

An Extensible Message Layer for
High-Performance Clusters

Craig Ulmer and Sudhakar Yalamanchili

Critical Systems Laboratory

School of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, GA, 30332-0250
Email: {ulmer, sudha}@ece.gatech.edu

Keywords: Middleware, Clustering, NI Flow Control

Abstract

Resource rich clusters are an emerging
category of computational platform where cluster
nodes have both CPUs as well as high-
performance I/O cards. These clusters target
specific applications such as digital libraries, web
servers, and multimedia kiosks. The presence of
communication endpoints at locations other than
the host CPU requires a re-examination of how
middleware for these clusters should be
constructed.

A key issue of middleware design is the
management of flow control for the reliable
delivery of messages. We propose using a network
interface based optimistic flow control scheme to
address resource rich cluster requirements. We
implement this functionality with a message layer
called GRIM, and compare its general
performance to other well-known message layers.
This implementation suggests that the necessary
middleware functionality can not only be
constructed efficiently, but also in a way that
provides additional middleware benefits.

1. Introduction and Motivation

While work in clustering to date has
effectively used commercial processor nodes,
emerging multimedia and network-based
applications are impacting cluster
architectures through the inclusion of

powerful co-processor hardware. For
example, demands for high performance web
servers have resulted in programmable I/O
cards that directly control arrays of disks and
serve network requests without host
intervention. In other applications, special
purpose hardware devices are being used to
enhance media processing and search engine
capabilities. An emerging challenge in cluster
computing is the effective management of
diverse hardware resources. This paper deals
with the design issue of providing an
extensible message layer that allows for
flexible and efficient communication in this
emerging form of “resource rich” clusters.

Communication in clusters is typically
facilitated by low latency, high bandwidth
system area networks (SANs). Commercial
SANs such as Myrinet [1], ServerNet [2], and
Scalable Coherent Interface (SCI) [3] have
provided major leaps in performance that is
two to three orders of improvement over
traditional LAN hardware. A number of
custom message layer packages have been
written for these SANs to provide low-
overhead communication among host CPUs in
a cluster [4]. While this “CPU-centric”
approach is ideal for clusters that perform all
computations at the host level, it is generally
prohibitive in terms of providing
communication for endpoints located outside
of the host CPU.

mailto:sudha}@ece.gatech.edu

Thus as clusters evolve we observe that
node architectures are becoming increasingly
heterogeneous, where powerful peripheral
devices may themselves serve as sources and
sinks of data. Examples include the following.

• Multiple Network Substrates: Clusters
often contain multiple communication
interfaces for a number of reasons. Ideally
these interfaces collaborate without host
intervention and provide bridges between
network substrates.

• Intelligent Storage Devices: Equipment
such as the I2O server adapter card
present massive storage options to
peripheral devices without host
intervention.

• Hardware Accelerators: Special-purpose
co-processor devices such as FPGA cards
are available for graphics acceleration,
search engines, and media transformation.

• I/O Devices: Additional I/O devices such
as cameras, video displays, and video
capture devices are all common among
clusters with multimedia applications.

The presence of these peripheral devices

leads to the notion of resource rich clusters
where processing is performed not only in
host CPUs, but also in peripheral devices. As
shown in Figure 1, these clusters have a
variety of hardware resources, all of which
require integration into the message layer. An
example application driving this form of
cluster technology is a digital library that
provides access to enormous data sets to a
large number of simultaneous users. An
individual cluster node would be equipped
with i) a disk array housing a fraction of the

overall database, ii) a number of Ethernet
ports to service incoming requests from
remote clients, and iii) a SAN interface for
high speed intra-cluster communication to
provide a coordinated response to external
requests. The message layer for such an
application must provide efficient
communication among devices in the cluster
to maintain a high response throughput.

For such clusters we find it necessary to
re-examine the functionality of message
layers. The primary issue is that
communication endpoints for the message
layer can be located at multiple locations
within a single cluster node. In addition to
enabling communication among host-level
programs, the message layer must also
support communication originating and
terminating at the peripheral devices. This can
be accomplished by managing endpoints for
all devices at the host. However, such an
approach requires multiple traversals across
the I/O and memory hierarchies as well as
routing all traffic through the host. Moving
away from a CPU-centric model of managing
communication in favor of multiple endpoints
per node produces a number of conceptual
challenges:

• End-to-End Flow Control: Peer devices
within a node generally do not have the
same magnitude of memory and compute
resources as the host CPU. Therefore the
overheads of interacting with the NI
become quite important. We argue that
end-to-end flow control should be moved
to the NI, thus reducing the
responsibilities of the endpoint and
simplifying the endpoint operation.

SAN NI

Host

Ethernet

Node Node

Node

System Area
Network

I2O

Cluster

SAN NI

Host

Video Capture

FPGA

Node Node

Node Node

Node

LAN
Gateway

Figure 1 : Resource Rich Cluster

• Multiple, Concurrent Writers: The
presence of multiple communication
endpoints in a node creates the problem of
multiple writers to the SAN interface.
Without a means of synchronization
among endpoints, it is possible that
buffers will be overwritten and messages
lost. Synchronization among writing
endpoints must be lightweight.

• Receive Processing: It is important for an
endpoint to be able to specify a well-
defined set of methods for processing
incoming messages since operations
performed on reception are specific to the
receiving device. While host level
endpoints can have a variety of
mechanisms to process incoming
messages, other devices such as cameras
and disks generally have specific
operations that are performed on received
messages.

This paper addresses one specific issue in
this environment, namely the movement of
flow control operations to the NI. In particular
we advocate the use of optimistic forms of
flow control [6] as being advantageous and
present the design of an optimistic flow
control protocol implemented within a
Myrinet interface. The following section
provides an overview of a user-level message
layer that employs NI-based optimistic flow
control. The remainder of the paper addresses
design and performance issues related to this
approach.

2. GRIM: General-purpose
Reliable In-order Messages

GRIM is an extensible framework for
user level messaging that is designed to
facilitate the addition of multiple
communication endpoints within a cluster
node. Extension refers to ability to easily
extend the functionality of the message layer
to accommodate new endpoint features.
Conceptually GRIM is designed with three
specific characteristics to meet the needs of
resource rich clusters: NI managed flow
control, logical channels, and an active

message style of packet reception. The NI-
based flow control is specifically addressed in
this paper.

2.1 NI-based Flow Control

To meet the basic needs of resource
rich clusters, we propose moving the buffer
flow control mechanisms of the message layer
to the NI. In NI-based flow control, NIs use
control messages to co-ordinate the reliable
transfer of messages between NIs, as
illustrated in Figure 2. While this approach
increases the amount of work the NI must
perform, there are a number of advantages
that make this option attractive. A key benefit
for simple endpoints is that the placing of
flow control in the NI reduces the amount of
network management that must be performed
at the endpoint. An endpoint simply checks to
see if the NI has room for a new message, and
then hands the message to the NI for reliable
delivery. Further, unlike host-based flow
control schemes that stall injections until
buffer space is available at both sending and
receiving NIs, injection in NI-based schemes
is stalled only when buffer space is
unavailable at the sending NI. This approach
also permits NIs to play a more active role in
message transmission. By using information
gathered at runtime from its neighbors, NIs
can make more informed decisions as to
which messages should be transmitted next.
This transforms NIs from simple data
transmitters to providers of QoS.

Host A

Data Message

ACK/NACK

Endpoint

Endpoint
Network Interface

Endpoint

Endpoint
Network Interface

Host B
Figure 2 : NI-based Flow Control

NI-based flow control has been

implemented in previous research projects for
various reasons. The original FM work [6]
first addressed the use of NI-level flow
control as a means of providing improved
dynamic performance. This approach focused
on “optimistic flow control”, where a message

is transmitted under the assumption that the
destination NI has sufficient space to receive
the message. When a receiving NI’s buffers
are full, incoming messages are returned to
their senders for retransmission at a later time.
It follows that the sender must buffer all
messages until reception is confirmed via
acknowledgements. While FM performance
exceeded contemporary message layers in
many respects, NI complexity was a major
issue and in FM 2.0 a streamlined host-level
flow control scheme was adopted. In the LFC
message layer [5], a NI-based flow control
scheme was implemented to improve dynamic
bandwidth utilization as well as provide a
suitable framework for NI services such as
multicast. Unlike FM, LFC was written using
a NI-level sliding window protocol for flow
control. This work demonstrated that complex
NI functionality is not unreasonable for even
low performance NIs.

2.2 Optimistic Flow Control

In this paper we implement a NI-
based optimistic flow control strategy (a
variant of that first described in [6]). NIs
manage incoming and outgoing message
queues and transmit individual messages
assuming that ample buffer space is available
at the destination NI. Sending NIs retain
messages until an acknowledgement message
is received from the destination NI. State
information maintained in the NIs supports
block acknowledgements and buffer recovery
across multiple outstanding messages.

In the case of heavy loads a receiving
NI may not be able to accept a message due to
a lack of buffer space. At such times the NI
will issue a negative acknowledgement
(NACK) message to the sending NI and drop
the incoming message. NIs that receive a
NACK must rollback the outgoing message
queue to the dropped message and retransmit
all successive messages to the particular
destination after a back-off time period. This
“go back n” approach was adopted over a
selective repeat scheme since network
bandwidth in SANs is a more abundant than
NI computational power.

While we believe that NI-based flow
control is valuable for resource rich clusters, it
is important to consider how the added NI
complexity affects general performance. An
optimistic flow control scheme can potentially
degrade message layer performance for a
number of reasons. Messages must contain
additional information such as sequence
numbers in order for NIs to remain
synchronized. NI firmware must be able to
decode and handle multiple types of messages
as well as maintain network state information.
Given the typical low processing power of
SAN NIs, complex NI-based software can
significantly impact performance. Thus the
implementations must be carefully crafted to
gain reliability and dynamic bandwidth
benefits without incurring general
performance penalties.

2.3 Logical Channels
A second characteristic of GRIM is

the use of logical channels as a simple but
effective mechanism for providing isolation
between multiple writers of different traffic
streams. At injection time users can specify a
logical channel identifier that associates the
message with a given traffic stream. GRIM
guarantees in-order delivery only for
messages with the same logical channel
identifier. Thus each endpoint in a node is
assigned a distinct set of logical channels
eliminating the need for injection
synchronization among endpoints. Logical
channels are multiplexed at the NI with the
use of a link scheduler. The current
implementation uses a simple round robin
scheduler.

2.4 Active Message Style Packet Handling
The active message abstraction [7] is

particularly well matched to the needs of
interfacing multiple endpoints within a node.
In GRIM a function handler is associated with
each injected message so that sending
endpoints can specify precisely how the
message should be received. An endpoint’s
capabilities are therefore abstracted into a
cluster’s API by defining sets of function
handlers available at the endpoint. Function
handlers are registered with a master node in

the cluster so that all endpoints can make use
of the cluster’s capabilities. The active
message style interface can also be used at the
application level to emulate other common
APIs such as MPI or sockets.

3. Implementation and
Performance

We have implemented a basic version
of GRIM over Myricom’s Myrinet SAN. Our
primary objective for this implementation is
to demonstrate that the basic features of
GRIM can be implemented without
substantial penalties to traditional host-level
performance. Therefore the work presented
here implements the core of GRIM
functionality, but provides interfaces only to
host-level endpoints.

Standard performance tests were used
to analyze the characteristics of the GRIM
implementation and are presented with other
reported results in Table 1. Latency and
bandwidth measurements are based on round
trip timing experiments where a single
message is transmitted to a node and returned.
Bandwidth tests used large (one-megabyte)
messages and fragmented the messages into
individual 48 KByte packets. The bandwidth
half-power message size was observed at 6
KBytes. From these measurements we see that
GRIM performance is comparable to other
message layer implementations.

In addition to latency and bandwidth,
we measured the overhead and gap
parameters as defined in the Berkeley LogP
model [8]. The key observation here is that
the buffer management scheme affects the
value of the gap parameter. As is common
with most message layers, GRIM

demonstrated a very small injection overhead
for the host, approximately 1 µs for small
sized messages. However, significant
differences exist for the value of the gap,
which is defined as the minimum time
between successive message injections. The
gap value was obtained by measuring the total
time required to inject a burst of small
messages. The number of messages that can
be successively injected is limited by the
value of the gap, which in turn is determined
by the flow control protocol. Our experiments
compared two flow control protocols: a host
credit-based protocol and the optimistic flow
control protocol implemented in the NI for
GRIM. For all experiments the total buffer
size in the NI was limited to 128 short
messages. As seen in Figure 3, the gap
between messages converges at about 21 µs
for both NI-based flow control and host level
flow control.

For a comparative evaluation of NI
flow control, we imposed injection policing
on top of GRIM to obtain the performance of
host-based flow control. In these tests hosts
were limited to having a fixed number of
outstanding messages at any given time. This
restriction reflects static barriers that host
level flow control schemes assert to provide
reliable delivery. For example, in a 16-node
cluster where we have buffer space for 128
messages, static credit-based flow control
schemes allow only eight outstanding
messages to any given node. Achievable
message latencies and overall bandwidth is
throttled. From these tests we can see that
injection policing required by credit based
schemes causes injecting nodes to
unnecessarily block for a larger amount of
time compared to the optimistic

 AM [9] FM [10] LFC [5] BIP [11] GM [12] GRIM

Host-to-Host
Latency

10 µs 9.6 µs 10.4 µs 4.8 µs 18 µs 13 µs

Maximum
Bandwidth

38 MB/s 100 MB/s 76.2 MB/s 126 MB/s 140 MB/s 106 MB/s

Table 1 : Comparison of Middleware Performance

implementation. For message bursts of 256
messages or less, the differences in the value
of gap are substantial. Therefore optimistic
flow control matches burst demand with the
dynamically allocated buffer space.

Average Injection Time

0

5

10

15

20

25

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Burst Size (number of messages)

A
ve

ra
ge

 (O
ve

rh
ea

d+
G

ap
) (

us
)

4 Outstanding Messages
8 Outstanding Messages
16 Outstanding Messages
32 Outstanding Messages
64 Outstanding Messages
No Injection Policing

 Figure 3: Injection Overhead and Gap for

Bursts

4. Conclusions

The emerging category of resource
rich clusters is a commercially important
domain that warrants the re-examination of
middleware design. With the proper
adjustments it is possible to adapt previous
middleware techniques to address the needs of
these clusters. At the core of middleware
design is the reliable management of buffer
space, for which NI-based flow control
schemes can have a significant impact on
messaging performance. Through optimistic
NI-based flow control, we have demonstrated
that increased NI functionality can be
accomplished without serious degradation to
general performance. This functionality adds
a great amount of value to middleware by
reducing endpoint network interactions,
increasing general reliability, and allowing for
network scalability. These characteristics are
essential for the emerging next generation of
clusters.

References

[1] N. Boden, D. Cohen, R. Felderman, A.

Kulawik, C. Seitz, J. Seizovic, and W. Su.
Myrinet: A Gigabit-per-second Local Area
Network. IEEE Micro, Vol.15, No.1 1995.

[2] R. Horst and D. Garcia. Servernet SAN I/O
Architecture. In Hot Interconnects Symposium
V, August 21-23 1997

[3] Scalable Coherent Interconnect, IEEE

Standard 15961992, 1992

[4] R. Bhoedjang, T. Ruhl, and H. Bal. User-

Level Network Interface Protocols. IEEE
Computer, Vol.31, No.11, P53-60, 1998.

[5] R. Bhoedjang, T. Ruhl, H. Bal. LFC: A

Communication Substrate for Myrinet
in Fourth Annual Conference of the Advanced
School for Computing and Imaging, 1998

[6] S. Pakin, M. Lauria, and A. Chien. High
Performanc Messaging on Workstations:
Illinois Fast Messages (FM) for Myrinet in
Supercomputing ’95, 1995

[7] T. von Eicken, D. Culler, S. Goldstein, and K.

Schauser. Active Messages: A Mechanism for
Integrated Communication and Computation.
Proceedings of the 19th Annual International
Symposium on Computer Architecture
(ISCA). May 1992.

[8] D. Culler, R. Karp, D. Patterson, A. Sahay, K.

Schauser, E. Santos, R. Subramonian, and T.
von Eicken, LogP: Towards a Realistic
Model of Parallel Computation, Proceedings
of the Fourth ACM SIGPLAN Symposium on
Principles and Practice of Parallel
Programming, May 1993.

[9] R. Martin, L. T. Liu, V. Makhija, and D.

Culler. Lanai active messages (lam).

[10] S. Pakin, V. Karamcheti, and A. Chien. Fast

Messages (FM): Efficient, portable
communication for workstation clusters and
massively-parallel processors. IEEE Parallel
and Distributed Technology, 1997.

[11] L. Prylli and B. Tourancheau, BIP: A New

Protocol designed for High-Performance
Networking on Myrinet. In Proceedings of PC-
NOW IPPSSPDP98, 1998.

[12] Myricom, Inc. The GM message layer,

http://www.myri.com

	Abstract
	Introduction and Motivation
	2. GRIM: General-purpose Reliable In-order Messages
	2.1 NI-based Flow Control
	2.2 Optimistic Flow Control
	2.3 Logical Channels
	2.4 Active Message Style Packet Handling

	3. Implementation and Performance
	4. Conclusions
	References

		2000-12-17T17:55:39-0500
	Atlanta
	Craig Ulmer
	I am the author of this document

