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Abstract 
  

Resource rich clusters are an emerging category of 
clusters of workstations where cluster nodes comprise of 
modern CPUs as well as high-performance peripheral 
devices such as intelligent I/O interfaces, active disks, and 
capture devices that directly access the network. These 
clusters target specific applications such as digital 
libraries, web servers, and multimedia kiosks.  We argue 
that such clusters benefit from a re-examination of the 
design of the message layer to retain high performance 
communication while facilitating the interface to 
endpoints for a variety of devices.  

  This paper describes a message layer design which 
includes optimistic flow control, the use of logical 
channels, a push-style cut-through injection optimization, 
and an API supporting cluster-wide active message 
handler management. The goal is to support a number of 
diverse cluster hardware configurations where 
communication endpoints exist in a variety of locations 
within a node. The current implementation has been 
tested on a Myrinet cluster with communication endpoints 
located in the host CPUs as well as Intel i960 based I2O 
server cards. 
 

1. Introduction and motivation 
 

 The current generation of clusters of workstations 
utilize high speed system area network (SAN) fabrics to 
interconnect high performance workstations.  Modern low 
latency message layers utilize intelligent network 
interfaces with communication endpoints located within 
the host CPU memory and accessed from the user level 
[1]. Network communication is still largely orchestrated 

by the CPU with support from intelligent network 
interfaces.  However several trends have created a need 
for a departure from this “CPU-centric” view of network 
communication in clusters. 
 Emerging network-based applications such as digital 
libraries, web servers, and data warehousing & mining are 
impacting cluster architectures through the inclusion of 
powerful peripheral devices. For example, demands for 
high performance web servers have resulted in 
programmable I/O cards that directly control arrays of 
disks and service network requests without host 
intervention. In other applications, special purpose 
hardware devices are being used to enhance media 
processing and search engine capabilities. With the 
migration of processing power to peripheral devices, the 
CPU begins to become the bottleneck as all interactions 
between peripherals and the network are funneled through 
the CPU and up and down the memory and I/O 
hierarchies.  
 Emerging I/O standards such as Infiniband [2] discard 
bus-based organizations of I/O devices in favor of a point-
to-point switched communication fabric to provide 
concurrent paths from intelligent peripheral devices to  
(potentially multiple) network interfaces.  Communication 
endpoints can now reside within these devices. Our goal 
is to provide communication layers that support 
customization for each peripheral device to maximize the 
network performance of each device. We propose a 
flexible API that permits devices (endpoints) to customize 
their interactions with the network interface without host 
CPU intervention or need for direct end-to-end 
interactions with the destination device.      
 Our approach is to provide a message layer that retains 
the properties of first generation message layers, primarily 
low latency, while structuring the design such that device-
specific and network-specific features are separated. The 
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effect is that of providing an application programming 
interface to the low-level message layer that is extensible 
in the sense that new devices can be added by addressing 
device-specific functionality and a simple protocol for 
communicating with the local network interface. This 
paper describes an implementation for a Myrinet based 
cluster with endpoints within the host CPU and an Intel 
i960-based intelligent I/O (I2O) card. We conclude with 
performance measurements that summarize the impact of 
the proposed message layer design. 

2. Background 
 
 Communication in clusters is typically facilitated by 
low latency, high bandwidth system area networks 
(SANs). Commercial SANs such as Myrinet [3], 
ServerNet [4], and Scalable Coherent Interface (SCI) [5] 
have provided major leaps in performance over traditional 
LAN hardware. A number of custom message layer 
packages have been written for these SANs to provide 
low-overhead communication among host CPUs in a 
cluster [1]. While this “CPU-centric” approach is ideal for 
clusters that perform all computations at the host level, it 
can suffer from substantial overheads in providing 
communication for endpoints located outside of the host 
CPU.  
 Thus as clusters evolve we observe that node 
architectures are becoming increasingly heterogeneous, 
where powerful peripheral devices may themselves serve 
as sources and sinks of data. Examples include the 
following.  

• Multiple Diverse Network Substrates: Clusters often 
contain multiple communication interfaces for a 
number of reasons. Ideally these interfaces 
collaborate directly and can serve as bridges between 
network substrates. 

• Intelligent Storage Devices: Equipment such as the 
I2O server adapter card [6] present massive storage 
options to peripheral devices without host 
intervention.  

• Hardware Accelerators: Special-purpose co-
processor devices such as FPGA cards are available 
for graphics acceleration, search engines, and media 
transformation.  

• I/O Devices: Additional I/O devices such as cameras, 
video displays, and video capture devices are all 
common among clusters with multimedia 
applications. 

 
 The presence of these peripheral devices leads to the 
notion of resource rich clusters (Figure 1) where 
communication may be initiated not only in host CPUs, 

but also in peripheral devices. We argue that design trade-
offs for message layers executing on a host CPU are not 
effective when communication endpoints are in peripheral 
devices. 
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Figure 1: Resource Rich Cluster 

3. Middleware for resource rich clusters 
 

For resource rich clusters we find it necessary to re-
examine the functionality of message layers to support 
communication originating and terminating at the 
peripheral devices with varying capabilities and 
resources. While it is possible to manage peripheral 
device endpoints explicitly at the host level, doing so 
comes at the cost of multiple traversals across the I/O and 
memory hierarchy. Moving away from this CPU-centric 
model of managing communication in favor of multiple 
endpoints per node produces a number of conceptual 
challenges: 

• End-to-End Flow Control: Peer devices within a 
node generally do not have the same magnitude of 
memory and compute resources as the host CPU. 
Therefore the overheads of interacting with the NI 
become quite important. We argue that end-to-end 
flow control should be moved to the NI, thus 
reducing the responsibilities of the endpoint and 
simplifying endpoint operation. The implementation 
of an optimistic flow control protocol for this purpose 
is discussed in an earlier paper [7]. 

• Multiple, Concurrent Writers: The presence of 
multiple communication endpoints in a node creates 
the problem of multiple writers to the SAN interface. 
Synchronization among writing endpoints must be 
lightweight. 

• Receive Processing: It is important for an endpoint to 
be able to specify a well-defined set of methods for 
processing incoming messages since operations 
performed on reception are specific to the receiving 
device. While host level endpoints can have a variety 
of mechanisms to process incoming messages, other 
devices such as cameras and disks generally have 
specific operations that are performed on received 
messages. Customization becomes important. This 



work builds on prior work in active messages [8] to 
construct an environment for the global registration 
and addressing of handlers customized for devices.      

• Simple Standardized Endpoint Interface: In order for 
diverse peripheral devices to be able to communicate 
with a host’s NI, a standard interface must be 
developed that can operate on a variety of cards. 
Since there is a wide range of capabilities for 
peripheral cards, it is important to design this 
interface so that it can be implemented on even the 
simplest of cards. 

• Optimizations: This paper describes optimizations for 
NI-level cut-through that are controlled at the 
producer (rather than on the NI [18]). The result is 
very low latency for the first byte of the message to 
get to the wire. High performance demands of some 
endpoints can make use of such devices.  

 The majority of message layers are implemented in a 
CPU-centric fashion and would require substantial 
modifications to enable the features described above.  BIP 
[9], GM [10], and FM 2.0 [11] provide excellent host-
level performance. These layers are optimized for 
performance and implement a large portion of their 
functionality on the host CPU, which may not be portable 
to peripheral device endpoints.  Other message layers 
such as AM II [12] and VIA [13] are attractive since they 
allow multiple applications to share the NI concurrently. 
This feature is beneficial because it can potentially be 
extended to support the sharing of the NI by peripheral 
device endpoints. The issue here would be to extend or 
replace the host-based context management schemes to 
peripheral devices.  Finally, we feel that message layers 
such as LFC [14], PM [15], and FM 1.0 [16] are the best 
candidates among existing layers since they employ forms 
of NI based flow control and they implement network 
management in the NI, reducing the functionality required 
at endpoints. We believe that pushing as much network 
functionality as performance goals will permit into the 
network interfaces will facilitate implementation 
extensible message layers. Additionally, both LFC and 
PM provide multiple data queues in the NI that could be 
adapted for concurrent endpoint use.  Doing so would 
require re-implementation of the communication 
endpoints for portability. 

 Modifying existing message layers is a non-trivial 
exercise when the design goals are different from the 
design goals governing their original implementation. 
Further, experience in the community has established that 
performance is very sensitive to the implementations 
within the network interfaces given the speed and power 
of the processors, available memory, bus architectures, 
and support for data movement. Thus we chose to build 
on the reported experiences of these message layers and 

incorporate the relevant concepts in a new 
implementation designed to meet the goals described 
earlier in this section. This paper describes the 
functionality of the design, aspects of our implementation, 
and some preliminary performance results.  

 

4. GRIM: General-purpose Reliable         
In-order Messages 

 
 GRIM is an extensible framework for user-level 
messaging that is designed to facilitate the addition of 
multiple communication endpoints within a cluster node.  
Extension refers to ability to easily extend the 
functionality of the message layer to accommodate new 
endpoint features. Conceptually GRIM is designed with 
three specific characteristics to meet the needs of 
heterogeneous  clusters: NI managed flow control [7], 
logical channels, and an active message style of packet 
reception.   

4.1. Optimistic NI-based flow control 
 
 GRIM uses an optimistic NI-based flow control 
scheme to manage the reliable transmission of messages 
between NIs as illustrated in Figure 2. As a result the  
communication endpoints are simplified since message 
injection need only check if there is buffer space on the 
local NI while handling messages ejected to the endpoint 
by the NI. End-to-end buffer management is performed in 
the NI, or rather “in the network”. We have observed that 
the increased functionality of the NI does not substantially 
reduce the general message layer performance and can in 
fact improve the gap [17] and peak point-to-point 
bandwidth. These effects are due to the fact that the 
optimistic flow control mechanism dynamically allocates 
buffer space as needed rather than statically pre-allocating 
buffer space to destination nodes as is commonly found in 
credit-based flow control schemes. The optimistic flow 
control method implemented in GRIM is described in [7]. 
This paper describes the remaining features of GRIM. 
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4.2. Logical channels 
 
 The use of logical channels is a simple but effective 
means for providing injection synchronization among a 
node’s endpoints as shown in Figure 3. Rather than view 
the entire NI as a shared resource among endpoints, 
independent logical channels can be allocated at the NI 
and assigned to specific endpoints. Since a given endpoint 
has exclusive ownership of a set of NI logical channels, 
the endpoint can inject messages into these queues 
without contention hazards with other endpoints. 
Ownership of logical channels is assigned at start time by 
the host based on the node’s specified configuration. 

 

NI Scheduler

Physical
Link

Network Interface

Endpoint A

Endpoint B Host
 

Figure 3: Endpoint Ownership of Outbound 
Logical Channels 

 
 While logical channels are predominantly used for 
injection synchronization, they can also be used for 
providing Quality of Service (QoS) via packet scheduling. 
Endpoints can be configured to control more than a single 
logical channel so that independent traffic streams are 
injected into different queues. The number of logical 
channels that can be implemented practically in the NI 
depends on the amount of buffer space in the NI and the 
amount of time the NI can afford to spend searching for 
new packets.  Currently logical channels are multiplexed 
onto the network through a round-robin scheduler.  
 The organization of inbound queues (messages from 
the network) in the NI is affected by the manner in which 
incoming messages are processed as they are received 
from the wire. One method of organization is to assign 
specific inbound queues to each endpoint. Messages 
therefore are sorted as they arrive off of the wire and 
isolation is provided between messages destined for 
different endpoints. Unfortunately this method may add a 
great deal of complexity to flow control mechanisms 
since a message can travel from any of the sender’s 
outbound queues to any of the receiver’s inbound queues. 
This adds to the work performed by the NI which includes 
ensuring that messages are received in-order into the 
inbound message queue. 

 An alternative to sorting messages at the point of 
arrival is to organize messages at the point at which they 
are ejected from the receiving NI. In this method 
messages are received into an inbound queue that directly 
corresponds to the queue from which the message was 
transmitted. This simplifies flow control overhead since 
the receiving NI can determine in-order delivery by 
comparing the message’s sequence number to an expected 
value for the sender’s outbound queue. This approach is 
similar to the concept of virtual networks where each NI 
queue represents an independent network plane. Given 
that messages are placed in inbound NI queues only if a 
cut-through path to the endpoint is not available, head-of-
line blocking is likely to take place only at times of high 
loads. 

4.3. Active message style packet handling 
 
 The GRIM message layer uses an active message style 
interface [8] for receiving messages. Active messages was 
first proposed as a means of reducing latency in parallel 
systems. In this scheme a message contains both data and 
information describing how the message should be 
handled at the destination endpoint. The active message 
paradigm leads to a flexible and powerful mechanism for 
handling messages in high performance clusters and is 
particularly well matched to messaging in clusters with 
diverse communication endpoints. In particular for I/O 
card-based endpoints it is often possible to abstract the 
card’s capabilities as a set of functions. For example, an 
Ethernet card may be capable of transforming Myrinet 
formatted messages into Ethernet style packets to 
accomplish network bridging. By identifying this 
capability as a handler function for the Ethernet card, 
other endpoints can reference the handler to make use of 
the SAN/LAN bridge. 
 Observing that endpoints in a node can be diverse, it is 
important to construct an active message style interface in 
a manner that is usable by distinct types of endpoints. In 
our implementation function handlers are associated with 
both an integer identifier and a string name. In this 
interface a number of predefined handlers are available 
for all endpoints and user programs can dynamically 
define new handlers as needed. Dynamically installed 
handlers in GRIM are centrally registered and managed 
by a single cluster node in order to maintain a single 
global listing of all cluster handlers. 
 

5. Implementation 
 
  In addition to host-level endpoints, we have 
implemented a GRIM interface for the Cyclone IQ960-RP 
I2O server adapter card. This implementation provides a 



perspective on the communications required, including 
card-to-host and host-to-host transactions. 

5.1. Message management 
 
 There are three types of messages used in GRIM: 
short, bulk, and memory. Short messages are 28 bytes 
long and include a logical channel id, a function handler 
id, and four integers that are passed to the receiving 
function handler. Bulk messages contain the same header 
information as short messages, but also include up to 48 
KBytes of data as a payload. To handle MTU limits of the 
network hardware, bulk messages are fragmented and 
reassembled via predefined active message handlers. 
Memory messages effectively perform a block copy 
operation between the source and destination node 
memories and do not invoke message handlers.  
 Messages in GRIM are managed by queues at both the 
endpoint and NI levels.  Queues consist of three items: a 
finite ring buffer for the message headers, a region of 
memory to which bulk payloads are appended, and a set 
of status registers for maintaining the queue. Breaking the 
queue into separate header and payload regions permits a 
large number of short messages to be stored rapidly while 
allowing bulk message memory allocations to be 
managed on-demand. The NI allocation of queues is 
depicted in Figure 4. The NI uses a finite number of 
outbound message queues to which all logical channels 
are directly mapped.   
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Figure 4: Network Interface Buffer Organization 
 
 

5.2. Injection issues 
 In general, message injections in middleware are 
implemented using either push or pull style operations: 
 
• Push: Endpoints are responsible for moving all data 

from the endpoint’s address space into the NI’s. 
Since the endpoint explicitly moves message data, it 
is a unidirectional operation that completes when all 
bytes are injected. 

• Pull: Endpoints provide pointers to the NI so that the 
NI can use local DMA engines to pull data from the 
endpoint’s address space to the NI’s. Once the pull 
operation is complete the endpoint is notified so that 
it can release locks held on the injected message. 

 
 Pull style messaging is typical of high-performance 
middleware since the NI can concurrently pull data from 
the endpoint and push data to the wire. Because the DMA 
transactions are managed entirely by the NI, it is possible 
to implement and precisely control a high-throughput 
pipeline [18]. In contrast, while simpler to implement, the 
push style of operation can be limited in terms of 
performance. CPUs that push messages into the NI must 
use programmed I/O (PIO) which by itself has limited 
performance (5-40 MB/s). However, middleware 
developers [1] reported that the write-combining features 
of the Pentium Pro architecture could be used to increase 
PIO performance (up to 125 Mbytes/s). Given the 
potentially high injection rare and the inherent 
simplifications in endpoints resulting in the use of a push 
style protocol, we chose to implement GRIM using a push 
philosophy. To avoid consistency hazards, write-
combining was enabled only for the regions of the NI that 
hold the bulk data queues.  
 The main performance challenge in using a push-based 
scheme is minimizing the amount of time between when 
an endpoint starts injecting a message and the time when 
the message reaches the wire. As shown in Figure 5(a), a 
simple store-and-forward operation can be used where the 
endpoint injects the entire message before the NI begins 
transmission.  
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Figure 5: Timing for Message Injections 



 However, a better approach is to allow injected 
messages to “cut-through” the NI to the wire as shown in 
Figure 5(b). In this case a small (32-byte) segment of the 
message is first pushed to the NI.  While the NI transmits 
the initial segment to the link a larger data set is pushed 
into the card. The transfer of successively larger data 
segments to the NI is overlapped with transfer from the 
NI to the link. At the end of each segment injection, the 
endpoint updates status registers on the NI to specify how 
much of the entire message has been pushed into the NI. 
The NI can therefore begin transmission of the message 
as soon as the first segment is available. The time to get 
the first byte of a message to the wire is substantially 
reduced.  
 This approach is advantageous because it maintains the 
simplicity of push-based mechanisms while obtaining the 
performance of pull-based operations. By making use of 
host-level architectural support such as write combining, 
it is possible to obtain transmission bandwidths in excess 
of 106 Mbytes/s for bulk message.  

5.3. Message ejection 
 
 The GRIM middleware was implemented to perform 
message ejection from the NI in a variety of styles to meet 
the needs of endpoints for multiple devices. Wherever 
possible cut-through memory transfers are used to reduce 
receiving latencies. For the case where an endpoint is 
unable to accept a new message, messages are stored in 
the NI’s inbound queues as depicted in Figure 4. Both 
short and bulk messages are pushed into queues that are in 
the endpoint’s address space. For host-level programs this 
is the pinned memory provided by the MyriAPI driver. 
The GRIM middleware implements a zero-copy transfer 
to user space for memory transfer style messages. This 
operation required the modification of the MyriAPI driver 
and provides a significant improvement in message 
reception performance.  

5.4. GRIM API and operation 
 

 The GRIM API is a small set of commands necessary 
for implementing a message-passing library. The API has 
three categories of functions: library initialization and 
configuration querying, active message handler 
maintenance, and general-purpose message passing. The 
initialization function grim_enable() enables the GRIM 
library for a host and initializes all of the node’s endpoints 
as specified by the application’s configuration. Once 
enabled, endpoints can use the general-purpose message 
functions grim_send_{short, bulk, memory}() to transmit 
messages to cluster endpoints. The polling function 
grim_poll() is used to extract and execute active messages 
in an endpoint’s inbound queue. 

 The active message handler maintenance functions of 
the API allow programs to dynamically register handler 
functions as required. Endpoints first register handlers 
locally with the grim_registerHandler() function. This list 
of functions is later published to the global context when 
a grim_synchHandlers() call is made. This function 
transmits the local handler list to a central node in the 
cluster that is responsible for merging handler lists and 
relaying changes to all nodes. Finally, endpoints query a 
local copy of the global handlers list with the 
grim_getHandlerByName() function to translate a string 
identifier to the integer associated with the handler. 
 As a specific example we implemented a small set of 
functions for the I2O card endpoint, including a ping/pong 
handler for timing and a simple bridge function to use the 
card’s Ethernet capabilities. By abstracting the card’s 
functionality into a set of handler functions, we could 
easily extend the capabilities of the cluster to make use of 
the card’s features. The extension was facilitated by the 
fact that end-to-end flow control is handled within the 
Myrinet NI and the I2O handlers need only locally 
synchronize with the Myrinet card. Currently we are also 
studying an extension to a companion FPGA card’s 
resources that is suitable for GRIM.  In this sense we 
address a problem that is similar to that being addressed at 
Virginia Tech in the use of FPGA cards as a collective 
resource via Myrinet [19].  

5.5. Adding peripheral device endpoints 
 
 An important feature of GRIM is the ability to extend 
the functionality of the message layer to include support 
for new peripheral device endpoints. This was 
accomplished by defining both standard data structures 
for endpoint queue maintenance as well as specific data 
transactions that signify a message layer event. While 
adding support for a new device is non-trivial, the general 
process is outlined as follows. 
 First, a set of specific handler functions must be 
defined for the endpoint device that sufficiently 
encapsulates its capabilities. Next, the device’s physical 
interface with the host system must be considered. 
Properties such as the card’s memory, DMA engines, 
address translation requirements, and processing 
capabilities must be translated to a form in which 
endpoint software can be written. Equipped with this 
information, a designer adds card specific initialization 
calls to the GRIM library that instruct the node’s other 
endpoints how to interact with the card. Finally endpoint 
software is written for the card that monitors its data 
queues and reacts to incoming messages. 
 



6. Performance and evaluation 
 
 GRIM was developed and tested for x86 machines 
running Red Hat Linux 6.1. Performance numbers 
reported in this paper come from a pair of Pentium III 
based machines with directly connected M2M-PCI32 
Myrinet SAN cards. Our experiences with a larger 16-
node Myrinet cluster suggest additional Myrinet switch 
hardware does not noticeably degrade (and can in fact 
improve) performance. These Myrinet cards use the older 
33-MHz LANai 4 chipset and are equipped with one 
megabyte of memory.  
 To test the interface to multiple endpoints we included 
the Cyclone IQ960-RP I2O development card as an 
example of a card-based endpoint that occupies another 
slot on the PCI bus. The Cyclone card features an i960 
processor, 4 megabytes of RAM, dual Ultra-SCSI ports, 
and dual 100Mbps Ethernet. Firmware for the card was 
written using VxWorks and an in-house Linux driver. 

6.1. Short message performance 
 
 The performance of GRIM in the context of short 
messages was reported in [7] but is reproduced here for 
completeness. Using round-trip timing measurements we 
observed host-to-host latencies for short messages to be 
13 µs. The overhead for a host to inject a message was 
very low, approximately 1 µs. Due to the dynamic usage 
of NI buffer space through NI-based flow control, the 
minimum gap between successive short messages is 
negligible for bursts less than 200 messages in number. 
For message bursts larger than 200, GRIM’s minimum 
gap slowly grows to a steady state value of 20 µs for 
bursts larger than 1,000 messages. 
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Figure 6: Latency for NI Logical Channels 

  

 As a means for evaluating the effects of logical 
channels, we examined the host-to-host latency 
performance of short messages while varying the number 
of NI logical channels. As shown in Figure 6, small 
numbers of logical channels implemented in the NI do not 
significantly impede performance. As the number of 
logical channels increases, the NI must spend more time 
searching for queues with pending jobs. This meets our 
expectation that large numbers of NI logical channels are 
impractical because they come at the cost of general 
performance. However, a small number of logical 
channels proves to be both useful and at low cost to 
performance. 

6.2. Large message performance 
 
 Host–to-host round-trip timing measurements were 
also used to analyze the large message performance of 
GRIM. The tests were run on both store-and-forward and 
cut-through injection versions of GRIM to observe the 
effects of injection mechanisms and are presented in 
Figure 7. Cut-through does in fact obtain a much higher 
peak bandwidth performance (106 MBytes/s) over the 
store-and-forward method (74 MBytes/s).  
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Figure 7: Bandwidth Performance 

6.3. Myrinet to I2O performance 
 
 Performance for communication with the I2O 
development board was comparable to host-level 
performance. In our tests we transmitted messages from a 
host to reach a remote host’s I2O board using the Myrinet 



NI. The one way latency for Host-Myrinet-Myrinet-I2O 
was observed at 21 µs. Specific characteristics of the I2O 
board affect performance. The DMA engines on the I2O 
board are optimized for large multi-stage transactions and 
as such are not optimal for short message bursts. 
Additional card-specific hardware (such as chained 
DMAs or doorbells) was not utilized in these tests to 
preserve generality. 

7. Conclusions 
 
 Resource rich clusters are an emerging category of 
computational platforms where cluster nodes have CPUs 
as well as high-performance peripheral devices that 
directly access the network. This paper proposed an 
implementation for message layers that facilitated the 
interface to a variety of such endpoint devices. The 
approach is based on the use of active message style of 
communication, coupled with NI-based flow control and 
NI cut-through for low latency to the wire. We have 
verified that this approach can be realized for an I2O 
based card without significant degradation in general 
performance.   
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