Configurable Computing: Practical Use of FPGAs

Craig Ulmer

March 9, 1999

Computer Architecture and Systems Lab Georgia Institute of Technology

Motivation: Practical FPGAs

- Programmable Logic Available for Long Time
 - Interesting Because of Reconfigurable Hardware
 - Dominant Use: Glue Logic
- Recent Technological Advances
 - Gate Density / Speed / Cost
- FPGAs for Computational Assistance?
 - Practical Use? Configurable Computing?

Outline

- Algorithms & Configurable Computing
 - Application of FPGAs
- Design Methodologies
- Performance Metrics
- Design Examples
- Obstacles & Future Enhancements

Algorithms: Software vs. Hardware

- Two Styles of Computing: Software and Hardware Based
- Software: General Purpose CPUs
- Hardware: Custom Circuits

Software vs. Hardware Implementations

Example Logic Function = $4a^2 + 3b$

Software Implementation

Hardware Implementation

Configurable Computing

- Use FPGAs as 'Soft' ASICs
 - FPGA Configured as needed by Application
- Best of Software and Hardware
 - Reprogrammable
 - Hardware Acceleration

History of Programmable Logic

1960's Estrin's 'Variable Logic' in CPUs

1970's PLA / PLD

1985 Field Programmable Gate Arrays

1990's (Early) Multi-FPGA Custom Computing Machines (CCMs)

1990's (Late) Dense FPGAs, Few-Chip Cards

General FPGA Architectures

Three Components:

- Logic Blocks
- Interconnection Network
- I/O Blocks

Result: 5k-500k User Gates

General Logic Block Architecture

• Three Components:

- Lookup Table Function Generators
- Internal Routing
- Memory: D-Flip-Flops

• Operation Modes:

- Logic
- Arithmetic / Ripple
- RAM / ROM

Interconnection Networks

- Bus Based
 - Simpler Routing
 - Higher Parasitics

- Switch Based
 - Segmented Wires
 - Lowers Line Taps
 - Complex Routing

Consequences of Architecture

Result: VLSI Design Methods may not be Effective

Nonlinear Performance

FPGA Design Strengths:Pipelining

- Pipeline to Improve Throughput
 - Implies Stream Operations

- Chaining for Complex Operations
 - Implies Configurable Computing

FPGA Design Strengths: Parallelism

FPGA Allows High Hardware Parallelism

Data: Parallel Computation

Control: Many State Machines

FPGA Design Strengths: Partial Evaluation

- Simplification of Hardware by Compile Time Knowledge
- Example: 4-bit Multiplication:

General Purpose Multiplication

Partially Evaluated Multiplication

FPGA Design Strengths: Configurable Hardware

- Ability to Provide Hardware Support
- Reusable Hardware / Disposable Circuits
- Hardware Adapts to Specific Problem/Data Set
 - Example: Target Recognition

FPGA Weaknesses: Physical Limitations

- 3x Speed and 10x Density Degradation from ASICs
- Gate Density Limits Design Sizes
- Logic Blocks Can Never be Fully Utilized
- Poor Handling of Floating Point
- Pin Limitations

FPGA Weaknesses:System Integration

- Current Generation: Slow Reprogram
 - Reconfiguration time vs. Compute Time
- FPGA Location: Poor Data Proximity
 - Computation Moves Up & Down I/O Subsystem

Application Suitability

Suitable

- Highly Parallel
- Streamlined Data
- Prior Knowledge
- Complex Custom Logic

Unsuitable

- Sequential Algorithms
- Floating Point
- Non-Localizable Data

Design Methodologies: Manual Design

- Manual Design
 - Engineer Provides Analysis and Design
 - Best Results, Most Time Consuming

Design Methodologies: Compilation

- Manual Design too Complicated
- Instead: Compile C Code to Hardware
 - Handel-C and RAW Projects
 - Automates Analysis Process

- Easy Design
- Low Performance (2x over Software)

Performance Metrics

Cross FPGA Comparison

- RAW Benchmark Suite
- Difficult for Fair FPGA Comparisons
- Design System Performance
 - Ultimate Speedup over Software-Only
 - Hardware Resource Costs
 - Side Effects on System Performance

Example: Cryptography

- Encryption Strength: Non-trivial Computation
- Result: Hardware Assistance for Data Streams

- FPGA Strengths:
 - Plug-in Encryption Algorithms
 - Partial Evaluation based on Keys: +35% Bandwidth, -45% Hardware
 - Key Breaking Applications: 1Mkeys/s (vs. 50Kkeys/s in software)

Example: DSP

- Adobe Photoshop Filter Plug-ins
- FPGAs Provide Hardware Assistance in Image Processing

• Results:

- On-FPGA Processing: 20Mpixels/s (10x Better than Quad-PowerPC)
- System Wide Processing: 0.22Mpixels/s
- Performance Lost in System Integration

Example: Networks

- High Data Rates: Gigabit ATM/Ethernet
- *More* Functionality: Quality of Service (QoS), Active Networks
- Illinois Pulsar-based Optical INTerconnect (iPOINT)
 - Gigabit ATM Switch
 - Complex QoS Queuing with FPGAs
 - Manage Packet Priorities at 622Mbps (OC-12)

Obstacles and Future Enhancements

- System Integration
 - Embed FPGA in CPU (BRASS, Estrin)
 - Embed Communication Core in FPGA (RAMBUS)
 - Use Better Interfaces: AGP in PCs
- Design Environment
 - MATCH Matlab to VHDL Compiler
- Reconfiguration Time
 - Partial Reconfiguration, Context Switching FPGAs

Conclusions

- Configurable Computing: Infancy
- System Level Issues to Address
- Overall Value for a System?
- Next Generation of FPGAs

Commercial Example: Xilinx XC4000

- Complex LB
- Switch Interconnect
- 2k-500k User Gates
- .35-.25µm Process

Commercial Example: Altera FLEX

- Simple LB
- Group LBs into LABs
- Bus Interconnect LABs
- 5k-250k User Gates
- .35-.25µm Process

Commercial Example: Lucent ORCA

- Flexible LB:
 - Quad 4-LUT
 - Twin 5-LUT
 - Single 6-LUT
- Bus Interconnect
- 5k-100k User Gates
- .35-.3µm Process

Context Switching FPGAs

- Multiple Configurations
 - Share Hardware
 - Configurations at Each LB
 - "Dynamic"-PGAs
- Complex Design
- Future: Fine Grain Contexts

CS-DPGA

Embedding FPGAs in Processors

- Goal: Place FPGA in Processor
 - Tight Coupling
 - Estrin's Fixed & Variable Logic
- Berkeley BRASS Project
 - Garp: MIPS + FPGA
 - 24x Improvement in Basic Applications
- Requires System Thought
 - How to keep FPGA & Processor Active?
 - Can FPGA violate OS Protection?

