE	XE		(o: LC)CV	0(31.0) ND_EXT	XXX XXX			10:10:00	(0'11)0	ND. EXT ABLE DOK	561
				9	33			<u>s</u>]	LAN	0333	-

Г		-	
A			
B	LOAD(31:0) FIFO(31:0) LOAD_EXT		S_HIGH(S_LOW(SEL
C	ENABLE CLOCK		
D			
L	1	2	

9	U	1 /	
		Filo	Cell

	REGISTER32		
D_IN(31:0)			
ENABLE		D_OUT(31:0)	FIFO
CLOCK			
RESET			

Appendix D: Bibliography

Bibliography

Ashenden, P. J., The VHDL Cookbook, 1st ed., University of Adelaide, South Australia, Department of Computer Science, 1990.

Baker, Louis, VHDL Programming, John Wiley & Sons, Inc., New York, New York, 1993.

Kung, H. T., Warp Experience: We Can Map Computations Onto a Parallel Computer Efficiently, Carnegie Mellon University, Department of Computer Science, 1988.

Kung, H. T., Why Systolic Architectures?, Carnegie Mellon University, Department of Computer Science, 1982.

Mead, C., Conway, L., Introduction to VLSI Systems, Addsion- Wesley Publishing, 2nd. ed., 1980.

Patterson, D. A., and Hennessy, J. L., Computer Organization and Design: The Hardware/Software Interface, Morgan Kaufmann Publishers, San Mateo, California, 1994.

Schafer, R. W., and Openheim, A. V., Discrete-Time Signal Processing, Prentice Hall, Englewood Cliffs, NJ, 1989.

Strang, Gilbert, Linear Algebra and Its Applications, 3rd ed., Harcourt Brace Jovanovich College Publishers, Orlando, FL, 1986.

Synopsys, Inc., Synopsys: VSS Family Tutorial, 1994.

Texas Instruments, User's Guide: Digital Signal Processing Products, Texas Instruments Incorporated, 1990.

Wakerly, J. F., Digital Design Principles and Practices, Prentice Hall, Englewood Cliffs, New Jersey, 1990.

