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Abstract 
 

Resource rich clusters are an emerging 
category of computational platform where cluster 
nodes have both CPUs as well as high-
performance I/O cards. These clusters target 
specific applications such as digital libraries, web 
servers, and multimedia kiosks. The presence of 
communication endpoints at locations other than 
the host CPU requires a re-examination of how 
middleware for these clusters should be 
constructed.  

A key issue of middleware design is the 
management of flow control for the reliable 
delivery of messages. We propose using a network 
interface based optimistic flow control scheme to 
address resource rich cluster requirements. We 
implement this functionality with a message layer 
called GRIM, and compare its general 
performance to other well-known message layers. 
This implementation suggests that the necessary 
middleware functionality can not only be 
constructed efficiently, but also in a way that 
provides additional middleware benefits. 

1. Introduction and Motivation 
 

While work in clustering to date has 
effectively used commercial processor nodes, 
emerging multimedia and network-based 
applications are impacting cluster 
architectures through the inclusion of 

powerful co-processor hardware. For 
example, demands for high performance web 
servers have resulted in programmable I/O 
cards that directly control arrays of disks and 
serve network requests without host 
intervention. In other applications, special 
purpose hardware devices are being used to 
enhance media processing and search engine 
capabilities. An emerging challenge in cluster 
computing is the effective management of 
diverse hardware resources. This paper deals 
with the design issue of providing an 
extensible message layer that allows for 
flexible and efficient communication in this 
emerging form of “resource rich” clusters. 

Communication in clusters is typically 
facilitated by low latency, high bandwidth 
system area networks (SANs). Commercial 
SANs such as Myrinet [1], ServerNet [2], and 
Scalable Coherent Interface (SCI) [3] have 
provided major leaps in performance that is 
two to three orders of improvement over 
traditional LAN hardware. A number of 
custom message layer packages have been 
written for these SANs to provide low-
overhead communication among host CPUs in 
a cluster [4]. While this “CPU-centric” 
approach is ideal for clusters that perform all 
computations at the host level, it is generally 
prohibitive in terms of providing 
communication for endpoints located outside 
of the host CPU.  
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Thus as clusters evolve we observe that 
node architectures are becoming increasingly 
heterogeneous, where powerful peripheral 
devices may themselves serve as sources and 
sinks of data. Examples include the following.  

• Multiple Network Substrates: Clusters 
often contain multiple communication 
interfaces for a number of reasons. Ideally 
these interfaces collaborate without host 
intervention and provide bridges between 
network substrates. 

• Intelligent Storage Devices: Equipment 
such as the I2O server adapter card 
present massive storage options to 
peripheral devices without host 
intervention.  

• Hardware Accelerators: Special-purpose 
co-processor devices such as FPGA cards 
are available for graphics acceleration, 
search engines, and media transformation.  

• I/O Devices: Additional I/O devices such 
as cameras, video displays, and video 
capture devices are all common among 
clusters with multimedia applications. 

 
The presence of these peripheral devices 

leads to the notion of resource rich clusters 
where processing is performed not only in 
host CPUs, but also in peripheral devices. As 
shown in Figure 1, these clusters have a 
variety of hardware resources, all of which 
require integration into the message layer. An 
example application driving this form of 
cluster technology is a digital library that 
provides access to enormous data sets to a 
large number of simultaneous users. An 
individual cluster node would be equipped 
with i) a disk array housing a fraction of the 

overall database, ii) a number of Ethernet 
ports to service incoming requests from 
remote clients, and iii) a SAN interface for 
high speed intra-cluster communication to 
provide a coordinated response to external 
requests.  The message layer for such an 
application must provide efficient 
communication among devices in the cluster 
to maintain a high response throughput.    

For such clusters we find it necessary to 
re-examine the functionality of message 
layers. The primary issue is that 
communication endpoints for the message 
layer can be located at multiple locations 
within a single cluster node. In addition to 
enabling communication among host-level 
programs, the message layer must also 
support communication originating and 
terminating at the peripheral devices. This can 
be accomplished by managing endpoints for 
all devices at the host. However, such an 
approach requires multiple traversals across 
the I/O and memory hierarchies as well as 
routing all traffic through the host.  Moving 
away from a CPU-centric model of managing 
communication in favor of multiple endpoints 
per node produces a number of conceptual 
challenges: 

• End-to-End Flow Control: Peer devices 
within a node generally do not have the 
same magnitude of memory and compute 
resources as the host CPU. Therefore the 
overheads of interacting with the NI 
become quite important. We argue that 
end-to-end flow control should be moved 
to the NI, thus reducing the 
responsibilities of the endpoint and 
simplifying the endpoint operation.  
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Figure 1 : Resource Rich Cluster



• Multiple, Concurrent Writers: The 
presence of multiple communication 
endpoints in a node creates the problem of 
multiple writers to the SAN interface. 
Without a means of synchronization 
among endpoints, it is possible that 
buffers will be overwritten and messages 
lost. Synchronization among writing 
endpoints must be lightweight. 

• Receive Processing: It is important for an 
endpoint to be able to specify a well-
defined set of methods for processing 
incoming messages since operations 
performed on reception are specific to the 
receiving device. While host level 
endpoints can have a variety of 
mechanisms to process incoming 
messages, other devices such as cameras 
and disks generally have specific 
operations that are performed on received 
messages.  

This paper addresses one specific issue in 
this environment, namely the movement of 
flow control operations to the NI. In particular 
we advocate the use of optimistic forms of 
flow control [6] as being advantageous and 
present the design of an optimistic flow 
control protocol implemented within a 
Myrinet interface. The following section 
provides an overview of a user-level message 
layer that employs NI-based optimistic flow 
control. The remainder of the paper addresses 
design and performance issues related to this 
approach.   

2. GRIM: General-purpose 
Reliable In-order Messages 

GRIM is an extensible framework for 
user level messaging that is designed to 
facilitate the addition of multiple 
communication endpoints within a cluster 
node.  Extension refers to ability to easily 
extend the functionality of the message layer 
to accommodate new endpoint features. 
Conceptually GRIM is designed with three 
specific characteristics to meet the needs of 
resource rich clusters: NI managed flow 
control, logical channels, and an active 

message style of packet reception. The NI-
based flow control is specifically addressed in 
this paper. 

2.1 NI-based Flow Control 
 

To meet the basic needs of resource 
rich clusters, we propose moving the buffer 
flow control mechanisms of the message layer 
to the NI. In NI-based flow control, NIs use 
control messages to co-ordinate the reliable 
transfer of messages between NIs, as 
illustrated in Figure 2. While this approach 
increases the amount of work the NI must 
perform, there are a number of advantages 
that make this option attractive. A key benefit 
for simple endpoints is that the placing of 
flow control in the NI reduces the amount of 
network management that must be performed 
at the endpoint. An endpoint simply checks to 
see if the NI has room for a new message, and 
then hands the message to the NI for reliable 
delivery. Further, unlike host-based flow 
control schemes that stall injections until 
buffer space is available at both sending and 
receiving NIs, injection in NI-based schemes 
is stalled only when buffer space is 
unavailable at the sending NI. This approach 
also permits NIs to play a more active role in 
message transmission. By using information 
gathered at runtime from its neighbors, NIs 
can make more informed decisions as to 
which messages should be transmitted next. 
This transforms NIs from simple data 
transmitters to providers of QoS.  
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NI-based flow control has been 

implemented in previous research projects for 
various reasons. The original FM work [6] 
first addressed the use of NI-level flow 
control as a means of providing improved 
dynamic performance. This approach focused 
on “optimistic flow control”, where a message 



is transmitted under the assumption that the 
destination NI has sufficient space to receive 
the message. When a receiving NI’s buffers 
are full, incoming messages are returned to 
their senders for retransmission at a later time. 
It follows that the sender must buffer all 
messages until reception is confirmed via 
acknowledgements.  While FM performance 
exceeded contemporary message layers in 
many respects, NI complexity was a major 
issue and in FM 2.0 a streamlined host-level 
flow control scheme was adopted. In the LFC 
message layer [5], a NI-based flow control 
scheme was implemented to improve dynamic 
bandwidth utilization as well as provide a 
suitable framework for NI services such as 
multicast. Unlike FM, LFC was written using 
a NI-level sliding window protocol for flow 
control. This work demonstrated that complex 
NI functionality is not unreasonable for even 
low performance NIs.  

2.2 Optimistic Flow Control 
 

In this paper we implement a NI-
based optimistic flow control strategy (a 
variant of that first described in [6]). NIs 
manage incoming and outgoing message 
queues and transmit individual messages 
assuming that ample buffer space is available 
at the destination NI. Sending NIs retain 
messages until an acknowledgement message 
is received from the destination NI. State 
information maintained in the NIs supports 
block acknowledgements and buffer recovery 
across multiple outstanding messages.  

In the case of heavy loads a receiving 
NI may not be able to accept a message due to 
a lack of buffer space. At such times the NI 
will issue a negative acknowledgement 
(NACK) message to the sending NI and drop 
the incoming message. NIs that receive a 
NACK must rollback the outgoing message 
queue to the dropped message and retransmit 
all successive messages to the particular 
destination after a back-off time period. This 
“go back n” approach was adopted over a 
selective repeat scheme since network 
bandwidth in SANs is a more abundant than 
NI computational power.   

While we believe that NI-based flow 
control is valuable for resource rich clusters, it 
is important to consider how the added NI 
complexity affects general performance. An 
optimistic flow control scheme can potentially 
degrade message layer performance for a 
number of reasons. Messages must contain 
additional information such as sequence 
numbers in order for NIs to remain 
synchronized. NI firmware must be able to 
decode and handle multiple types of messages 
as well as maintain network state information. 
Given the typical low processing power of 
SAN NIs, complex NI-based software can 
significantly impact performance. Thus the 
implementations must be carefully crafted to 
gain reliability and dynamic bandwidth 
benefits without incurring general 
performance penalties. 

2.3 Logical Channels 
A second characteristic of GRIM is 

the use of logical channels as a simple but 
effective mechanism for providing isolation 
between multiple writers of different traffic 
streams.  At injection time users can specify a 
logical channel identifier that associates the 
message with a given traffic stream. GRIM 
guarantees in-order delivery only for 
messages with the same logical channel 
identifier. Thus each endpoint in a node is 
assigned a distinct set of logical channels 
eliminating the need for injection 
synchronization among endpoints. Logical 
channels are multiplexed at the NI with the 
use of a link scheduler. The current 
implementation uses a simple round robin 
scheduler. 

2.4 Active Message Style Packet Handling 
The active message abstraction [7] is 

particularly well matched to the needs of 
interfacing multiple endpoints within a node. 
In GRIM a function handler is associated with 
each injected message so that sending 
endpoints can specify precisely how the 
message should be received. An endpoint’s 
capabilities are therefore abstracted into a 
cluster’s API by defining sets of function 
handlers available at the endpoint. Function 
handlers are registered with a master node in 



the cluster so that all endpoints can make use 
of the cluster’s capabilities. The active 
message style interface can also be used at the 
application level to emulate other common 
APIs such as MPI or sockets. 

3. Implementation and 
Performance 

We have implemented a basic version 
of GRIM over Myricom’s Myrinet SAN. Our 
primary objective for this implementation is 
to demonstrate that the basic features of 
GRIM can be implemented without 
substantial penalties to traditional host-level 
performance. Therefore the work presented 
here implements the core of GRIM 
functionality, but provides interfaces only to 
host-level endpoints.  

Standard performance tests were used 
to analyze the characteristics of the GRIM 
implementation and are presented with other 
reported results in Table 1. Latency and 
bandwidth measurements are based on round 
trip timing experiments where a single 
message is transmitted to a node and returned. 
Bandwidth tests used large (one-megabyte) 
messages and fragmented the messages into 
individual 48 KByte packets. The bandwidth 
half-power message size was observed at 6 
KBytes. From these measurements we see that 
GRIM performance is comparable to other 
message layer implementations. 

In addition to latency and bandwidth, 
we measured the overhead and gap 
parameters as defined in the Berkeley LogP 
model [8].  The key observation here is that 
the buffer management scheme affects the 
value of the gap parameter. As is common 
with most message layers, GRIM

demonstrated a very small injection overhead 
for the host, approximately 1 µs for small 
sized messages. However, significant 
differences exist for the value of the gap, 
which is defined as the minimum time 
between successive message injections. The 
gap value was obtained by measuring the total 
time required to inject a burst of small 
messages.  The number of messages that can 
be successively injected is limited by the 
value of the gap, which in turn is determined 
by the flow control protocol. Our experiments 
compared two flow control protocols: a host 
credit-based protocol and the optimistic flow 
control protocol implemented in the NI for 
GRIM. For all experiments the total buffer 
size in the NI was limited to 128 short 
messages. As seen in Figure 3, the gap 
between messages converges at about 21 µs 
for both NI-based flow control and host level 
flow control.  

For a comparative evaluation of NI 
flow control, we imposed injection policing 
on top of GRIM to obtain the performance of 
host-based flow control. In these tests hosts 
were limited to having a fixed number of 
outstanding messages at any given time. This 
restriction reflects static barriers that host 
level flow control schemes assert to provide 
reliable delivery. For example, in a 16-node 
cluster where we have buffer space for 128 
messages, static credit-based flow control 
schemes allow only eight outstanding 
messages to any given node. Achievable 
message latencies and overall bandwidth is 
throttled. From these tests we can see that 
injection policing required by credit based 
schemes causes injecting nodes to 
unnecessarily block for a larger amount of  
time compared to the optimistic  
 

 
 AM [9] FM [10] LFC [5] BIP [11] GM [12] GRIM 

Host-to-Host 
Latency 

10 µs 9.6 µs 10.4 µs 4.8 µs 18 µs 13 µs 

Maximum 
Bandwidth 

38 MB/s 100 MB/s 76.2 MB/s 126 MB/s 140 MB/s 106 MB/s 

Table 1 : Comparison of Middleware Performance 

 
  



implementation. For message bursts of 256 
messages or less, the differences in the value 
of gap are substantial. Therefore optimistic 
flow control matches burst demand with the 
dynamically allocated buffer space.   
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4. Conclusions 
 

The emerging category of resource 
rich clusters is a commercially important 
domain that warrants the re-examination of 
middleware design. With the proper 
adjustments it is possible to adapt previous 
middleware techniques to address the needs of 
these clusters. At the core of middleware 
design is the reliable management of buffer 
space, for which NI-based flow control 
schemes can have a significant impact on 
messaging performance. Through optimistic 
NI-based flow control, we have demonstrated 
that increased NI functionality can be 
accomplished without serious degradation to 
general performance. This functionality adds 
a great amount of value to middleware by 
reducing endpoint network interactions, 
increasing general reliability, and allowing for 
network scalability. These characteristics are 
essential for the emerging next generation of 
clusters. 
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