
A Tunable Communications Library for Data Injection

Craig Ulmer and Sudhakar Yalamanchili

Center for Experimental Research in Computer Systems
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA 30332-0250

E-mail: {ulmer, sudha}@ece.gatech.edu

Abstract

 A key task for providing high performance in
cluster computers is efficiently transferring data
between cluster resources. This study focuses on one
component of the communication pipeline: the host to
peripheral card interface. As Moore’s Law continues
to progress, we are seeing successive generations of
clusters with increasing compute power and
communications bandwidth, but with roughly the
same I/O systems. Communication software is
continuously being re-optimized for each succeeding
generation of hardware.
 In this paper we describe a tunable library
for host-to-device communication. The library
profiles performance characteristics of the host’s
hardware environment and utilizes this information to
automatically configure host-to-device transfer
mechanisms. In addition to taking advantage of CPU-
specific features, the library exposes I/O
characteristics of individual peripheral devices in
data transfer optimizations. The benefit of the library
is demonstrated by providing measurements and
experiences with three generations of clusters.

1 Motivation
 The availability of custom
communication software, high-speed networks,
and low-cost workstations has resulted in the
creation of numerous cluster computers in both
academic and industrial establishments.
Workstations in these clusters are interconnected
with high-performance communication networks
so that the hardware can effectively operate as a
large multi-processor computer for parallel
processing applications. Communication
software for such clusters has been designed to
overcome I/O performance limitations of
commodity workstations in order to achieve
low-latency, high-bandwidth transmissions
between CPUs in the systems. Additionally,

modern communication libraries provide
mechanisms that allow peripheral devices such
as intelligent storage devices and hardware
accelerators to play a more active role in the
cluster computing environment [1].

An important challenge with a practical
need is the tuning of communication software to
operate efficiently in different hardware
contexts. From our own experiences we observe
two major aspects of clusters that create the need
for performance tuning. First, we observe that
clusters are built infrequently using state of the
art resources. Therefore there is usually a
significant difference in the power of host CPUs
from one cluster generation to the next. For
example, over the last five years Georgia Tech
has assembled four Intel x86 clusters with CPUs
ranging from Pentium Pros to Pentium IVs. It is
desirable for our communication software to be
able to exploit the hardware features of each
generation of host CPU in order to improve
performance. This allows users to migrate
between clusters without having to re-optimize
their software for each target architecture.

The second aspect of clusters pertains to
peripheral devices. In the Active System Area
Network (SAN) project at Georgia Tech [2] we
have worked with at least six PCI based devices,
all of which required custom device drivers with
complex interactions between the host and
device. While literature discussing PCI
performance optimizations [3] is available for
some peripheral devices such as Myricom’s
Myrinet network interface (NI) card [4], other
peripheral devices have not benefited from such
attention and require custom optimizations.
Therefore it is useful to develop mechanisms for
tuning performance that are portable across
distinct PCI devices.

The work presented in this paper explores
the design of a portable and tunable library for
the efficient transfer of data between a host CPU
and peripheral devices. This library utilizes two
techniques for efficiently injecting data from the
host CPU into peripheral devices. First,
architectural features such as the MMX [5] and
SSE [7] units of the x86 family of processors are
utilized to boost programmed I/O (PIO)
transfers. Second, various DMA techniques are
utilized to transfer large messages. The injection
library can be tuned to select the best transfer
mechanism for an injection based on the amount
of data to move, and the specific communication
being completed. This library has currently been
ported to operate in the context of three
commonly used peripheral devices and is known
as TPIL: the Tunable PCI Injection Library.

1.1 Data Transfers with Peripherals
Transferring data between host

applications and peripheral devices is a common
task in cluster computing applications. From a
communication library perspective, both shared
memory and message passing systems must
exchange data efficiently between an
application’s memory space and the network
interface card whenever data is transmitted
between cluster nodes. The speed at which an
application can move data into the network
interface card has a direct effect on the overall
performance of the cluster computing system. A
second perspective in which host-peripheral
device transaction performance is important is in
the use of active peripheral devices. As
intelligent storage devices (active disks) and
accelerator cards (e.g., FPGAs and DSPs)
become more available, it is necessary to
provide mechanisms for rapidly transferring data
with these peripheral devices so that they can
play a more integral role in application
processing.

Transferring data with peripheral devices
is non-trivial for a number of reasons. First the
x86 architecture does not contain a CPU-based
DMA engine designed to transfer data with the
I/O subsystem. Instead data is moved through
either programmed I/O (PIO) memory copies or
by programming DMA engines located on bus
mastering PCI devices as illustrated in Figure 1.

Second, transferring data from a user application
requires that the address of the data be translated
from a virtual to physical address. While this
process is handled transparently for PIO
transfers, DMA engines operate only with
physical addresses. As such the kernel must
translate the user’s virtual address to a physical
address and then pin the pages holding the data
until the DMA completes. Third, for large
transfers of virtual memory, data may be located
in separate non-contiguous pages of physical
memory. Therefore the maximum burst size of a
single DMA transfer is limited in size to a page
of data.

CPU

Memory
Controller

Cache

Main
Memory

PC
I B

us

PCI
DMA

Peripheral
Device
Memory

Figure 1: Modern host architecture

The library presented in this paper
specializes in transfers from host applications to
peripheral devices. While data must flow in both
directions between host applications and
peripheral devices, we note that card-to-host
transfers are more easily performed than host-to-
card transfers. This is because card-to-host
transfers can be constructed in a push style of
operation by having an on-card DMA engine
push data directly into a host application’s
memory space. In contrast, a host-to-card
transfer is more complex since the host must
either move the data with PIO writes or program
the destination card’s DMA engines to pull the
data to the card.

2 PCI Data Transfer Library
 Because of the variety of host CPUs as well
as peripheral devices that communication library
designers utilize, it is desirable to design a
common library for efficiently moving data from
host to card that can be used in a number of

hardware contexts. The following characteristics
are critical to the usefulness of such a library:

• Easily Tunable: An injection library needs

to be easily tuned by user programs. This
allows software to be run on multiple
hardware substrates that have different PCI
performance characteristics.

• Customizable: The library needs to be
customized to meet the needs of end
applications. For example, for interactions
with NI cards, it is desirable to provide
simple mechanisms that allow injected data
to be transferred to the wire as soon as the
first bytes of data are copied to the card.

• Extensible: The library must be adapted to
utilize architectural enhancements found in
emerging CPU and I/O hardware.

 A library that successfully addresses these
goals must be equipped with multiple
mechanisms for moving data across the PCI bus
into peripheral devices. These mechanisms are
divided into two types of operations:
programmed I/O and kernel supported DMA.

2.1 Programmed I/O Transfer
Mechanisms

A number of hardware features of the x86
architecture can be utilized to increase PIO
memory copies for PCI transactions [6]. These
hardware features include:

• Write-Combining: The write-combining

MTRR registers included in Pentium Pro
and higher processors allow stores for
memory ranges to take place without strict
ordering. This allows multiple writes to
consecutive memory addresses to be
combined for burst transfers.

• MMX Registers: The eight 64-bit MMX
registers allow 64-byte blocks to be pulled
into the CPU and then written to the I/O
subsystem. Potentially this allows data
writes to take place in burst operations that
are efficiently mapped by the chipset into
PCI transactions.

• SSE Cache Control: The streaming SIMD
extensions (SSE) [7] unit adds features to
provide user level control of the cache. In

addition to pre-fetching operations, the SSE
hardware provides non-temporal stores
where writes can bypass cache memory and
be flushed directly to memory.

 Previous literature [8] has discussed the use
of write-combining to improve the host-to-card
performance for transfers less than a kilobyte in
size. While this greatly reduces the amount of
time an application spends injecting data, there
are pitfalls that must be addressed. The main
hazard with write-combining is that writes can
be reordered in the chipset to improve burst
transfer performance. For NIs this could result in
a race condition where an update to a queue
pointer erroneously bypasses the actual
placement of data in the queue. Such hazards
must be prevented through careful definitions of
memory regions that perform write-combining.
A second pitfall is that there are a limited
number of regions that can be marked for write-
combining, and that the definition of such
operations is a privileged operation. In our work
we resort to using write-combining only as a last
resort and instead rely on the MMX and SSE
features for speed improvements.

2.2 DMA Transfer Mechanisms
 Modern PCI devices employ chained
DMA operations for the transfer of large data
sets between host and card. In chained DMA
either the host or the card establishes a linked list
of DMA transfers that need to be performed.
When initiated the DMA engine traverses the list
linearly until it reaches an end of chain marker.
Most chained DMA systems allow users to
specify interrupts for notification of completion
of each DMA operation. Chained DMAs
therefore can efficiently move large amounts of
memory even if the memory is on non-
contiguous pages, provided the host properly
creates the linked list of DMA entries. For our
work we have implemented three forms of DMA
transfers in the peripheral device drivers:

• One-Copy: In this approach user data is

copied into a large (128 KB) contiguous
buffer. The card then issues a single DMA to
move the data. The operation is repeated if

application data exceeds the capacity of the
transfer buffer.

• Double-Buffered One-Copy: Like the
previous approach data is copied from user
space to a contiguous transfer buffer in host
memory. However, this approach splits the
buffer in half and overlaps the transfer of
data into the buffer with the DMA operation.

• Zero-Copy: This approach pins the pages
holding user data and configures the DMA
engines to transfer data directly from the
user pages. While individual DMA transfers
are limited to a page in size, this approach
removes the need to copy data in host
memory, thus greatly improving speed.

 Several factors dictate which DMA
operation provides the best performance. First,
memory speed greatly affects the rate at which
the one-copy operations can be performed. For
memory controllers that cannot efficiently
manage two demanding transfers concurrently, it
is unlikely that the system will be able to keep
the pipeline of the one-copy approach filled. A
second factor affecting DMA operations is the
latency for initializing the DMA transfers. If
such penalties are high then it is desirable to
reduce the number of DMA transfer events.
Finally, we note that not all peripheral devices
have chained DMA functionality. For these
cards it may be beneficial to utilize the one-copy
approaches due to host-card synchronization
issues. We provide all three mechanisms in this
work for comparison and as a means of
providing different options for different
environments.

3 Tunable PCI Injection Library
 The tunable PCI injection library (TPIL)
encapsulates both optimized PIO and DMA
mechanisms for transferring data from a host to
a peripheral device. A list of essential
application programming interface calls is
presented in Table 1. At runtime a user program
must first initialize the TPIL library with
configuration information before an individual
peripheral device can be utilized with the library.
With the tpil_create() function call users pass
TPIL information such as the device’s file
handler, a pointer to a memory map of the

device, the size of the memory map, and an ioctl
identifier for the device’s DMA operations.
TPIL stores this information and returns an
identifier that user applications can reference in
subsequent calls to TPIL. Once initialized end
users can begin using the tpil_h2c() function to
transfer blocks of data from user space to card
memory. Without additional configuration the
library makes conservative estimates as to the
thresholds for selecting which mechanism is
utilized to transfer data to the card.

 Tdev = tpil_create(device_file_id,
 device_mmap,
 mmap_size,
 device_ioctl)
 tpil_h2c(Tdev,
 *destination,
 *source,
 number_bytes)
Tcfg = tpil_benchmark(Tdev)

 tpil_configure(Tdev,
 Tcfg)

Table 1: TPIL API

 In order to obtain the best results from
TPIL it is necessary to tune the library for the
target hardware environment. The
tpil_benchmark() function benchmarks the
hardware environment to determine how much
time is required to transfer data of different sizes
to the peripheral device using the PIO and DMA
transfer mechanisms. Because benchmarking can
take several minutes users can export
measurement information and then import the
information at a later time through the
tpil_configure() command. This interface also
allows users to edit configuration data so that
transfer mechanisms can be explicitly specified.

3.1 Hardware Environment
 The first environmental characteristic
that affects TPIL is the architecture of the host
CPU utilized in the target cluster computer.
TPIL automatically identifies the hardware
features of the host CPU and utilizes this
information to determine which PIO techniques
can supplement DMA mechanisms in the
transfer of data to a peripheral device. The x86

clusters at Georgia Tech are based on Pentium
Pro, Pentium II, Pentium III, and Pentium IV
Xeon processors. Therefore the older clusters do
not have MMX or SSE units to assist in PIO
transfers. Likewise memory bandwidth and PCI
performance is limited in all of these systems
except possibly the Pentium IV Xeon cluster.
Therefore we expect to see performance
variations between host nodes and require that
TPIL examine these differences to extract native
hardware performance.
 The second characteristic of TPIL is that
the library must operate with peripheral devices
that have different I/O characteristics. We have
implemented a kernel driver and a reusable user
space interface for operation with three PCI
devices commonly utilized in the Active SAN
project at Georgia Tech: the Celoxica RC-1000
FPGA card [9] and two different versions of
Myricom’s Myrinet NI. The RC-1000 card
features 8MB of on-card SRAM and utilizes a
PLX9080 PCI controller chip that supports
chained DMA operations. The first of the two
Myrinet cards is the LANai 9.1b card, featuring
chained DMA engines, 64-bit/66MHz PCI, and
2MB of SRAM. The other Myrinet card is the
earlier LANai 4.3 32-bit/33MHz card featuring
1MB of SRAM. The older LANai card does not
have chained DMA descriptors, but does have a
programmable DMA engine. We therefore
constructed chained DMAs in the LANai
firmware, with the firmware periodically polling
DMA descriptors for requests by the host CPU
to transfer data.

4 Performance
TPIL is designed to operate with the Linux

2.4 operating system and is implemented as a
combination of user, kernel, and device level
software. A number of tests were conducted to
observe the library’s performance in different
hardware contexts. In the first series of tests the
library was utilized to examine the performance
of three different peripheral devices in a 550
MHz Pentium III system. These tests were
performed using TPIL’s internal benchmarking
algorithms, with each transfer mechanism timed
for a range of injection sizes. Between
measurements the host CPU’s cache is
intentionally polluted so that the benchmarking

favors pessimistic conditions. Each measurement
is performed 32 times to remove transient
effects.

0

20

40

60

80

100

120

140

0.01 KB 0.1 KB 1 KB 10 KB 100 KB 1000 KB

Injection Size

B
an

dw
id

th
 (M

B
/s

)

DMA 0-Copy

DMA 1-Copy DB

DMA 1-Copy

PIO SSE

PIO MMX

PIO Memcpy

Figure 2: Myrinet LANai 4 PCI performance for

Pentium III 550 MHz hosts

 Figure 2 illustrates the library’s
performance for the Myrinet LANai 4 peripheral
device. In this test we observe that the PIO
transfers are beneficial for transfers up to 16 KB.
MMX and SSE PIO transfers perform similarly
until approximately 2 KB where the SSE’s non-
temporal stores and pre-fetching operations have
a slight advantage. DMA operations are utilized
in transfers larger than 16 KB. Due to limited
host memory bandwidth the zero-copy approach
is always more efficient than the one-copy
techniques. The Myrinet LANai 9 benchmarks
yielded similar results to the LANai 4, with
slightly better DMA performance.

The benchmarking experiment was
performed for the Celoxica RC-1000 card in the
same host system, with results depicted in Figure
3. As expected MMX and SSE PIO based
transfers provided the best performance for
injections less than 3 KB. However, this
performance drops to a steady state value of 30
MB/s for transfers larger than 2 KB. We observe
that the PCI characteristics of this card may
affect performance since the card’s PCI chipset
has a limited capacity for incoming data from
the PCI bus. PIO transfers can therefore be
slowed if the host CPU saturates these PCI
buffers. For transfers larger than 3 KB the card’s
DMA engine operates efficiently since the
engine pulls data into the card as buffer space
allows. The zero-copy approach outperformed
other DMA transfer mechanisms.

0

20

40

60

80

100

120

140

0.01 KB 0.1 KB 1 KB 10 KB 100 KB 1000 KB

Injection Size

B
an

dw
id

th
 (M

B
/s

)
DMA 0-Copy

DMA 1-Copy DB

DMA 1-Copy

PIO SSE

PIO MMX

PIO Memcpy

Figure 3: RC-1000 PCI injection performance f or

Pentium III 550MHz hosts

 A second set of tests was performed to
examine how TPIL performed in different host
systems. For this work we utilized the Myrinet
LANai 9 card due to its ability to deliver good
PCI performance. Figure 4 illustrates the
performance results of TPIL in three different
cluster computer hosts: a 200 MHz Pentium Pro,
a 550 MHz Pentium III, and a 1.7 GHz Pentium
IV Xeon with 32-bit and 64-bit PCI. Each curve
in the figure traces the amount of bandwidth
TPIL can obtain for a host using the different
transfer techniques discussed in this paper. The
Pentium Pro system delivered only 20 MB/s due
to its poor PCI implementation. For the Pentium
III system the library effectively switched
between transfer mechanisms as reported in the
previous set of measurements.

0

50

100

150

200

250

0.01 KB 0.1 KB 1 KB 10 KB 100 KB 1000 KB

Injection Size

B
an

dw
id

th
 (M

B
/s

)

P4 1.7 GHz, 64b PCI

P4 1.7 GHz, 32b PCI

P3 550 MHz

PPro 200 MHz

Figure 4: Myrinet LANai 9 PCI injection

performance for multiple hosts

The Pentium IV host exhibited unusual
performance characteristics for both 32-bit and
64-bit PCI slots. The motherboard is based on
the Intel 860 chipset, which has known
performance issues. Initially, performance was
limited to 140 MB/s until a patch was applied to
the chipset to increase PCI buffering [10]. Figure
5 depicts the performance of the more dominant
transfer mechanisms for this host. For 32-bit PCI
slots, maximum DMA performance was limited
to 90 MB/s, resulting in SSE transfers being
selected for all injection sizes. For 64-bit slots,
MMX and SSE transfers reached an early
plateau of 53 MB/s for injections larger than 512
bytes. Interestingly, zero-copy and double-
buffered one-copy approaches alternated as the
most efficient mechanism for transfers larger
than 2 KB to a 64-bit PCI card. The
competitiveness of the double-buffered one-copy
approach can be attributed to the high memory
bandwidth available in the RDRAM-based
Pentium IV.

0

50

100

150

200

250

0.01 KB 0.1 KB 1 KB 10 KB 100 KB 1000 KB

Injection Size

B
an

dw
id

th
 (M

B
/s

)

64b PCI DMA 0-Copy

64b PCI DMA 1-Copy DB

64b PCI PIO SSE

32b PCI DMA 0-Copy

32b PCI PIO SSE

Figure 5: Myrinet LANai 9 PCI injection

performance for Intel 860-based Pentium IV

5 Conclusions and Future Work
 For institutions with multiple clusters it
is important to provide mechanisms that allow
applications to be tuned automatically to the
characteristics of the underlying hardware. TPIL
is a tunable library that accomplishes this in the
communication library task of injecting data
from the host into peripheral devices. We have
demonstrated that this library automatically
extracts native performance benefits on different
cluster computing platforms, and that it is

portable to multiple peripheral devices. As a
benefit of benchmarking its hardware
environment, TPIL is able to uncover basic
performance bottlenecks, such as the saturation
of the RC-1000’s PCI buffers.
 The current implementation of TPIL is
open source and available for academic use. We
are currently adapting the library to operate with
the Intel IXP1200 network processor [11]. While
this NI features sophisticated hardware for
accelerating network operations, the host cannot
directly control the card’s DMA engines. For use
with TPIL this requires a DMA management
agent be implemented in card firmware. This
work is similar to what was constructed earlier
for the LANai 4 processor. In addition to
adapting new peripheral devices, future TPIL
work will also include the examination of other
CPU-specific optimizations that can be utilized
to improve host-to-card transfer performance.

6 Acknowledgements
 We thank Ken Mackenzie and Ivan
Ganev at Georgia Tech for their assistance and
suggestions in this work. We gratefully
acknowledge the support for this research by a
grant from the Advanced Networking
Infrastructure and Research Division of National
Science Foundation under grant ANI-9876573, a
grant from the Xilinx Corporation, and hardware
donations from the Intel Corporation.

References

[1] C. Ulmer and S. Yalamanchili. A

Messaging Layer for Heterogeneous
Endpoints in Resource Rich Clusters. In
Proceedings of the First Myrinet User
Group Conference, 2000.

[2] C. Ulmer, C. Wood, and S. Yalamanchili.

Active SANs: Hardware Support for
Integrating Computation and
Communication. In Proceedings of the
Workshop on Novel Uses of System Area
Networks, 2002.

[3] K. Yocum, J. Chase, A. Gallatin, and A.

Lebeck. Cut-Through Delivery in Trapeze:
An Exercise in Low Latency Messaging.
In Proceedings of IEEE Symposium on
High-Performance Distributed
Computing, 1997.

[4] N. Boden, D. Cohen, R. Felderman, A.

Kulawik, C. Seitz, J. Seizovic, and W. Su.
 Myrinet: A Gigabit-per-second Local Area

Network. In IEEE Micro, Vol.15, No.1,
1995.

[5] M. Mittal, A. Peleg, and U. Weiser. MMX

Technology Architecture Overview. In
Intel Technology Journal, Q3, 1997.

[6] Intel Corporation. Intel Pentium 4 and

Intel Xeon Processor Optimization
Reference Manual. Intel document
248966-04, 2001.

[7] S. Thakker and T. Huff. The Internet

Streaming SIMD Extensions. In Intel
Technology Journal, Q2, 1999.

[8] R. Bhoedjang, T. Ruhl, and H. Bal. User-

Level Network Interface Protocols. In
IEEE Computer, Vol.31, No.11, P53-60,
1998.

[9] Embedded Solutions, Ltd. RC1000-PP
 Hardware Reference Manual. Product
 data sheet, 1999.

[10] Myricom. Myrinet Frequently Asked

Questions. http://www.myri.com.

[11] Intel. IXP1200 Network Processor

Datasheet. December 2001.

