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1. Introduction 

Since early conceptualizations of programmable logic, researchers have envisioned a 

prominent computational role for configurable hardware. In as early as 1960, Estrin proposed 

supplementing general-purpose CPUs with specialized hardware units that could be configured to 

emulate logic functions [1,2]. Unfortunately, technology for such programmable logic was 

insufficient until the invention of the Field Programmable Gate Array (FPGA) in 1985. Initially 

these devices were limited by a low number of logic gates the array could emulate. To 

compensate for this deficiency, researchers turned to building large multi-FPGA based systems 

known as Configurable Computing Machines (CCMs) [3,4]. While working with these machines 

could be a complicated process, early CCM teams reported significant speedups for their 

hardware-assisted programs. These systems are interesting because the reconfigurable nature of 

the FPGAs allows the CCM hardware to be reused as needed by different algorithms. However, 

the high cost and large size of these machines prohibits them from general use. 

Recent advances in FPGA technology provide an opportunity to bring the high 

performance of CCMs to low cost, general use systems. The two dominant advances making this 

possible are improvements in FPGA gate density and speed, and the commercial availability of 

FPGA boards for easy system integration. These boards are a cost-effective means of 

configurable computing, allowing designs to leverage a middle ground between software-only 

and dedicated ASIC hardware approaches. Additionally, FPGA-assisted designs may use 

reconfigurable hardware techniques to enhance performance in ways that are not possible in any 

other technology. 

While configurable computing offers a powerful method of high-performance 

calculation, the field is relatively new and lacking guarantees of speedup. In order for this 

technology to be effective, designers must be aware of the underlying hardware features as well 

as evolving design methodologies. The intent of this report is to summarize work in the 

configurable computing domain and expose key points of high-performance FPGA-assisted 

design and use. A primary concern is practicality, with the expectation that configurable hardware 

should be commercially available and of low cost. This report is organized into seven sections 

addressing specific topics of FPGA-assisted design. The first three sections describe the potential 
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use and architecture of FPGAs, specifically highlighting applications that are well suited to the 

technology. The next two sections provide details of system design and comparison. These details 

are followed by an examination of three successful applications. Finally, a discussion of obstacles 

in the technology is provided with suggestions for future enhancement. 

2. Configurable Computing 

Complex algorithms may be implemented in software, hardware, or a combination of 

both. Software approaches use general-purpose CPUs, sequencing discrete CPU operations such 

as multiply or add to realize an algorithm’s functionality. While these devices are highly 

programmable, the overhead for decoding and executing instructions detracts from computational 

performance. At the other extreme of algorithmic implementation is custom hardware known as 

ASICs. While these circuits provide optimal computational performance for a given application, 

the chip cannot be adjusted after fabrication and is therefore only suitable for a single application.  

An example between the differences in hardware and software implementations can be found 

with the evaluation of the logic function F = 4a2 + 3b. Figure 1a illustrates a software program for 

this function, sequencing several basic operations through the processor until the function is 

evaluated. Figure 1b shows the same operation for a hardware-based design, with dedicated 

computation units providing an answer in a single iteration [6].  
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Figure 1: Comparison of general-purpose and configurable computing for F = 4a2 + 3b 

 

Configurable computing is a compromise between hardware and software. Field 

Programmable Gate Arrays facilitate this tradeoff, allowing hardware configurations or images to 

be loaded into the device. Once configured, FPGAs behave as though they are custom VLSI 
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circuits defined by their configuration image.  While approximately three times slower than 

ASICs, performance improvements of FPGAs over CPUs can be significant. In [5,6], Dehon 

provides both analytical and empirical comparisons of configurable and general-purpose 

computing. DeHon’s analysis shows that FPGAs offers a much higher computational density per 

unit area compared to general-purpose CPUs. The benefit of this computational substrate is that 

the hardware may be reused by multiple applications. In this sense the FPGA can ideally provide 

a “virtual ASIC” for any program that can benefit from hardware-assistance.  

 

3. FPGA Architectures 

Given that configurable computing may be beneficial to modern processing, it is 

necessary to examine the differences between the theory and the physical implementations. 

FPGA architectures represent the raw building blocks for which configurable computing works 

with, and therefore the characteristics of the device must be understood before the benefits can be 

applied to a system. 

3.1 Current Generation Architectures 

3.1.1 General Description 

Current generation FPGA architectures generally consist of three main components: logic 

blocks, I/O interface blocks, and a programmable interconnection network.  Of these components, 

the design and relationship between the logic blocks and the interconnection network best 

characterize an FPGA. I/O interface blocks are peripheral logic built to interface the chip to 

external circuitry, and therefore are not examined in this report. Figure 2 shows a generalized 

view of the components found in FPGAs [7]. 
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Figure 2: Basic FPGA Components 

 

The core building block of an FPGA is the programmable logic block (LB). This block 

implements the actual logic functions for configurable computing, and a general representation is 

given in figure 2a. In this model, the logic block uses three stages: function generation, internal 

routing, and memory. The logic block is loaded at configuration time with information that 

determines how each of these stages is to behave. The function generation stage is implemented 

with an array of programmable lookup tables (LUTs). LUTs typically have between three and 

five inputs, with four inputs frequently being cited as the best compromise between LUT access 

time and the average desired function delay [8]. The programmable routing stage follows the 

function generators and allows function results to be supplied to the logic block’s final stage with 

minimal delays.  Finally, the logic block uses D-flip-flops to implement bit storage within the 

logic block. The flip-flops are beneficial for distributed memory in configured designs, including 

their use as registers between pipeline stages. 

Logic blocks in FPGAs are flexible enough to implement at least three distinct modes of 

operation: combinational logic, arithmetic or ripple modes, and dedicated memory storage. In the 

combinational logic mode, the LUTs are loaded at configuration time with truth tables necessary 

to implement a logic function that is dependent on LUT inputs. Early FPGAs with this mode were 

found to be insufficient for complex operations such as adders, comparators, and multipliers [9]. 

The arithmetic or ripple mode was thus added to the logic block, using dedicated carry gates to 

rapidly propagate signals from a logic block to its neighbors. The final mode of memory storage 

allows the LUTs to be configured as RAM or ROM units. This mode increases the amount of 

usable internal memory within the device and is particularly useful for embedding memory 

elements throughout a design.  
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Interconnection of logic blocks in FPGAs consists of two approaches: bus-based or 

switch-based. In either case interconnection wiring routes horizontally and vertically, with logic 

blocks attaching to routing resources as programmed at configuration time.  Bus-based routing is 

the simpler of the two schemes, providing all logic blocks in a row or column equal access to a 

horizontal or vertical routing resource as shown in figure 2b. As logic block array dimensions 

increase, the number of logic block taps connected to the wire greatly affects the line’s parasitics 

and thus the wire’s speed. To combat this hazard, FPGA architects turn to switched 

interconnection as illustrated in figure 2c. In these networks, buses are limited to specific 

distances, typically of length one, two, four, and global. Programmable switch matrices (PSMs) 

distributed throughout the FPGA allow routes to be established as the combination of multiple 

length wires. While the switch matrices induce their own delays, the number of taps on a 

particular wire segment is greatly reduced, compared to bus-based designs [10]. However, this 

isolation of parasitics comes at a cost of increased complexity for software tools responsible for 

the placement and routing of logic in the FPGA [11].  

3.1.2 Commercial FPGAs: XC4000, FLEX, and ORCA 2 

The majority of published work on FPGAs centers around the Xilinx XC4000 series 

architecture [10]. This family employs large, complex logic blocks combined with a switch based 

interconnection network. The logic block of the XC4000, as seen in figure 3a, is unique in that it 

can be configured to use either one or two stages of LUTs per logic block: a 3-input LUT follows 

the initial twin 4-input LUTs. This arrangement indicates that Xilinx intends for logic blocks to 

implement complex logic functions, reducing the amount of traffic using the interconnection 

network. The fast carry-ripple logic between adjacent logic blocks allows for one fast 2-bit full 

adder per logic block. Non-carry signals route through a programmable switch matrix shown in 

figure 2c, with single, double, quadruple, or global distance wire lengths.   
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Figure 3: Simplified Views of Commercial FPGA Logic Blocks 

 

Altera holds the largest share of the programmable logic device market [16] and offers a 

competitive alternative to the XC4000 architecture. The FLEX family [11] of figure 3b 

implements a simple logic block with only a 4-input LUT, cascade logic, and a D-flip-flop, but 

then stacks several logic blocks together to form a Logic Array Block (LAB). Logic blocks within 

the LAB are tightly coupled with both dedicated routing and fast carry-ripple connections. LABs 

communicate with other LABs through a bus-based network. This communication strategy works 

well in the FLEX architecture because local traffic is kept within a LAB, leaving long haul 

communication to the bus based communication network. 

The Lucent Orca 2 FPGA [12] architecture’s logic block represents a clever tradeoff 

between the complexity of the XC4000 and the simplicity of the FLEX. As depicted in figure 3c, 

the Orca 2 architecture use four 4-input LUTs that may be configured to act as either quad 4-input 

LUTs, twin 5-input LUTs, or as a single 6-input LUT. While this configuration places some 

restrictions on the quad 4-input LUT mode, it allows for a high component utilization within each 

logic block [20].  The Orca 2 implements fast carry-ripple logic, providing a 4-bit full adder per 

logic block. While the Orca 2 uses bus-based communication, it targets 4-bit data widths, 

implying high system-level functionality per logic block.  

3.2 Emerging Architectures 

The first implementations of these current generation architectures were fabricated as 

early as 1994. The FPGA industry is currently on the verge of an architecture family transition, 

with all three major FPGA companies announcing the release of their next generation architecture 

chips. This section briefly describes features found in commercial chips released after 1994.  



 7

The most influential commercial architecture since the release of the current generation 

of FPGAs is undoubtedly the Xilinx XC6200 RPU [19]. Released in 1995 as an experimental 

chip, the XC6200 addressed many of the requests from the configurable computing community. 

The primary benefit of this device is that it allows users to configure portions of the device at a 

time rather than forcing an entire unit reconfiguration. Partial reconfiguration is essential to 

efficient configurable computing since it allows better real-time interaction with the device than 

in previous architectures. A direct effect of the partial reconfiguration architecture in the XC6200 

is an increased amount of routing structure. This routing structure is collectively known as the 

FastMap interface and allows an external processor to directly read or write any register or logic 

block in the device. The FastMap communication network reduces the complexity of moving data 

into or out of the design and results in an overall tighter coupling with the host processor. 

The upcoming generation of FPGAs expands upon the previous generation’s 

architectures, and exhibits gains in foundry technology. While none of the upcoming architectures 

are as dramatic as that of the XC6200, they all provide significant architecture enhancements. 

These features include an increased logic block complexity, higher gate densities, improved high-

speed clock handling, dedicated multiply propagation support, and integration of dedicated RAM 

into the chip. In addition to these properties, Xilinx’s Virtex [13] supports a fast partial 

reconfiguration mode similar to the XC6200. Altera’s APEX [14] architecture offers a special 

Content Addressable Memory (CAM) [17,18] mode for its RAM. Lucent’s Orca 3 [15] 

technology focuses on a complex logic block, designed to implement higher level units without 

causing low gate utilization for simple logic functions. While the preliminary datasheets for these 

architectures show an increased awareness of system level functionality in course-grain FPGAs, 

there is little experimental data available to impartially compare the architectures. Therefore, this 

upcoming generation of FPGAs is not the dominant focus in this report. 

3.3 Consequences of FPGA Architectures 

A common misconception about FPGAs is that configuration images are implemented as 

a ‘sea-of-gates’. An examination of the underlying hardware reveals that this conceptualization is 

not the case. While FPGAs do serve as a regularly arranged gate array, there are architectural 

factors that clearly separate FPGAs from custom ‘sea-of-gates’ designed VLSI hardware [21]. 

First, FPGAs implement functional logic with n-input lookup tables. Because of this 



 8

implementation, the delay of a 1-bit NOT function is the same as the delay for an n-input 

complex logic function. Therefore, the benefits of traditional VLSI logic equation reduction may 

be lost to the granularity of the FPGA’s lookup tables. Second, the interconnection networks in 

FPGAs induce costly delays for routing between logic blocks. This results in both nonlinear 

delays between wired elements and a contradiction of the sea-of-gates assumption that wiring 

nearly “comes for free.” Finally, architectural enhancements such as fast carry-ripple logic 

generally outperform complex gate arrangements that inevitably must be mapped to LUTs. These 

features make it difficult to assume that FPGA designs are best served with traditional VLSI 

approaches. 

One of the best examples of the nonlinearities involved in FPGA-based designs is found 

in Xing and Yu’s analysis of adder implementations for the XC4000 [21]. This study compares 

several binary integer addition techniques for a wide range of data widths. In particular the 

authors examine carry-skip, carry-select, carry-look-ahead, and the XC4000 native carry-ripple 

style adders. It should be noted that the XC4000 design specification [10] warns that “the 

dedicated carry circuitry is so fast and efficient that conventional speed-up methods like carry 

generate/propagate are meaningless at the 16-bit level.” The result of Xing and Yu’s study 

confirms this warning: the most efficient adder in both speed and size for up to 48 bits is the 

native carry-ripple adder. This conclusion yields two important insights about FPGAs. First, 

VLSI architectures may not translate to efficient FPGA implementations. Second, minor 

enhancements to an FPGA’s logic block can provide significant performance and density 

improvement for designs utilizing such features. 

Another common building block in configurable computing that is dependent on FPGA 

architecture is integer multiplication. While the current generation of FPGA architectures do not 

provide direct support for hardware multiplication, it is possible to make use of the fast carry-

ripple logic for speed improvements. Peterson and Hutchings present a comparison of 

multiplication strategies for different FPGA architectures in [22]. This study examines bit-serial, 

parallel-array, and constant parallel-array multipliers for the FLEX, XC4000, and CLAy FPGA 

families. While occupying more chip resources, the parallel designs provide a 2-3 factor of 

improvement over bit-serial or iterative implementations. Typical speeds for an 8-bit 

multiplication range from 4-5MHz for bit-serial to 8-15MHz for parallel array designs. Efficient 
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carry-ripple addition is specifically cited as a doubling of performance in their final 

implementations. Do et al. extend this work in [23] by pipelining multipliers to achieve high peak 

performance. While a single multiplication is achieved at a rate of roughly 5MHz, the overall 15-

stage pipeline supplies results at 75MHz. This approach exemplifies how data streaming greatly 

improves the practicality of an FPGA, as well as how designs may capitalize on an FPGAs bulk 

resource size to compensate for a lack of specific functional support.  

Floating point operation on FPGAs is a continuing problem for which there is no 

immediate architectural solution. The main problem with floating point arithmetic in FPGAs is 

that there is no direct hardware support for such operations. As a result, floating point units in 

configurable computing must be constructed from other building blocks such as integer 

multipliers and adders. While building floating point designs for FPGAs is certainly possible [9, 

25], the implementations exhibit a high resource cost. Ligon et al. [24] present multiple styles of 

floating point units to examine the costs in terms of area and speed. While their final pipelined 

design produces a 40 MFLOPS floating point adder, it occupies 40% of the total logic block 

resources for an XC4020. Interestingly, the authors observe that pipelining the design accounted 

for only a small increase in resource cost, with only a slight growth from the 36% logic block 

utilization of the iterative approach. However, the authors conclude that the performance of the 

FPGA in floating point arithmetic is far worse than commercial processors. Additionally, the high 

resource cost for implementing these designs makes FPGA-based floating-point operations 

impractical. Based on the preliminary data sheets for the upcoming generation of FPGAs, it is 

expected that floating point operation in FPGAs will not be viable for some time. 

4. Strengths and Weaknesses of FPGA-assisted Designs 

For a fair evaluation of the role of FPGAs in practical computational scenarios, the 

strengths and weaknesses of both the FPGAs and the manner in which they are utilized in a 

system must be considered.  

4.1 Strengths 

System level benefits of FPGAs are largely captured in the reasoning behind configurable 

logic, as described in section 2. However, designers must achieve high performance at the FPGA 

level before the advantages of configurable computing can be utilized. Noting that gates emulated 
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by FPGAs are slower than custom VLSI circuits, designers must use latency hiding techniques to 

achieve high performance. Fortunately, the high densities of FPGAs make these techniques 

possible, as well as competitive with dedicated hardware. There are three dominant strengths that 

exploit the FPGAs characteristics: pipelining, parallelism, and partial evaluation 

Pipelining is the hardware technique of segmenting a complex operation into distinct 

stages so that multiple data values are computationally in-flight at the same time. Pipelining is 

therefore a natural choice for FPGAs due to the discrete and regular qualities of FPGA logic 

blocks. Memory found at the tail end of the logic blocks completes this image, utilizing the 

storage as pipeline stage registers. Several groups [22-24] observe that pipelining an iterative 

design in FPGAs generally comes with only minimal resource costs. As a result, pipelines allow 

FPGAs to transform mediocre iterative designs into high-throughput realizations competitive with 

alternate hardware. However, the most interesting feature for FPGA pipelining is the ability to 

combine complex operations into a single deep pipeline. This approach is similar to systolic or 

bit-serial strategies: data flows out of one pipeline into the next, without stalling for the collection 

of an entire data value. While DSP architectures exhibit some aggregate operations such as the 

Multiply-Accumulate (MAC), FPGAs have the ability to chain together any sequence of 

operations as needed by an algorithm. These deep pipelines are difficult to abstract for general-

purpose CPUs, and therefore FPGAs offer computational potential found elsewhere only in 

ASICs. 

The second strength of FPGA design is the ability to implement a large degree of 

computational parallelism. The number of independent computations that may be implemented in 

an FPGA is limited only by the size of the chip and the ability to find such computations. Two 

types of parallel exploitations are common: data parallelism and algorithmic parallelism. Data 

parallelism occurs when regular processing may be performed over a large data set concurrently, 

such as in image processing. Algorithmic or control parallelism is the act of allowing multiple 

independent algorithmic tasks to operate concurrently. An example of algorithmic parallelism is 

found in a network interface chip: send and receive threads are independent tasks and therefore 

may be implemented as concurrent state machines in an FPGA. Finally, a combination of data 

and algorithmic parallelism can yield high throughput devices with low speed parts as depicted in 

figure 4. This hardware technique streams high-speed data values into and out of an array of low 
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speed computational units. This method demonstrates how an FPGA can compete with other 

dedicated hardware devices by trading device area for speed. 
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Figure 4: High Performance with Low Speed Components 

 
 

The third primary strength of FPGAs is the ability to use partial evaluation techniques to 

minimize computation logic and delay. Partial evaluation is a technique used by compilers and 

FPGAs to reduce a multivariable function to a less complicated expression based on information 

known at compile time. Consider for example a multiplication unit. A general-purpose multiplier 

must logically produce answers for all possible sets of inputs. However, if one of the multiplier’s 

inputs is a constant then the unit produces only multiples of that constant. Using this information, 

all paths leading to non-multiples of the constant may be eliminated and the logic equations for 

the multiplier thus reduced. This technique is not feasible in general-purpose CPUs, but the 

reconfigurable nature of the FPGA makes such optimizations possible. In Peterson and 

Hutchings’ study of multiplication implementations for FPGAs [22], partially evaluated circuits 

for constant multiplication are considered, and result in a factor of 2-3 improvement over the best 

case general-form multiplier. 

A key dependency of the above strengths is the ability for an FPGA to be configured to 

perform as hardware relevant to a given application. The middle ground offered by configurable 

computing between general-purpose CPUs and dedicated ASICs represents an emerging design 

style dealing with “disposable hardware.”[1,2,5,6] In the simplest form, common applications 

may utilize an FPGA as if the application is worthy of its own dedicated ASIC. A more 

interesting application of configuration arises in the field of adaptive hardware. Researchers such 

as Mangione-Smith see a great opportunity for the configurable nature of FPGAs not only to 

provide high-speed computation, but also to give a means for reacting to a problem’s 

computational progress [1]. An adaptive system potentially would provide multiple hardware 

images optimized for specific cases of a given problem. System hardware would thus be 
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responsible for swapping in different hardware configurations as a problem’s nature changes. 

Applications such as target recognition currently implement crude versions of this strategy [1, 38, 

39]. In [26], Rashid sees a more featured system, capable of generating its own hardware images 

dynamically. Configuration manipulations therefore present a computational opportunity for 

FPGAs unavailable in any other technology. 

4.2 Weaknesses 

The physical constraints of the FPGAs are a primary source of weakness for FPGA-

assisted calculations. In addition to the computational building block limitations described section 

3.3, designs implemented in configurable logic are subject to factor of 3 slowdown in speed and a 

factor of 10 degradation in density when compared to similar logic implementation in ASICs [8]. 

This degradation is a result of gates and interconnection being implemented through configurable 

SRAM-based devices. Gate density is perhaps the most critical limitation in FPGA devices since 

the size of the gate array determines how much logic can be implemented, and therefore restricts 

the degree of achievable parallelism. A number of works specifically note the inability of FPGAs 

to store large designs as a significant performance limit [9, 23, 24]. Realizing the importance of 

this problem, the FPGA industry is continuously increasing gate capacity with each chip revision. 

Along similar lines, it is well known that the limited routing resources of interconnection 

networks prevent 100% utilization of an FPGA’s logic blocks. As a consequence the FPGA 

industry is continually exploring the routing algorithms for synthesis tools as well as offering 

additional routing resources for high-density devices. 

Beyond the physical constraints of the FPGA architecture, there are a number of barriers 

in current systems that prevent efficient use of FPGA-assisted processing. Without question, the 

ultimate weakness of current systems is the lack of proximity of the FPGA to data. A number of 

FPGA-based computation boards are available, but these boards all reside at the end of the PCI 

bus or serial port. The computational flow in this arrangement is a costly path: computation starts 

at the host CPU, migrates with data through the memory system, and finally moves through the 

I/O bus into the FPGA card. This process is reversed once the FPGA finishes computation and 

needs to move results back to the host CPU. Clearly these overheads make the practicality of 

assisted computation questionable. Alternate proposals to create a more efficient computational 

environment are discussed in section 8. 
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Another challenge for FPGAs is the relatively long delay required for re-programming 

the device. For the current generation chips entire configurations must be loaded into the device 

at a time, creating an offline time on the order of a few milliseconds. This dead time can be 

significant for applications where the cost of reconfiguring the device is comparable to the 

amount of time to perform the operation. Therefore, various research groups propose operating 

system management of the FPGA to perform better scheduling of FPGA utilizing applications 

[27]. This work creates a “Virtual FPGA” and leverages existing OS research in managing slow 

multi-user devices such as memory or disk. A number of hardware architectures to reduce 

configuration time have been proposed and implemented, such as the XC6200 partially 

reconfigurable RPU [19] and the Sanders corporation’s CSRC multi-context FPGA [48]. These 

are discussed in section 8. 

Designing configurations that efficiently utilize the FPGA can be accompanied by a 

complicated development cost. Clearly, development for hardware-assisted devices is more costly 

than software-only approaches due to the complexity of hardware-software co-design. Design 

environments such as hardware description languages (HDLs) and hardware compilers create 

abstractions of the hardware to provide simpler design flows and portability between target 

architectures. Unfortunately a target architecture’s strengths may be masked by these 

abstractions. The balance between high performance and ease of design for configurable 

computing is a complicated issue, and is further discussed in section 5.  

 
Strengths Weaknesses 

Extreme parallelism potentials Poor floating point performance 
Deep customized pipelining Limited resources 
Partially evaluated circuits Poor data proximity 
Disposable circuits Overall design complexity 

Table 1: Summary of FPGA Strengths and Weaknesses 

4.3 Suitable Applications 

The strengths and weaknesses for FPGA-assisted computation are summarized in table 1. 

From these points it is apparent that applications with the following qualities are more suitable for 

FPGA assistance: 
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• Highly parallel applications: The FPGAs capacity for parallel hardware is a great strength. 

Therefore the most successful applications are the ones with large degrees of data or 

algorithmic parallelism. 

• Streamlined Data: To overcome the burdens of slow internal units, FPGAs often must 

pipeline data to achieve satisfactory speeds. Applications performing regular operations on a 

stream of data are a good fit for FPGA use. 

• Prior knowledge circuits: Algorithms with constant data values or algorithm computation 

reductions perform well in configurable devices. 

• Complex Custom Logic: Applications with regular logic operations generally transfer well 

to state machines in FPGAs. FPGA based evaluation of these operations is beneficial since 

the FPGA can provide better custom logic implementations than a CPU, and can perform 

these operations at the same time as other algorithm functions. 

4.4 Unsuitable Applications 

Conversely, the following forms of applications typically have poor implementations in 

FPGA-based configurable computing: 

• Sequential programs: Programs with tight loops are difficult to parallelize for any target 

architecture. Therefore, general-purpose CPUs perform significantly better than FPGAs in 

sequential applications.  

• Large floating point calculations: The high resource cost for FPGA based floating point 

computation makes applications with floating point operations difficult to justify in FPGA 

consideration. 

• Non-localizable data: FPGA performance is significantly reduced when data must flow up 

and down the memory subsystem. Applications that frequently pass large data sets between 

the host and FPGA are challenging in current FPGA-assisted systems. 

5. Design Methodologies 

One of the dominant factors inhibiting the widespread use of configurable computing 

comes from the complexity of hardware-software co-design. The process of analyzing an 

algorithm and developing an FPGA-assisted design is substantially more complicated than 

software-only approaches, and has no guarantee of performance enhancement [28]. Software 
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engineering practices such as code reuse, iterative design, and automated tool assistance are 

important for successful design, and captured in the field of rapid prototyping. Due to the depth of 

the rapid prototyping domain, this report is limited to two primary design methodologies: tool-

assisted manual design and custom compilation. 

The majority of configurable computing is currently implemented by custom manual 

design. This technique centers on an engineer examining an algorithm, determining the most 

complicated operations that could benefit from hardware, and hand designing an FPGA image to 

execute the computations. While this is admittedly a very slow and complicated design 

procedure, it often produces the highest performance results, which in the end may be reused by 

other designs. Typical hardware/software co-design practices use hardware description languages 

(HDLs) such as VHDL and Verilog to write a software simulation of the device. The HDL source 

code is then run through complex synthesis tools to generate gate-level descriptions for the 

circuits. After running the gate-level descriptions through an FPGA specific place and route tool, 

designs are ready for use in FPGAs. The final step involves the interfacing of host level programs 

to the loaded FPGA [28, 41]. With hardware and software tasks designed and built, the overall 

process iterates until a design is fully tested and meets timing specifications. 

While the manual design methodology presents high-performance custom hardware, it 

suffers from a high overhead of analysis, device design, and system testing. A number of research 

efforts [29,30] realize that the complexity of this design process makes it impractical for general 

use. These groups propose an alternative approach of placing the burden of analysis and design 

on the compiler. Specifically these groups use an analysis tool that takes a given C program and 

compiles it into a hardware gate description. This work capitalizes on compiler technology such 

as loop unrolling and maps data operations into predefined logic block macros. While appealing 

in the sense of automated hardware generation, these approaches suffer from the problems 

inherent in all parallelizing compilers: C is a sequential language and as such it is difficult to 

extract high-performance parallelism. Typical speedup for these programs in FPGA 

implementations is reported at roughly 2x [2]. 
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6. Custom Computing Performance Measurements 

Evaluating the performance of FPGA-based designs can be difficult. To better understand 

a design’s weaknesses, performance is ideally measured at both the FPGA and system levels. In 

terms of actual FPGA performance, it is desirable to apply the design to multiple FPGA target 

architectures as illustrated in [22].  To facilitate a more generic comparison of FPGA 

architectures, the MIT Reconfigurable Architecture Workstation (RAW) project provides a 

benchmarking suite of traditional FPGA applications in [31]. However, the authors of [2] suggest 

that generic benchmarking suites for FPGAs expose little practical information. Since these suites 

use generic designs, special features of individual FPGA architectures cannot be leveraged in the 

tests. With the assumption that performance of FPGA designs overrides ease of implementation, 

the best method of FPGA level comparison is with designs hand crafted to take advantage of a 

target architecture’s features. Therefore, benchmark comparisons can only give approximations of 

the hardware’s performance.  

The ultimate performance evaluation of an FPGA-based design is in system level 

speedup over software-only approaches. Should the overall system speedup fail to be substantial 

enough to justify the added system complexity, then clearly the FPGA-assisted design should be 

avoided. Additional factors may play a role in the assessment of an FPGA-assisted design’s 

worth. First, a design with only a low performance enhancement may be more meaningful if the 

application is frequently used. Second, a design’s hardware resource requirements such as a gate 

count or additional memory dictate the dimensions and expense for the FPGA board’s hardware. 

FPGA literature can be misleading in that hardware requirements necessary for peak performance 

are often downplayed. Finally the side effects of FPGA hardware on the overall system must be 

considered in a design’s evaluation. For example, while an FPGA board may offload computation 

from the CPU, it may also increase bus traffic in the region where the FPGA resides.  

7. Design Examples 

7.1 Data Streaming and Partial Evaluation: Cryptography 

Data encryption and decryption is an application for which FPGAs have recently received 

a large amount of public attention. Recent estimates predict that previously secure cryptography 
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may be vulnerable to a dedicated network of FPGAs or custom ASICs. With dedicated hardware, 

brute force key search attacks on encrypted messages may crack messages in time periods of 

weeks or months instead of years or centuries. The strength of encryption generally relies on two 

algorithmic details. First the keyspace from which a particular key is chosen to encrypt a message 

must be large enough that incrementally guessing all possible keys takes a considerable length of 

time. Second, the encryption process must be complicated enough that it cannot be trivially 

performed by general-purpose CPUs. The combination of these two factors leads to lengthy 

searches in the case of brute force attacks. Unfortunately this complexity also limits the speed at 

which data streams may be encrypted. Therefore, the interest in FPGAs or ASICs is to improve 

the speed in which encryption and decryption of a data stream can occur. 

The encryption and decryption processes are typically not considered as targets for 

common use of FPGAs because commercially available chips can rapidly perform the 

calculation. However, in [32] Leonard and Mangione-Smith present a stream oriented 

cryptography implementation offering improvements in the raw encoding/decoding speeds for the 

DES algorithm. The basis for this work is the assumption that a session key is used to 

encode/decode data changes infrequently for a given data stream, and is therefore ripe for partial 

evaluation techniques in an FPGA. The authors therefore build and compare an FPGA circuit 

with particular session keys hard-wired into the design. This key-specific circuit is able to achieve 

a 45% reduction in FPGA logic blocks and a 35% improvement in bandwidth. This work is 

important because it demonstrates how partial evaluation can provide substantial speed 

improvements for complex operations that are generally not possible in other forms of CPU or 

ASIC implementation. 

While speed benefits for stream-based encryption/decryption are important, the primary 

interest in FPGAs for cryptography is high-speed key breaking. Due to the complexity of the 

encryption process, hardware support to pipeline the operation and minimize key evaluation times 

is critical. An ASIC implementation of a key breaking circuit would be ideal, but is of little 

common use to non-cryptographic breaking agencies. Therefore the FPGA is the architecture of 

choice for ad-hoc evaluation of cryptographic strength. A general key breaking system consists of 

three main components: a key generator, an encryption unit, and a comparison unit. Although a 

key generator can be a simple counter, alternate approaches choose less complex but unique key 
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generators for high speed [33]. The encryption unit may be pipelined depending on the 

complexity of the algorithm, and generally provides the critical delay for the system. Performance 

of key breaking circuits for FPGAs is impressive: studies show that a single DES key-breaking 

circuit can test 1.02Mkeys per second with a system clock of 17MHz [34]. By comparison, 

software implementations can check at least 50Kkeys per second. Accepting the parallel nature of 

the operation, multiple key breaking circuits may be placed in a single FPGA, as well as in 

multiple FPGA based systems. 

7.2 Data Parallelism: Digital Signal Processing 

FPGAs are a natural choice for digital signal processing (DSP) due to the large degree of 

parallelism commonly found in this domain’s algorithms. However it is not necessarily true that 

all DSP operations are well suited for FPGAs. For example, the fast Fourier transform (FFT) 

algorithm is a common DSP building block employing a regular and parallel computation 

structure. Unfortunately the FFT requires complex value multiplications that are best served with 

floating point precision. FPGA implementations generally resort to iterative approaches (reducing 

parallelism), fixed-point precision (reducing resolution), or require large multi-FPGA systems 

(reducing practicality)[22,35]. It is therefore difficult for low-cost FPGA systems to be 

competitive with specialized DSP processors in FFT computation. There are many other DSP 

applications that do transfer well to FPGA-assisted processing. Such computations include the 

discrete cosine transform (DCT) for JPEG and MPEG image compression [36,37], target 

detection in image processing [38,39], and signal filtering [5,22]. 

While examples of FPGA-based DSP operations are abundant, Mangione-Smith observes 

in [40] that “no companies are known to use reconfigurable computing for a competitive 

advantage.”  Singh and Slous accept this challenge in [41] and explore how a commercially 

available Xilinx XC6200 RPU board can be used to assist real world DSP applications. This work 

demonstrates how an FPGA-based PCI board can supplement computations for the popular 

Adobe Photoshop image processing software. Adobe provides software extensions to Photoshop 

that allow users to write custom filter operations in standard C. Singh and Slous use this software 

interface to allow Photoshop to directly interact with the FPGA for hardware based filter 

operations. The software driver extracts image data from Photoshop, transfers the data to memory 

on the FPGA card, and then triggers the FPGA to begin computations such as colorspace 



 19

conversion or 1D/2D convolution. Once computation is complete, the results are transferred back 

to Photoshop’s environment. The conclusions drawn by this work strongly reflect the strengths 

and weaknesses of current FPGA-assisted systems. While data is processed at a high rate of up to 

20Mpixels per second at the FPGA, system data transfers to the card slow the perceived operation 

to 0.22Mpixels per second. For comparison the authors cite that the on-card FPGA performance 

is approximately ten times greater than that of a dedicated 4-processor Power PC Genesis MP600 

graphics workstation. 

7.3 Custom Logic: Packet Scheduling 

A potential environment suitable for FPGAs is emerging in high-speed data 

communication networks. With the increased bandwidth of Gigabit ATM and Ethernet, switch 

and network interface cards face increased throughput requirements as well as more demanding 

Quality of Service (QoS) needs. Some developers see the FPGA as a tool for implementing 

custom network processing logic that directly interacts with high-speed link transceivers [42]. 

These implementations can be expanded to provide hardware support for QoS oriented packet 

scheduling. Current schedulers analyze a list of queued packets’ statistics and recompute 

priorities to make intelligent scheduling decisions. In a real-time context this work is non-trivial 

for CPUs, and may be better suited for FPGAs that can compute priorities in parallel. 

Additionally, the reconfigurable aspect of FPGAs allows researchers to experiment with complex 

scheduling algorithms at previously infeasible speeds. 

The Illinois Pulsar-based Optical INTerconnect (iPOINT) project seeks to enhance QoS 

features of the Washington University Gigabit ATM switch through an FPGA card inserted at 

each switch port [43]. At the lowest levels, these FPGA cards implement an ATM port’s standard 

responsibilities such as VPI/VCI translation, packet header CRC checks, and physical interface 

management. Recent work in the iPOINT project extends these duties to include multicast 

support and an elaborate input queue management algorithm known as 3-Dimensional Queuing 

(3DQ) [44]. The 3DQ design is significant for at least two reasons. First, it improves the service 

performance of the switch by prioritizing input queue packets based on a combination of virtual 

circuit ID, destination port, and a packet’s global priority level. Second, this hardware 

implementation built with 1997 technology performs these QoS decisions at a speed sufficient to 

satisfy OC-12 data rates (622Mbps). Observing that other scheduling algorithms constantly 
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update queued packets’ priorities, FPGAs may prove to be ideal companions for an upcoming 

generation of high-performance queuing systems. 

8. Obstacles and Future Enhancements 

As seen in sections 4.2 and 7.2, the primary obstacle for practical use of FPGA-assisted 

computation is the positioning of the FPGA in the overall system. Performance of the FPGA 

significantly degrades as the distance of the FPGA from the host CPU and memory subsystem 

increases. Various proposals suggest methods of decreasing this distance to provide a tighter 

coupling with the host processor. The first and most practical method is to move FPGA 

processing boards off the PCI bus and into the high-speed AGP slot in PCs [41]. This upgrade 

gives the boards a high-speed bus as well as better access to the host’s memory subsystem 

without radical system modifications. The second and more elaborate method addresses the I/O 

limitations of the actual FPGA chip. In [45] the authors propose adding a high-speed VLSI 

communication core such as RAMBUS to an FPGA chip. Such a core allows FPGAs to overcome 

physical pin limitations by multiplexing an FPGA design’s data lines onto a high-speed link. This 

modification is drastic since it calls for FPGA architecture changes as well as an integration of the 

FPGA directly into the host memory subsystem. The third and most radical approach to improved 

coupling is to embed the FPGA as a unit inside the CPU [46]. Observing the inclusion of MMX 

in the x86 architecture, researchers are hopeful that industry will see the embedding of FPGAs in 

processors as useful in the times of Gigascale design. Such implementations represent a 

fulfillment of Estrin’s 1960 proposal for variable structure processing in CPUs.  

The ability to rapidly reconfigure an FPGA is essential to configurable computing and a 

limitation of current-generation architectures. Two methods of improving this problem include 

partial reconfiguration and context switching FPGAs. Partial reconfiguration devices such as the 

XC6200 and Virtex families allow portions of the device to be read or written at a time without 

disturbing the entire device. This style is conducive to “Virtual FPGA” management operating 

systems that swap hardware images into and out of the FPGA as needed by application. Partial 

reconfiguration is a natural extension of previous FPGA research and is expected to give the 

upcoming Virtex family an edge in the configurable computing community. 
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A more sophisticated style of dealing with rapid FPGA reconfiguration is though multi-

context FPGAs. In these devices additional memory is placed in each logic block to store a fixed 

number of configurations. These configuration arrays allow multiple hardware image planes, or 

contexts, to be loaded into the FPGA at once. Contexts are given time slices for which they can 

perform computation with the FPGA hardware, giving the appearance of several “virtual FPGAs” 

operating at once. Sanders of Lockheed Martin has fabricated a multi-context FPGA known as 

the Context Switching Reconfigurable Computing (CSRC) chip to perform high-speed signal 

processing [48]. Xilinx has also designed a multi-context implementation of the XC4000, though 

it has not been fabricated [47]. Aggressive views of multi-context FPGAs would suggest allowing 

context switching at a finer granularity than at the entire plane level. These implementations 

could better use hardware, realizing that delay through units in a configuration plane is not equal. 

For example, if a fast unit of a plane completes before a slower unit, the area of the chip that 

completes calculations early could context switch to another image plane. Thus, hardware is 

reused in an extremely efficient manner. Unfortunately the overwhelming complexity of multi-

context designs is a limitation. Likewise, the device is restricted to a fixed number of contexts. 

However, these devices provide a number of research opportunities in configurable computing, as 

well as self-modifying hardware. 

9. Conclusions 

Due to the limitations of the previous generation of hardware, configurable computing is 

largely still in its infancy. Recent work and enhancements in upcoming FPGA hardware provides 

an opportunity for configurable computing to mature into a technology suitable for practical use 

in the near future. For widespread acceptance, FPGA users must understand a number of issues 

associated with configurable computing. First and foremost, designers must know the 

characteristics of both the target FPGA architectures and their system-level integration. 

Knowledge of the hardware is critical since performance can be masked by system deficiencies. 

Second, users must understand the types of applications suitable for configurable computing. 

Architecture features of current FPGA based systems indicate that successful applications use 

data streams, parallelism, regular computation, constant data values, or custom logic. Conversely, 

failed FPGA designs often have tight algorithmic loops, floating point precision, or non-
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localizable data, and are better suited for general-purpose CPUs and ASICs. Third, while FPGA 

designs have demonstrated high performance, users must be aware that performance often comes 

at a cost of a lengthy design process. Design tools being developed today may simplify this 

process, but the reported performance of automated designs is worse than manual 

implementations.  

The release of the next generation of hardware offers a great deal of promise for the 

configurable computing community. These devices provide higher gate densities, improved 

arithmetic support, and methods of fast re-programming ideal for configurable computing. While 

system integration still remains challenging, the number of proposals addressing the problem 

suggests that adding FPGAs to general use systems is both worthwhile and practical.  Ultimately, 

such innovations will lead to the computational role for programmable logic envisioned by 

pioneers such as Estrin. 
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