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Abstract 

 
 A key task for providing high performance in 
cluster computers is efficiently transferring data 
between cluster resources. This study focuses on one 
component of the communication pipeline: the host to 
peripheral card interface. As Moore’s Law continues 
to progress, we are seeing successive generations of 
clusters with increasing compute power and 
communications bandwidth, but with roughly the 
same I/O systems. Communication software is 
continuously being re-optimized for each succeeding 
generation of hardware.  
 In this paper we describe a tunable library 
for host-to-device communication. The library 
profiles performance characteristics of the host’s 
hardware environment and utilizes this information to 
automatically configure host-to-device transfer 
mechanisms. In addition to taking advantage of CPU-
specific features, the library exposes I/O 
characteristics of individual peripheral devices in 
data transfer optimizations. The benefit of the library 
is demonstrated by providing measurements and 
experiences with three generations of clusters. 

1 Motivation 
 The availability of custom 
communication software, high-speed networks, 
and low-cost workstations has resulted in the 
creation of numerous cluster computers in both 
academic and industrial establishments. 
Workstations in these clusters are interconnected 
with high-performance communication networks 
so that the hardware can effectively operate as a 
large multi-processor computer for parallel 
processing applications. Communication 
software for such clusters has been designed to 
overcome I/O performance limitations of 
commodity workstations in order to achieve 
low-latency, high-bandwidth transmissions 
between CPUs in the systems. Additionally, 

modern communication libraries provide 
mechanisms that allow peripheral devices such 
as intelligent storage devices and hardware 
accelerators to play a more active role in the 
cluster computing environment [1]. 

An important challenge with a practical 
need is the tuning of communication software to 
operate efficiently in different hardware 
contexts. From our own experiences we observe 
two major aspects of clusters that create the need 
for performance tuning. First, we observe that 
clusters are built infrequently using state of the 
art resources. Therefore there is usually a 
significant difference in the power of host CPUs 
from one cluster generation to the next. For 
example, over the last five years Georgia Tech 
has assembled four Intel x86 clusters with CPUs 
ranging from Pentium Pros to Pentium IVs. It is 
desirable for our communication software to be 
able to exploit the hardware features of each 
generation of host CPU in order to improve 
performance. This allows users to migrate 
between clusters without having to re-optimize 
their software for each target architecture. 

The second aspect of clusters pertains to 
peripheral devices. In the Active System Area 
Network (SAN) project at Georgia Tech [2] we 
have worked with at least six PCI based devices, 
all of which required custom device drivers with 
complex interactions between the host and 
device. While literature discussing PCI 
performance optimizations [3] is available for 
some peripheral devices such as Myricom’s 
Myrinet network interface (NI) card [4], other 
peripheral devices have not benefited from such 
attention and require custom optimizations. 
Therefore it is useful to develop mechanisms for 
tuning performance that are portable across 
distinct PCI devices. 



The work presented in this paper explores 
the design of a portable and tunable library for 
the efficient transfer of data between a host CPU 
and peripheral devices. This library utilizes two 
techniques for efficiently injecting data from the 
host CPU into peripheral devices. First, 
architectural features such as the MMX [5] and 
SSE [7] units of the x86 family of processors are 
utilized to boost programmed I/O (PIO) 
transfers. Second, various DMA techniques are 
utilized to transfer large messages. The injection 
library can be tuned to select the best transfer 
mechanism for an injection based on the amount 
of data to move, and the specific communication 
being completed. This library has currently been 
ported to operate in the context of three 
commonly used peripheral devices and is known 
as TPIL: the Tunable PCI Injection Library. 

1.1 Data Transfers with Peripherals 
Transferring data between host 

applications and peripheral devices is a common 
task in cluster computing applications. From a 
communication library perspective, both shared 
memory and message passing systems must 
exchange data efficiently between an 
application’s memory space and the network 
interface card whenever data is transmitted 
between cluster nodes. The speed at which an 
application can move data into the network 
interface card has a direct effect on the overall 
performance of the cluster computing system. A 
second perspective in which host-peripheral 
device transaction performance is important is in 
the use of active peripheral devices. As 
intelligent storage devices (active disks) and 
accelerator cards (e.g., FPGAs and DSPs) 
become more available, it is necessary to 
provide mechanisms for rapidly transferring data 
with these peripheral devices so that they can 
play a more integral role in application 
processing. 

Transferring data with peripheral devices 
is non-trivial for a number of reasons. First the 
x86 architecture does not contain a CPU-based 
DMA engine designed to transfer data with the 
I/O subsystem. Instead data is moved through 
either programmed I/O (PIO) memory copies or 
by programming DMA engines located on bus 
mastering PCI devices as illustrated in Figure 1. 

Second, transferring data from a user application 
requires that the address of the data be translated 
from a virtual to physical address. While this 
process is handled transparently for PIO 
transfers, DMA engines operate only with 
physical addresses. As such the kernel must 
translate the user’s virtual address to a physical 
address and then pin the pages holding the data 
until the DMA completes. Third, for large 
transfers of virtual memory, data may be located 
in separate non-contiguous pages of physical 
memory. Therefore the maximum burst size of a 
single DMA transfer is limited in size to a page 
of data.  
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Figure 1: Modern host architecture 

The library presented in this paper 
specializes in transfers from host applications to 
peripheral devices. While data must flow in both 
directions between host applications and 
peripheral devices, we note that card-to-host 
transfers are more easily performed than host-to-
card transfers. This is because card-to-host 
transfers can be constructed in a push style of 
operation by having an on-card DMA engine 
push data directly into a host application’s 
memory space. In contrast, a host-to-card 
transfer is more complex since the host must 
either move the data with PIO writes or program 
the destination card’s DMA engines to pull the 
data to the card.  

2 PCI Data Transfer Library  
 Because of the variety of host CPUs as well 
as peripheral devices that communication library 
designers utilize, it is desirable to design a 
common library for efficiently moving data from 
host to card that can be used in a number of 



hardware contexts. The following characteristics 
are critical to the usefulness of such a library: 
 
• Easily Tunable: An injection library needs 

to be easily tuned by user programs. This 
allows software to be run on multiple 
hardware substrates that have different PCI 
performance characteristics. 

• Customizable: The library needs to be 
customized to meet the needs of end 
applications. For example, for interactions 
with NI cards, it is desirable to provide 
simple mechanisms that allow injected data 
to be transferred to the wire as soon as the 
first bytes of data are copied to the card. 

• Extensible: The library must be adapted to 
utilize architectural enhancements found in 
emerging CPU and I/O hardware. 

 
 A library that successfully addresses these 
goals must be equipped with multiple 
mechanisms for moving data across the PCI bus 
into peripheral devices. These mechanisms are 
divided into two types of operations: 
programmed I/O and kernel supported DMA. 

2.1 Programmed I/O Transfer 
Mechanisms 

A number of hardware features of the x86 
architecture can be utilized to increase PIO 
memory copies for PCI transactions [6]. These 
hardware features include: 
 
• Write-Combining: The write-combining 

MTRR registers included in Pentium Pro 
and higher processors allow stores for 
memory ranges to take place without strict 
ordering. This allows multiple writes to 
consecutive memory addresses to be 
combined for burst transfers.  

• MMX Registers: The eight 64-bit MMX 
registers allow 64-byte blocks to be pulled 
into the CPU and then written to the I/O 
subsystem. Potentially this allows data 
writes to take place in burst operations that 
are efficiently mapped by the chipset into 
PCI transactions. 

• SSE Cache Control: The streaming SIMD 
extensions (SSE) [7] unit adds features to 
provide user level control of the cache. In 

addition to pre-fetching operations, the SSE 
hardware provides non-temporal stores 
where writes can bypass cache memory and 
be flushed directly to memory. 

 
 Previous literature [8] has discussed the use 
of write-combining to improve the host-to-card 
performance for transfers less than a kilobyte in 
size. While this greatly reduces the amount of 
time an application spends injecting data, there 
are pitfalls that must be addressed. The main 
hazard with write-combining is that writes can 
be reordered in the chipset to improve burst 
transfer performance. For NIs this could result in 
a race condition where an update to a queue 
pointer erroneously bypasses the actual 
placement of data in the queue. Such hazards 
must be prevented through careful definitions of 
memory regions that perform write-combining. 
A second pitfall is that there are a limited 
number of regions that can be marked for write-
combining, and that the definition of such 
operations is a privileged operation. In our work 
we resort to using write-combining only as a last 
resort and instead rely on the MMX and SSE 
features for speed improvements.  

2.2 DMA Transfer Mechanisms 
 Modern PCI devices employ chained 
DMA operations for the transfer of large data 
sets between host and card. In chained DMA 
either the host or the card establishes a linked list 
of DMA transfers that need to be performed. 
When initiated the DMA engine traverses the list 
linearly until it reaches an end of chain marker. 
Most chained DMA systems allow users to 
specify interrupts for notification of completion 
of each DMA operation. Chained DMAs 
therefore can efficiently move large amounts of 
memory even if the memory is on non-
contiguous pages, provided the host properly 
creates the linked list of DMA entries. For our 
work we have implemented three forms of DMA 
transfers in the peripheral device drivers: 
 
• One-Copy: In this approach user data is 

copied into a large (128 KB) contiguous 
buffer. The card then issues a single DMA to 
move the data. The operation is repeated if 



application data exceeds the capacity of the 
transfer buffer. 

• Double-Buffered One-Copy: Like the 
previous approach data is copied from user 
space to a contiguous transfer buffer in host 
memory. However, this approach splits the 
buffer in half and overlaps the transfer of 
data into the buffer with the DMA operation.  

• Zero-Copy: This approach pins the pages 
holding user data and configures the DMA 
engines to transfer data directly from the 
user pages. While individual DMA transfers 
are limited to a page in size, this approach 
removes the need to copy data in host 
memory, thus greatly improving speed. 

 
 Several factors dictate which DMA 
operation provides the best performance. First, 
memory speed greatly affects the rate at which 
the one-copy operations can be performed. For 
memory controllers that cannot efficiently 
manage two demanding transfers concurrently, it 
is unlikely that the system will be able to keep 
the pipeline of the one-copy approach filled. A 
second factor affecting DMA operations is the 
latency for initializing the DMA transfers. If 
such penalties are high then it is desirable to 
reduce the number of DMA transfer events. 
Finally, we note that not all peripheral devices 
have chained DMA functionality. For these 
cards it may be beneficial to utilize the one-copy 
approaches due to host-card synchronization 
issues. We provide all three mechanisms in this 
work for comparison and as a means of 
providing different options for different 
environments. 

3 Tunable PCI Injection Library 
  The tunable PCI injection library (TPIL) 
encapsulates both optimized PIO and DMA 
mechanisms for transferring data from a host to 
a peripheral device. A list of essential 
application programming interface calls is 
presented in Table 1. At runtime a user program 
must first initialize the TPIL library with 
configuration information before an individual 
peripheral device can be utilized with the library. 
With the tpil_create() function call users pass 
TPIL information such as the device’s file 
handler, a pointer to a memory map of the 

device, the size of the memory map, and  an ioctl 
identifier for the device’s DMA operations. 
TPIL stores this information and returns an 
identifier that user applications can reference in 
subsequent calls to TPIL. Once initialized end 
users can begin using the tpil_h2c() function to 
transfer blocks of data from user space to card 
memory. Without additional configuration the 
library makes conservative estimates as to the 
thresholds for selecting which mechanism is 
utilized to transfer data to the card. 
 
 Tdev = tpil_create( device_file_id, 
  device_mmap,  
  mmap_size,  
  device_ioctl  ) 
  tpil_h2c( Tdev,  
  *destination,  
  *source,  
   number_bytes ) 
Tcfg = tpil_benchmark( Tdev  ) 
 
 tpil_configure( Tdev, 
  Tcfg ) 

Table 1: TPIL API 

 In order to obtain the best results from 
TPIL it is necessary to tune the library for the 
target hardware environment. The 
tpil_benchmark() function benchmarks the 
hardware environment to determine how much 
time is required to transfer data of different sizes 
to the peripheral device using the PIO and DMA 
transfer mechanisms. Because benchmarking can 
take several minutes users can export 
measurement information and then import the 
information at a later time through the 
tpil_configure() command. This interface also 
allows users to edit configuration data so that 
transfer mechanisms can be explicitly specified. 

3.1 Hardware Environment 
 The first environmental characteristic 
that affects TPIL is the architecture of the host 
CPU utilized in the target cluster computer. 
TPIL automatically identifies the hardware 
features of the host CPU and utilizes this 
information to determine which PIO techniques 
can supplement DMA mechanisms in the 
transfer of data to a peripheral device. The x86 



clusters at Georgia Tech are based on Pentium 
Pro, Pentium II, Pentium III, and Pentium IV 
Xeon processors. Therefore the older clusters do 
not have MMX or SSE units to assist in PIO 
transfers. Likewise memory bandwidth and PCI 
performance is limited in all of these systems 
except possibly the Pentium IV Xeon cluster. 
Therefore we expect to see performance 
variations between host nodes and require that 
TPIL examine these differences to extract native 
hardware performance. 
 The second characteristic of TPIL is that 
the library must operate with peripheral devices 
that have different I/O characteristics. We have 
implemented a kernel driver and a reusable user 
space interface for operation with three PCI 
devices commonly utilized in the Active SAN 
project at Georgia Tech: the Celoxica RC-1000 
FPGA card [9] and two different versions of 
Myricom’s Myrinet NI. The RC-1000 card 
features 8MB of on-card SRAM and utilizes a 
PLX9080 PCI controller chip that supports 
chained DMA operations. The first of the two 
Myrinet cards is the LANai 9.1b card, featuring 
chained DMA engines, 64-bit/66MHz PCI, and 
2MB of SRAM. The other Myrinet card is the 
earlier LANai 4.3 32-bit/33MHz card featuring 
1MB of SRAM. The older LANai card does not 
have chained DMA descriptors, but does have a 
programmable DMA engine. We therefore 
constructed chained DMAs in the LANai 
firmware, with the firmware periodically polling 
DMA descriptors for requests by the host CPU 
to transfer data. 

4 Performance 
TPIL is designed to operate with the Linux 

2.4 operating system and is implemented as a 
combination of user, kernel, and device level 
software. A number of tests were conducted to 
observe the library’s performance in different 
hardware contexts. In the first series of tests the 
library was utilized to examine the performance 
of three different peripheral devices in a 550 
MHz Pentium III system. These tests were 
performed using TPIL’s internal benchmarking 
algorithms, with each transfer mechanism timed 
for a range of injection sizes. Between 
measurements the host CPU’s cache is 
intentionally polluted so that the benchmarking 

favors pessimistic conditions. Each measurement 
is performed 32 times to remove transient 
effects. 
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Figure 2: Myrinet LANai 4 PCI performance for 

Pentium III 550 MHz hosts 

 Figure 2 illustrates the library’s 
performance for the Myrinet LANai 4 peripheral 
device. In this test we observe that the PIO 
transfers are beneficial for transfers up to 16 KB. 
MMX and SSE PIO transfers perform similarly 
until approximately 2 KB where the SSE’s non-
temporal stores and pre-fetching operations have 
a slight advantage. DMA operations are utilized 
in transfers larger than 16 KB. Due to limited 
host memory bandwidth the zero-copy approach 
is always more efficient than the one-copy 
techniques. The Myrinet LANai 9 benchmarks 
yielded similar results to the LANai 4, with 
slightly better DMA performance.  

The benchmarking experiment was 
performed for the Celoxica RC-1000 card in the 
same host system, with results depicted in Figure 
3. As expected MMX and SSE PIO based 
transfers provided the best performance for 
injections less than 3 KB. However, this 
performance drops to a steady state value of 30 
MB/s for transfers larger than 2 KB. We observe 
that the PCI characteristics of this card may 
affect performance since the card’s PCI chipset 
has a limited capacity for incoming data from 
the PCI bus. PIO transfers can therefore be 
slowed if the host CPU saturates these PCI 
buffers. For transfers larger than 3 KB the card’s 
DMA engine operates efficiently since the 
engine pulls data into the card as buffer space 
allows. The zero-copy approach outperformed 
other DMA transfer mechanisms. 
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Figure 3: RC-1000 PCI injection performance f or 

Pentium III 550MHz hosts 

 A second set of tests was performed to 
examine how TPIL performed in different host 
systems. For this work we utilized the Myrinet 
LANai 9 card due to its ability to deliver good 
PCI performance. Figure 4 illustrates the 
performance results of TPIL in three different 
cluster computer hosts: a 200 MHz Pentium Pro, 
a 550 MHz Pentium III, and a 1.7 GHz Pentium 
IV Xeon with 32-bit and 64-bit PCI. Each curve 
in the figure traces the amount of bandwidth 
TPIL can obtain for a host using the different 
transfer techniques discussed in this paper. The 
Pentium Pro system delivered only 20 MB/s due 
to its poor PCI implementation. For the Pentium 
III system the library effectively switched 
between transfer mechanisms as reported in the 
previous set of measurements.  
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Figure 4: Myrinet LANai 9 PCI injection 

performance for multiple hosts 

 

The Pentium IV host exhibited unusual 
performance characteristics for both 32-bit and 
64-bit PCI slots. The motherboard is based on 
the Intel 860 chipset, which has known 
performance issues. Initially, performance was 
limited to 140 MB/s until a patch was applied to 
the chipset to increase PCI buffering [10]. Figure 
5 depicts the performance of the more dominant 
transfer mechanisms for this host. For 32-bit PCI 
slots, maximum DMA performance was limited 
to 90 MB/s, resulting in SSE transfers being 
selected for all injection sizes. For 64-bit slots, 
MMX and SSE transfers reached an early 
plateau of 53 MB/s for injections larger than 512 
bytes. Interestingly, zero-copy and double-
buffered one-copy approaches alternated as the 
most efficient mechanism for transfers larger 
than 2 KB to a 64-bit PCI card. The 
competitiveness of the double-buffered one-copy 
approach can be attributed to the high memory 
bandwidth available in the RDRAM-based 
Pentium IV. 
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Figure 5: Myrinet LANai 9 PCI injection 

performance for Intel 860-based Pentium IV 

5 Conclusions and Future Work 
 For institutions with multiple clusters it 
is important to provide mechanisms that allow 
applications to be tuned automatically to the 
characteristics of the underlying hardware. TPIL 
is a tunable library that accomplishes this in the 
communication library task of injecting data 
from the host into peripheral devices. We have 
demonstrated that this library automatically 
extracts native performance benefits on different 
cluster computing platforms, and that it is 



portable to multiple peripheral devices. As a 
benefit of benchmarking its hardware 
environment, TPIL is able to uncover basic 
performance bottlenecks, such as the saturation 
of the RC-1000’s PCI buffers.  
 The current implementation of TPIL is 
open source and available for academic use. We 
are currently adapting the library to operate with 
the Intel IXP1200 network processor [11]. While 
this NI features sophisticated hardware for 
accelerating network operations, the host cannot 
directly control the card’s DMA engines. For use 
with TPIL this requires a DMA management 
agent be implemented in card firmware. This 
work is similar to what was constructed earlier 
for the LANai 4 processor. In addition to 
adapting new peripheral devices, future TPIL 
work will also include the examination of other 
CPU-specific optimizations that can be utilized 
to improve host-to-card transfer performance.  
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