
SUMMARY

Cluster computing is an alternative approach to supercomputing where a large number of

commodity workstations are utilized as the processing elements in a multiprocessor system.

These workstations are interconnected by high-performance system area network hardware

and specially designed “message layer” communication software. In the current generation

of cluster computers, researchers have optimized message layers for communication between

the host CPUs in the cluster in order to provide scalable computing performance. However,

the recent development of a number of high-performance peripheral devices challenges the

notion that message layers should be designed in such a CPU-centric manner. Modern

peripheral devices feature powerful embedded processing and storage capabilities that can be

leveraged to boost the performance of distributed applications. These peripherals function

as sources and sinks of application data, and in some cases, as computational accelerators

for offloading host-CPU tasks.

As Moore’s Law continues its relentless trend, there will continue to be a migration of

computing power to peripheral devices. Future clusters will not appear anything like the

clusters of today. They will be rich in connectivity and computing power that is deeply

embedded in the distributed components of the cluster. We refer to this new generation of

systems as resource-rich cluster computers (Figure 1). These systems differ from traditional

clusters in that application processing takes place in both the host CPUs and the peripheral

devices. While the semiconductor industry continues to alter the economies of scale, the

system software that productively enables resource-rich clusters is sorely lagging. Specifi-

cally, current generation message layers are ill equipped to service the needs of resource-rich

SAN NI
Ethernet

Host
Host

Host

System Area
Network

Cluster

SAN NI
Video Capture

FPGA

Host

Host Host

Storage

HostHost

CPU CPU

Figure 1: The architecture of emerging resource-rich cluster computers.

xx

clusters, as they are not designed to utilize peripheral devices as globally accessible resources

in a cluster. This thesis focuses on the challenge of designing extensible message layers for

this new generation of resource-rich clusters. We are specifically concerned with making

peripheral devices available as globally accessible resources in the context of a programming

model that permits applications to effectively and efficiently exploit the capabilities afforded

by resource-rich clusters. The key contributions of this thesis fall into two categories. The

first includes design concepts and programming abstractions for structuring messages layers

to integrate powerful peripheral devices into a globally accessible pool of resources. The

second class of contributions is engineering solutions to the challenging problems of effec-

tively and efficiently realizing these design concepts in a manner that tracks the evolution of

technology, that is, the continued migration of computing power to distributed resources.

xxi

List of Acronyms

3GIO: Third generation I/O
AGP: Accelerated graphics port
AM: Active messages
API: Application programming interface
ASAN: Active system area network
ASIC: Application-specific integrated circuit
BIP: Built-in Parallelism message layer
BT8x8: Brooktree video capture card chipset
COTS: Commercial off-the-shelf
CPLD: Complex Programmable Logic Device
CPU: Central processing unit
DMA: Direct memory access
DSM: Distributed shared memory
DSP: Discrete signal processor/processing
EISA: Enhanced industry standard architecture
FC: Flow control
FFT: Fast Fourier transform
FM: Fast messages
FPGA: Field-programmable gate array
GM: Glenn’s Messages
GNU: GNU’s not Unix
GRIM: General-purpose Reliable In-order Messages
IB: InfiniBand
IP: Internet Protocol
ISA: Industry standard architecture
LC: Logical channel
LFC: Link-level flow control
MCA: Microchannel adaptor
MFLOPS: Millions of floating-point operations per second
MP: Multiprocessor
MPI: Message Passing Interface
MPP: Massively parallel processor
MTU: Maximum transfer unit
NI: Network interface
NIC: Network interface card
PC: Personal computer
PCI: Peripheral component interconnect
RAID: Redundant array of independent disks
RPC: Remote procedure call
SAN: System area network (also storage area network)
SMP: Symmetric multiprocessor
SRAM: Synchronous RAM
TCP: Transmission control protocol
TPIL: Tunable PCI injection library

xxii

UDP: User datagram protocol
VM: Virtual memory
VMMC: Virtual memory mapped communication
VNN: Virtual node number

xxiii

CHAPTER I

INTRODUCTION

1.1 Background

After years of escalating supercomputer costs, a number of researchers in the early 1990’s
began investigating alternative means of constructing high-performance computing plat-
forms that could satisfy the needs of both commercial and scientific parallel-processing
applications. One of the most successful results of this effort is the field of cluster comput-
ing. In cluster computing a large number of commercial workstations are interconnected
with a high-performance communication network so that the workstations can function as
the processing elements of a large parallel-processing machine. While cluster computers
typically lack the peak performance levels of traditional supercomputers, they provide an
excellent cost-to-performance ratio that has attracted the attention of many users.

A key technology that makes cluster computers possible is the message layer software
that implements inter-processor communication within the cluster. This software provides a
set of message-passing programming abstractions that are utilized to transport data between
communication endpoints in the cluster. Early message layer research efforts discovered that
end application performance is often sensitive to the latency and bandwidth characteristics
of a message layer’s implementation. Therefore a significant amount of research during
the 1990’s focused on improving the host-to-host communication performance of a cluster’s
message layer. This effort has resulted in message layers that are highly optimized for
transferring data between a cluster’s host CPUs.

However, modern workstations are designed and optimized for high-speed sequential
computation while accessing relatively slow peripheral devices. They are not optimized for
inter-processor communication. Current message layers are designed to be as efficient as
possible given these constraints and optimize transfers between host CPUs. The advent of
powerful, inexpensive embedded processors has produced a migration of computing power
to the peripheral devices “closer” to the sources and sinks of data. Media servers, content
processing clusters, and data-intensive scientific applications all rely on complex interac-
tions with peripheral devices to complete their objectives. These cards intelligently manage
network and disk activities on behalf of the operating system to reduce the workload of
the host. Other manufacturers have constructed powerful accelerator cards that utilize
specialized hardware to accelerate the computational performance of certain operations. A
cluster node now is comprised of multiple relatively powerful CPUs interspersed between pe-
ripherals, high-speed networks, and low speed intra-processor buses. CPU-centric message
layers ignore this migration of compute power and no longer effectively use communication
resources.

The inclusion of powerful peripheral devices into the cluster results in a new class of
clusters which we refer to as resource-rich cluster computers. In these systems application
processing takes places in both the host CPUs and peripheral devices. Traditional CPU-
centric communication libraries are rapidly becoming a bottleneck and they do not provide
the fundamental mechanisms that allow a peripheral device to be efficiently utilized as a
resource in the cluster’s distributed environment.

1

The goal of this thesis is to investigate, implement, evaluate, and deliver a set of commu-
nication abstractions and the associated message layer for resource-rich clusters governed
by the principle of extensibility. In one dimension, extensibility refers to the ability to
easily add new peripheral devices to the message layer as sources and sinks of data. A
second dimension of extensibility refers to the ability to easily support multiple higher-level
abstractions, e.g., sockets.

1.2 The Thesis

The work presented in this thesis addresses this problem by defining key aspects of a message
layer that allow it to serve as a flexible means of interconnecting diverse endpoints in a
cluster. A central part of this work is the migration of core message layer functionality
into an intelligent network interface (NI) card. Performing management functions in the
NI simplifies the amount of work an endpoint must perform to interact with other cluster
resources, which in turn makes it easier to integrate new peripheral devices into the cluster.
Migrating functionality into the NI is also beneficial because it allows the message layer
to be utilized in an extensible manner. Extensible in this case refers to the ability for end
users to layer new functionality on top of the core message layer and utilize the software in
new and creative manners.

In this work we define three specific characteristics of a message layer required to support
the inter-processor communication needs of resource-rich clusters.

• Reliability: The transfer of data from one endpoint to another is reliably managed
using per-hop flow control. In this approach data moves from one stage to the next
in the communication path as buffer space becomes available. This approach removes
the need for end-to-end flow control being managed by endpoints that have historically
resided in host CPUs.

• Virtualization of Resources: Endpoints and the communication between them
should be decoupled from the underlying physical channels and hardware. Thus the
message layer is designed to support multiple logical channels of traffic. These channels
solve problems with multiple endpoints sharing a single NI and allow for different
traffic streams to be insulated from each other.

• Abstractions: Finally, the message layer is equipped with both active message and
remote memory programming interfaces. The active message interface allows remote
CPUs and peripheral devices to be controlled with a flexible API while the remote
memory interface allows large blocks of data to be transferred at high speeds between
endpoints.

The General-purpose Reliable In-order Message layer (GRIM) has been constructed as a
means of investigating the low-level communication characteristics of a resource-rich cluster.
GRIM implements the functionality described in this thesis for a commodity x86-based
cluster of hosts interconnected by a high-performance Myrinet network. To demonstrate
extensibility, GRIM has been utilized for interactions with four different types of commercial
peripheral devices in the cluster: an intelligent LAN and storage adaptor card, an FPGA
accelerator card, a video capture card, and a generic video display device. Additionally,

2

to demonstrate the extensible nature of the core GRIM library, it has been extended with
functionality to support multicast operations in the NI and provide users with a TCP
sockets programming interface. While other message layers may exhibit similarities to
some of GRIM’s functionality, GRIM is the only (known) message layer that supports
direct interactions with peripheral devices in a portable manner.

1.3 Organization of the Dissertation

The work presented in this thesis is organized as follows.

• Chapter 2: A brief background of cluster computers is provided to summarize how
clusters have emerged and evolved over the last decade. Fundamental description
of traditional cluster hardware is presented, as well as brief descriptions of existing
communication libraries for cluster computers.

• Chapter 3: This chapter provides information about the environmental characteris-
tics of resource-rich clusters. Based on these characteristics fundamental properties
of a communication library for these clusters is discussed.

• Chapter 4: The guidelines for designing a resource-rich cluster communication li-
brary are then applied to implement a real system. This chapter discusses the core
functionality of the GRIM communication library.

• Chapter 5: The performance characteristics of GRIM for traditional transactions
between host CPUs is examined and compared with existing work.

• Chapter 6: This chapter provides a description of how commercial peripheral devices
can be attached to the GRIM communication library. As an example of the horizontal
extensibility of GRIM, four commercial peripheral devices with different operating
characteristics are integrated into the GRIM library. Performance measurements are
provided for each device.

• Chapter 7: Integrating distributed, specialized computing resources into a unified
infrastructure for an application is the topic of this chapter. Specifically, this chapter
provides insight as to how peripheral devices can be utilized to construct distributed,
computational pipelines.

• Chapter 8: To demonstrate the vertical extensibility of GRIM, this chapter provides
implementation details of a multicast system that performs message replication in the
NI, general-purpose fragmentation and reassembly mechanisms, and an emulation of
a sockets API.

• Chapter 9: The thesis concludes with some summary remarks and directions for
future work.

3

CHAPTER II

BACKGROUND

By the end of the 1980’s, the need for high-performance computing platforms in scientific
and military applications had resulted in the emergence of a small number of supercomputer
companies. These companies constructed large-scale systems that utilized massive amounts
of custom hardware to improve application performance. Unfortunately, because these
systems were extremely expensive, supercomputers were not a practical option for a large
number of end users. Therefore, researchers in the 1990’s began exploring alternative high-
performance computational platforms that could be constructed in a more cost-effective
manner. One of the results of this effort is the field of cluster computing. In cluster
computing a large number of commercial workstations are collectively utilized to function
as a single, multiprocessor system. Since system hardware is comprised of widely available
commercial components, cluster computers can be constructed at a fraction of the cost of
traditional supercomputers. As such, a considerable amount of high-performance computing
research in recent years has focused on improving cluster computer performance.

A key challenge in improving cluster computer performance is adapting commodity hard-
ware and software to function as part of a high-performance, multiprocessor system. Early
cluster computing efforts revealed that application performance is highly dependent on the
performance of a cluster’s communication facilities. From a hardware perspective, several
companies have addressed this issue by constructing system area networks (SANs) that pro-
vide an order of magnitude improvement over traditional local area networks (LANs). From
a software perspective, researchers have constructed specialized communication libraries, or
message layers, that are designed to deliver native SAN performance to end applications. In
addition to facilitating low-latency, high-bandwidth communication, these message layers
provide a programming abstraction where the cluster is viewed as a pool of host CPUs in
a large virtual parallel-processing machine. This abstraction has sufficed for numerous re-
searchers to effectively utilize a cluster computer’s hardware as a distributed multiprocessor
system.

2.1 Evolution of High-Performance Computing Platforms

Supercomputers are the computational systems that deliver the highest peak performance
of all computer systems available at a given point in time. These systems typically employ
large amounts of custom hardware to accelerate computational performance and often fea-
ture specialized computer architectures. Supercomputers have been primarily designed to
process complex scientific applications that frequently exhibit large amounts of data par-
allelism. A number of commercial supercomputer systems have been produced since early
groundbreaking work performed by the industry in the 1970’s. The evolution of this tech-
nology provides both insight into high-performance computing and a motivation to continue
the work in related research areas.

4

2.1.1 A Brief History of Commercial Supercomputers

While numerous people have contributed to the field of supercomputing over the years,
perhaps the most influential individual in this effort is pioneer Seymour Cray. After leaving
the Control Data Corporation in 1972 to form Cray Research, Cray began work on a new
computer architecture that would provide significant gains in peak performance levels. In
addition to advances in high-speed circuitry, Cray investigated the use of sophisticated vec-
tor processing units that allow computations to be applied to a stream of data to achieve high
throughput. In 1976 the Cray-1 [81] was brought to market with a retail value of approxi-
mately nine million dollars and a record-breaking performance of 133 million floating-point
operations per second (megaflops). In addition to being a technological marvel, the Cray-1
demonstrated that there was a definite market for expensive high-performance computing
systems. Cray continued his work with vector processor systems, producing the 2 gigaflops
Cray-2 in 1985 and the 5 gigaflops Cray-3 in 1989. A number of other computers followed
the trend of vector processor systems, including the Meiko CS-2 [59], the NEC SX series
supercomputer [60], the Fujitsu VP series supercomputer [91], and IBM’s vector extensions
to the System/370 [69]. Currently, the fastest system in the world [32] is the NEC SX-6,
used in the Earth Simulator Center [102] in Japan. This system provides up to 8 teraflops
of performance and employs multiple single-chip vector processing units.

The supercomputing industry also explored other architectural techniques for increasing
the computational performance of a system. A key effort in this work is the use of a large
number of processors to perform computations in parallel. In the SIMD (single instruction
stream, multiple data streams) approach, a large number of identical processors perform the
same series of operations on different data sets. Multiple SIMD systems were constructed in
the early 1990’s, including the MasPar Computer Corporation’s MP-1 [17] and the Think-
ing Machines Corporation’s CM-2 [41]. Both of these systems housed up to 16,384 SIMD
processing elements, and could be used for parallel applications such as image processing.
Due to the programming complexity of SIMD, researchers began constructing MIMD (mul-
tiple instruction streams, multiple data streams) systems that employed a large number of
general-purpose CPUs. This work resulted in massively parallel processing (MPP) systems
such as the Intel Paragon [45] (up to 4,000 Intel 80860 processors), the TMC CM-5 [55]
(up to 16,000 SUN SPARC processors), and the Cray Research Cray-T3E [83] (up to 2,048
DEC Alpha 21164 processors).

2.1.2 Motivation for Alternate Computing Platforms

While the supercomputer companies of the 1980’s provided significant advances in the field
of high-performance computing, a large number of these companies withdrew from the su-
percomputer business in the 1990’s. In hindsight it can be said that a common vulnerability
for these companies was the large amount of custom design that was required to build a
supercomputer. Several of these companies operated with a vertical design methodology,
constructing all components of the system from the individual processors to the inter-
connection network. While having complete control over the design space gave engineers
freedom to innovate performance enhancements, product design times were increased and
complicated by the volume of custom hardware design that was required. Therefore, new
supercomputers were expensive, brought to market infrequently, and often could not be
designed in time to utilize the latest developments in state-of-the-art technology.

Additional issues make traditional supercomputers less appealing to researchers that

5

need high-performance computing platforms. First, supercomputers generally are not scal-
able and therefore offer a limited lifetime of leading-edge use. An investment in a state-
of-the-art supercomputer depreciates rapidly in value due to Moore’s Law, thereby making
current systems obsolete within 18 months. Second, supercomputers require specialized
hardware and software maintenance that adds to the expense of ownership. These compo-
nents can be expensive to replace and there are generally few people that are trained to
perform such maintenance. Finally, it must be noted that a risk in purchasing a traditional
supercomputer is that the manufacturer might go out of business or otherwise abandon
support for a particular product. Maintaining and utilizing orphaned hardware is time
consuming and ultimately impedes end users.

Given the problems associated with using traditional supercomputers, a number of re-
searchers in the early 1990’s began exploring alternative methods by which high-performance
computational platforms could be constructed. This effort made several observations about
commercial technological advances and the global marketplace that would influence the con-
struction of future parallel-processing systems. These observations include the following:

• Commercial Off-the-Shelf (COTS) Parts: In industry there are numerous cor-
porations producing state-of-the-art hardware and software components. By using
COTS parts, designers leverage other people’s work and reduce the design time for a
system. COTS parts are also beneficial because components can easily be replaced or
upgraded from third-party products.

• Growth in the Workstation and Network Markets: Consumer demand for
personal computers has resulted in high-performance workstations that are available
at a low cost. Processor design in this market remains competitive, resulting in fre-
quent updates to peak performance levels. Likewise, consumer interest in the Internet
has resulted in advances in network hardware. The need for faster networks has re-
sulted in low-cost local area networks (LANs) that economically offer high-bandwidth
communication.

• A Rich Software Environment: An important aspect of commodity workstations
is the wide availability of software. Operating systems such as GNU/Linux provide
a UNIX-like environment with built-in network features. The open source nature of
Linux allows researchers to easily incorporate custom functionality into the operating
system kernel.

In summary, researchers observed that advances made in consumer markets in the 1980’s
and 1990’s had resulted in hardware that was widely available, economical, and offered re-
spectable levels of computational performance. These systems could be utilized to provide
impressive price-to-performance ratios and have benefited from considerable efforts to im-
prove the PC’s software environment.

2.1.3 Emergence of Cluster Computers

In the mid-1990’s, researchers began investigating the use of multiple commodity worksta-
tions to construct a new form of high-performance system. This work resulted in the notion
of a cluster computer, where a number of workstations are collectively utilized to function
as a single parallel-processing system. Through commodity network hardware and special-
ized communication software, a cluster computer can effectively appear as a large pool of

6

Memory
CPU

Network

Interface

I/
O

 B
u

s

Network

Memory
CPU

Network

Interface

I/
O

 B
u

s

Memory
CPU

Network

Interface

I/
O

 B
u

s

Figure 2.1: A cluster computer constructed with commodity workstations and network
hardware.

host processors to the end user. Since workstations in the cluster are commercially available
products, cluster computing can leverage the performance gains achieved by the workstation
industry. The high-level architecture for a cluster computer is depicted in Figure 2.1.

One of the first cluster computing projects to receive serious attention from the scientific
community was NASA’s Beowulf Project [14]. In this work, researchers demonstrated that a
small number of dedicated workstations could collectively operate to perform computations
that were beneficial to scientific computing [13]. Utilizing commodity PCs equipped with
multiple Ethernet adaptors, the 16-node demonstration cluster achieved 60 megaflops in
1994. Later clusters in this project would expand the number of workstations to 199 nodes
and accomplish 10 gigaflops of performance for under $50,000. While researchers stated that
Beowulf clusters were a far step from true supercomputing, the price-to-performance ratio
was a significant motivator for building such clusters. After this work numerous research
institutes constructed Beowulf-style clusters out of Ethernet-connected PCs.

An observation made about the early Beowulf-style of cluster was that while some
applications performed well, others did not. An examination of this problem revealed that
these clusters were severely limited in terms of communication performance. Grossly parallel
applications that did not require significant amounts of communication between host CPUs
performed well because each task in the cluster could operate independently. However,
applications that required frequent exchanges of data between CPUs performed poorly due
to the low performance of the network. The conclusion to be drawn from this observation is
that ultimately, the communication performance of the cluster determines the granularity
at which parallel-processing applications can productively use a cluster.

Realizing that the poor communication performance limited the types of applications
a Beowulf cluster could run, researchers in the mid to late 1990’s began examining ways
in which the cluster’s communication performance could be enhanced. Several academic
projects focused on adding hardware to facilitate specific types of communication. In the
SHRIMP project at Princeton [18], workstations were extended with hardware that allowed
hosts to operate in a distributed shared memory (DSM) environment. At Purdue, the PA-
PERS project [31] utilized custom hardware to rapidly distribute barrier synchronization
information to host computers. However, the most significant advance for cluster comput-
ers came with the advent of commercially available system area networks (SANs). SANs
provide communication performance that is over an order of magnitude better than tra-
ditional LANs. This allows for significant improvements in fine-grain parallel processing

7

performance. Current work in high-performance cluster computers involves delivering as
much native performance from a SAN as possible to end applications.

2.2 Using Workstations as a Cluster Computer’s Processing Elements

Multiprocessor systems are generally comprised of two types of hardware components: pro-
cessing elements that are used to perform computations, and a communication network to
distribute data in the system. In cluster computers, individual workstations function as
processing elements, while commodity SAN hardware performs communication tasks.

2.2.1 Workstation CPUs

A number of vendors have constructed different workstations that can be utilized in a cluster
computer. Historically, companies such as Sun Microsystems, Hewlett-Packard, SGI, and
Compaq/DEC have dominated the workstation industry with CPU architectures that offer
high performance at a relatively high cost. However, the workstation market for these
companies has eroded over the last decade as x86-based PCs and PowerPC-based Apple
Macintosh computers have steadily improved in performance and popularity. Because of
its impressive price-to-performance ratio, the x86 PC has become the workstation of choice
for the majority of cluster computing efforts. Therefore, the work presented in this thesis
specifically deals with clusters constructed from x86-based PCs.

While affordable, x86-based systems have some of the most limiting architectural char-
acteristics of any workstation when used for high-performance computing. First, the x86 is
based on a 32-bit architecture that may not be sufficient for the processing needs of scientific
applications that require 64-bit computations. Second, an x86 processor can only support
4 GB of physical memory. This trait limits the amount of state information an application
can have loaded at a workstation, and is becoming more of an issue as memory prices con-
tinue to decline. Finally, in order to obtain peak performance levels in x86-based hosts, it
is often necessary to utilize architectural extensions such as the MMX and streaming SIMD
(SSE) units. The performance of these units can vary greatly between different generations
of x86 processor.

2.2.2 Evolution of Workstation I/O Systems

A second key factor that affects the performance of a workstation as a processing element
is the architecture of its I/O system. In ideal multiprocessor systems, processing elements
are placed in close proximity to the NIs in order to allow fine-grained interactions between
applications and the network. Unfortunately, in most workstations the CPU and NI are
separated by a complex general-purpose I/O system. Transactions involving the I/O system
can be up to an order of magnitude slower than similar transactions with host memory.
While the computer industry makes improvements to x86 CPU performance multiple times
a year, PC I/O performance is improved on average once every three years.

Figure 2.2 highlights the history of I/O systems utilized in PCs. The peripheral compo-
nent interconnect (PCI) standard [71] provides reasonable performance and has become the
de facto standard for peripheral devices in current workstations. While this thesis targets
PCI-based systems, the implementation can be tuned to platforms with higher bandwidth
I/O systems.

8

ISA-8
8 MB/s

ISA-16
16 MB/s

MCA
40 MB/s EISA

33 MB/s

PCI-32/33
132 MB/s

PCI-64/33
264 MB/s

PCI-64-66
528 MB/s

PCI-X
1.06 GB/s

3GIO
?

 1

 10

 100

 1,000

 10,000

1980 1985 1990 1995 2000 2005

P
e

rf
o

rm
a

n
c

e
 (

M
B

y
te

s
/s

)

Year

Figure 2.2: A history of PC I/O systems.

2.2.3 Peripheral Component Interconnect (PCI)

The peripheral component interconnect (PCI) standard was introduced in 1992 as a means
of allowing high-speed peripheral devices to be incorporated into the x86 PC architecture.
The architecture of modern host systems employing PCI is depicted in Figure 2.3. In this
architecture the system’s memory controller is responsible for routing data between the host
CPU(s), main memory, and peripheral devices on the PCI bus. At boot time the memory
controller assigns regions of the host’s 32-bit physical address space to both main memory
and individual peripheral devices. When a device driver for a PCI card is loaded into the
kernel, the driver can establish a memory translation that allows the card’s memory to
appear in the kernel’s virtual address space. The driver can then share this mapping with
user-space applications through the implementation of a memory map system call, handled
by the device driver. Doing so allows user-space applications to directly read and write the
on-card memory of a peripheral device.

In addition to memory mapped reads and writes from the host CPU, communication
involving peripheral devices can be facilitated by on-card DMA engines that are available
with bus-mastering PCI devices. These DMA engines adhere to the low-level PCI bus
standard and can be used to transfer blocks of data between a peripheral device and host
memory or other peripheral devices in the system. All memory references on the PCI bus are
in terms of the host’s 32-bit physical address space in the x86 architecture. Each PCI device
also controls an interrupt request (IRQ) line, which can be used to transmit an interrupt
to the host CPU. Due to a limited number of IRQs in a host, multiple peripheral devices
may share the same interrupt, requiring each card’s device driver to determine which card
initiated an interrupt.

A number of modern PCI devices support sophisticated DMA transfers through the
use of chained DMA operations. With chained DMA, a peripheral device is capable of
performing a series of DMA operations as specified by a linked-list of DMA descriptors.

9

CPU

Memory

Controller

Cache

Main

Memory

P
C

I
B

u
s

PCI

DMA

Peripheral

Device

Memory

Figure 2.3: Architecture of a modern host utilizing PCI.

Each descriptor in a linked list specifies the length, direction, and addresses of a transfer.
Some implementations allow users to specify whether an interrupt should be generated for
the host at the completion of a transfer for a given DMA descriptor. The DMA engine
processes each descriptor linearly until an end-of-chain marker is specified in a descriptor.
While most cards employ a similar API for controlling chained DMA operations, it should
be noted that there is no standard and that each peripheral device driver must be outfitted
with custom functionality.

2.2.4 Architecture Tradeoffs

There are a number of architectural tradeoffs designers must face when considering how clus-
ter computer workstations can be used as processing elements in a multiprocessor system.
From the previous three subsections it is clear that host CPUs in a cluster computer incur
significant overheads when interacting with other CPUs in the cluster. This trait is a seri-
ous obstacle for application designers, especially when clusters are compared to traditional
MPP supercomputers that allow fine-grained network interactions. However, a workstation
by itself is a complete, self-contained system that features processing, memory, and stor-
age resources, as well as a sophisticated operating system for managing these resources.
Therefore, a processing element in a cluster computer is more likely to be better equipped
to perform diverse tasks than a processing element in a traditional MPP supercomputer.
The architectural tradeoffs of using workstations as processing elements therefore suggests
that cluster computers are better utilized for computations where operations can localized
to individual processing elements.

2.3 Cluster Computer Network Hardware

In addition to processing elements, multiprocessor systems must be equipped with com-
munication infrastructure that allows distributed processor elements to interact. In cluster
computers, this infrastructure is built from commercial network hardware. Several network
substrates have been used in cluster computers over the years. One of the most popular
approaches is to employ traditional LAN hardware such as Ethernet. While economical, the
drawback of Ethernet is that it only offers limited host-to-host communication performance
in a cluster environment. Therefore, a number of companies have constructed system area

10

network (SAN) products that are better suited for cluster computers. These SANs fea-
ture multi-gigabit bandwidths and host-to-host transmission latencies that are less than
50 µs. SANs generally offer high levels of reliability and commonly utilize intelligent NI
cards to manage network interactions. Examples of SANs include Myricom’s Myrinet [19],
Compaq’s Servernet [42], Dolphin Interconnect Solutions implementation of the scalable
coherent interconnect (SCI) [2], and Quadrics’ QsNet [72].

2.3.1 Ethernet

The Ethernet network standard first created at Xerox Parc labs in 1976 [62] has grown
to become the most popular network ever utilized. The Ethernet standard has been pe-
riodically updated over the years, and now features link speeds of up to 10 Gbps in the
most recent standard [8]. Ethernet NI cards traditionally have employed a simple hard-
ware architecture where the NI only manages a pair of message queues for incoming and
outgoing transmissions. In this approach the host CPU formats and processes all messages
transferred to and from the network. In order to reduce the workload of the host CPU,
some high-end Ethernet NI cards feature more sophisticated processing engines that are
capable of managing network interactions on behalf of the host. These intelligent NI cards
are especially beneficial for Gigabit Ethernet networks where high-bandwidth transactions
are necessary.

While widely available, Ethernet is not the ideal communication substrate for cluster
computers. The primary issue is that Ethernet was designed for use in LANs. Since data in
LANs is transmitted over long distances, Ethernet is largely optimized for bandwidth but
not latency. Another consequence of Ethernet being designed for LANs is that the hardware
is not designed to facilitate reliable transmissions. Instead, workstations in the cluster must
implement reliable transmission protocols that can tolerate dropped messages. Finally,
Ethernet hardware can be criticized because currently there is a lack of high-performance
NI adaptors. In [40] researchers compare several commercial Gigabit Ethernet adaptors.
Tests using a host with 32b/33MHz PCI found that the maximum obtained bandwidth was
only 436 Mb/s, while most of the cards provided less than 200 Mb/s. In tests using a host
with 64b/66MHz PCI general performance rose to 650 Mb/s, with one card obtaining 928
Mb/s. While industry is steadily improving Gigabit Ethernet product performance, these
tests demonstrate that it is still challenging to obtain the peak performance levels of the
network.

2.3.2 Scalable Coherent Interconnect (SCI)

The scalable coherent interconnect (SCI) standard is a SAN for clusters that has gained
widespread use in Europe. SCI evolved out of the Futurebus+ project [1] in 1988 as a means
of developing a next-generation I/O infrastructure for high-performance workstations. SCI
is designed to allow a large number of hosts to function as part of a distributed shared
memory machine. In the programming model for this system, each host is allocated a region
of memory in SCI’s global address space. When a host reads or writes a region of the address
space that is not available at the local node, the SCI NI card forwards the transaction to
the memory system of the host that owns the memory. Distributed memory interactions
take place efficiently in SCI because shared memory protocols are implemented in hardware
in the SCI NI cards. Initial versions of SCI interconnected hosts in ring topologies similar
to token ring LANs. As the standard evolved SCI hardware was adapted to operate in

11

Table 2.1: A history of Myrinet network interface cards.

Year Processor Clock Rate Memory Host I/O Link Speed

1994 LANai 3 25 MHz 128 KB 20 MHz SBUS 640 Mb/s

1996 LANai 4 33 MHz 1 MB 32b/33 MHz PCI 1.28 Gb/s

2000 LANai 9 100-200 MHz 2-8 MB 64b/66 MHz PCI
1.28 Gb/s
2.0 Gb/s

point-to-point network topologies using dedicated switches.
An advantage of SCI’s approach to communication is that it provides a specific set of

actions that the network hardware must perform. These actions can be implemented with
custom hardware that benefits from circuit-level optimizations. While this prevents the NI
from being extended with functionality by the user, it allows NI hardware to be simplified
and produced more economically. One of the largest vendors of SCI hardware is Dolphin
Interconnect [6]. This company’s implementation of SCI has an application-to-application
performance of up to 2.6 Gb/s in bandwidth and 1.4 µs in latency [7] (using IA64 Itanium
hosts).

2.3.3 Myrinet

Myricom’s Myrinet is one of the most commonly utilized SANs for cluster computers due to
its high levels of performance and programmability. Myrinet is a descendent of the Mosaic
[84] and ATOMIC [35] research projects. In these projects researchers developed a high-
performance network for multiprocessor systems that employed source-routed, wormhole
[29] messages to reduce switch latencies. These networks provided high levels of data relia-
bility and would only drop messages if deadlock was suspected. Myricom converted Mosaic
into a commercial product known as Myrinet for use with commodity workstations. Myrinet
in its current implementation consists of network switches, 1.28+1.28 to 2.0+2.0 Gb/s links,
and programmable NI cards. Network hardware is connected in a point-to-point fashion,
allowing the construction of both regular and irregular network topologies. In minimizing
switch latency, Myrinet designers have pushed network tasks out of switch hardware and
into the NI cards. A beneficial side effect of this design choice is that network functionality
(e.g., multicast or added fault tolerance) can be implemented by users in the form of NI
firmware. Myricom has released several generations of NI hardware as summarized in Table
2.1.

The organization of the Myrinet NI is depicted in Figure 2.4. In this architecture the
NI is situated between an interface to the host I/O system and an interface to the network
wire. High-speed SRAM is utilized to house both the executable firmware and data for the
NI. Firmware typically occupies less than 256KB of SRAM memory, allowing the remaining
memory to be used as needed by communication library designers. The SRAM is shared
between the LANai and DMA engines through a priority based memory controller.

While the architecture of the Myrinet NI is relatively simple, the NI is a powerful device
because it can support multiple data transfers at the same time. The NI can be configured
to simultaneously send data to the network, receive data from the network, and issue a
DMA transfer to or from host memory. In more recent versions of the Myrinet NI the NI
is also capable of supporting multiple DMA transfers between the NI and host using four

12

SRAM

RISC

CPU
PCI

Tx

Rx

Host

DMA

SAN

DMA

LANai Processor

Myrinet NI Card

Figure 2.4: Architecture of the Myrinet NI card.

PCI DMA engines. The programmable nature of the NI has allowed firmware designers
to construct efficient communication pipelines with the NI, where data is transferred in a
cut-through manner without buffering delays in the NI. Basic performance measurements
of the LANai 4 and 9 NI cards are provided in Appendix A.

2.3.4 Quadrics QsNet

The QsNet [72] interconnection network is a relatively new SAN product created by Quadrics
in Europe. QsNet is currently being utilized in high-end cluster computers such as the
Terascale Computing System [73] at the Pittsburgh supercomputer center (currently the
third fastest supercomputer in the world [32]). Similar to Myrinet QsNet uses wormhole
routing to efficiently transfer data between NI cards through a point-to-point network. How-
ever, QsNet differs in that communication resembles a virtual circuit approach as wormhole
transmission paths are not released until the receiver transmits an acknowledgement token.
Similar to SCI QsNet provides a means of allowing hosts in the network to share a global
address space. In order to accelerate remote memory operations, NI cards are equipped with
hardware engines that can dynamically translate virtual addresses into physical addresses.
Initial reports of QsNet indicate that it is capable of providing over 2.4 Gb/s of bandwidth
and approximately 2 µs of latency between user-space applications.

2.4 Cluster Computer Network Software

After early work in Beowulf-style clusters, researchers observed that the high latency of
traditional communication libraries for LANs precluded fine-grained cluster applications.
Given the raw performance available in SAN hardware, a considerable amount of cluster
computing research in the late 1990’s focused on techniques for harnessing this communi-
cation performance. This work resulted in the development of a number of custom com-
munication libraries or message layers that offered mechanisms for reducing communication
latency and increasing bandwidth between host-level applications. The most commonly
utilized SAN in this effort is Myrinet due to its open source software and well-documented
hardware. A large number of message layer packages have been implemented for Myrinet,
including Active Messages (AM, AM II) [23],[23], Fast Messages (FM) [70], PM [89], Link-
level Flow Control (LFC) [12], Trapeze [101], Virtual Memory Mapped Communication

13

(VMMC) [33], GM [64], and BIP [75].

2.4.1 Limitations of LAN Protocols

Early Beowulf-style cluster computers utilized traditional LAN hardware and software to
provide reliable communication between workstations in the cluster. These clusters typically
employed Ethernet network hardware and communication software based on the transmis-
sion control protocol (TCP). While leveraging existing LAN equipment allowed large cluster
to be constructed easily in a cost-effective manner, researchers observed that these Beowulf-
style clusters offered limited performance in some parallel processing applications. The
fundamental issue observed with using LAN equipment is that it is primarily designed to
transmit data over long distances using an error-prone medium. Therefore LAN software
such as TCP must perform a number of complex transmission management operations in
order to guarantee that messages are reliably delivered in the proper order to a destination.

Cluster computers have different operating conditions than LANs. In cluster comput-
ers, workstations are separated by small distances and utilize dedicated network switches
for local communication. Under these conditions messages are dropped or reordered by
the network infrequently. Therefore TCP’s reliable transfer mechanisms are not optimal
for cluster computers and are in general too heavy weight for high-performance applica-
tions. Transmissions using Ethernet and TCP can suffer communication latencies greater
than 100 µs for host-to-host deliveries. By comparison, inter-processor communication in
a symmetric multiprocessor (SMP) node takes place in only a few microseconds. This dif-
ference in communication performance is enough to significantly limit the effectiveness of
cluster computers in the case of fine-grained, communication intensive parallel programs
[58]. Therefore researchers in the late 1990’s began investigating custom communication
libraries or message layers that were better suited for cluster computers.

2.4.2 Message Layer Characteristics

Message layers for cluster computers serve as a means of transferring application data be-
tween communication endpoints in the cluster. Naturally there are many ways in which
message layers can be designed. Therefore a first step in understanding how message layers
function is to consider a few of the key characteristics of message layers. These character-
istics include the following.

• Programming Interface: One of the most defining characteristics of a message
layer is the programming interface that is provided to end users. Message layers
generally employ one of three types of programming interface. First, active message
[93] systems utilize an interface similar to remote procedure calls (RPCs) [16] where
an application can invoke an operation at a remote endpoint simply by transmitting
a message. Second, in rendezvous approaches sending and receiving endpoints are
tightly synchronized and require the receiving endpoint to post requests to extract
certain messages from the network. Finally, systems using a shared memory program-
ming interface use remote memory operations to manipulate data located at different
hosts in the cluster.

• Buffer Management and Flow Control: NI cards have a limited amount of buffer
space for housing in-flight messages. Therefore an important aspect of a message layer
is the means by which it manages the reliable transfer of messages from one endpoint

14

to another. In some message layers flow-control schemes are applied at either the host
or NI levels in order to prevent messages from being dropped due to insufficient buffer
space at the receiver. Other message layers do not implement such mechanisms, either
for performance reasons or because they are not necessary. For example, in a shared
memory system the receiving NI always accepts and processes an incoming message
and therefore buffer management is not necessary.

• Delivery Order: In a strictly ordered system, messages are processed by a receiver in
the same order they were injected into the network by the sender. When messages are
dropped in the network, a message layer with ordered delivery performs retransmission
and reordering to maintain consistent data flow. In systems where network messages
can carry priorities, some message layers allow higher priority messages to bypass
lower priority messages by relaxing ordered delivery constraints.

• Receiver Notification: Another characteristic of a communication library is the
manner in which the receiving application is notified that a new message has arrived.
In message layers that notify the receiving endpoint, either an interrupt mechanism
or polling is utilized. While interrupts allow applications to interact with the message
layer only when new data has arrived, the interrupts can take place at any time and are
therefore challenging to manage. Polling techniques require application to periodically
examine the message layer for new data, but can generally provide better performance
than interrupts. Shared memory systems do not necessarily need to utilize any explicit
form of notification as this task is implicitly performed by the receiver application.

2.4.3 Common Message Layer Optimizations

Researchers often utilize a number of common techniques for improving the performance
of a message layer. One of the earliest and most widely used techniques is to construct a
message layer in user-space. This technique is beneficial because it allows an application
to interact with the NI card without invoking expensive system calls. Another common
technique used in many message layers is to make use of the reliable nature of SAN hard-
ware. Since SAN hardware can operate for months at a time without a single bit error,
researchers often simplify message layer protocols by assuming the common case of error-
free transmissions. Finally, with the observation that the host CPU is much more powerful
than the NI processor, a number of researchers have minimized the amount of work NI pro-
cessors perform in the message layer. While these optimizations have boosted performance
in message layers, such approaches have resulted in CPU-centric message layers. As will
be discussed in the following chapter, these message layers are inappropriate for resource-
rich cluster computers which require both host CPUs and peripheral devices to function as
communication endpoints.

2.4.4 Myrinet Message Layers

A number of message layers have been constructed for Myrinet over the years. An excellent
survey of several of these message layers is provided in [15]. The more influential of these
message layers are summarized as follows.

• Active Messages (AM, AM-II) [28], [23]: The active messages project was one
of the first academic message layer packages for Myrinet hardware. In addition to

15

demonstrating the active message programming paradigm, AM software illustrated
that communication libraries implemented in user space could provide significant per-
formance improvements. AM utilizes host-based flow-control mechanisms to manage
buffer space in the library.

• Fast Messages (FM) [70]: The FM library was released shortly after AM and ex-
tends AM concepts by providing mechanisms for increased performance, stability, and
usability. FM utilizes an active message programming interface and includes mecha-
nisms for registering and managing application function handlers. Another feature of
FM is its ability to efficiently fragment and pipeline large message transmissions, which
allowed for significant gains in communication performance. While FM originally em-
ployed NI-based flow-control mechanisms, these mechanisms were later deferred to
the host due to poor NI performance.

• BIP [75]: The BIP message layer is an effort to construct a lean message layer that
can provide high performance for higher-level programming interfaces such as MPI
[61]. BIP uses a rendezvous communication model where a receiver must provide the
NI with information that specifies where the NI should store a particular incoming
message. BIP provides no reliability guarantees and has been reported to have the
best communication performance of any Myrinet message layer.

• Virtual Memory Mapped Communication (VMMC) [18]: The VMMC layer is
designed to support shared memory operations on cluster computers. In this software
the library provides efficient means of transferring blocks of data from the virtual
memory of one application to the virtual memory of another application located on a
different host. These operations take place with remote DMA operations and require
no flow-control mechanisms. VMMC NI firmware is equipped with mechanisms to
perform virtual to physical address translation, as well as facilities to cache translation
results.

• GM [64]: GM is an industrial strength message layer from Myricom that provides
good performance and is supported on a wide variety of cluster platforms. Like
BIP, GM utilizes a rendezvous programming interface that works well with MPI. GM
provides rich functionality at both receiving and sending endpoints and uses callback
functions to notify applications that message layer operations have completed. GM
requires that all data transferred with the message library be loaded in a block memory
that is registered with the library. Registered memory allows the NI to efficiently DMA
data between the host and card, with virtual memory translation performed through
a simple table lookup.

2.5 The Virtual Parallel-Processing Machine

In addition to providing low-level mechanisms for transferring data between cluster work-
stations, SAN message layers provide a programming abstraction that allows end users to
control a cluster’s computational resources. This abstraction presents the cluster as a virtual
parallel-processing machine that is capable of running parallel and distributed applications.
An example of such a virtual machine is presented in Figure 2.5. In this example the
message layer maintains information about the workstations in a cluster and provides an
interface where applications can globally reference any host CPU in the cluster. Therefore

16

NI

CPU CPU

NI

CPU CPU

NI

CPU CPU

NI

CPU CPU

System Area Network

Message Layer Virtual Machine

Application Space

Figure 2.5: The virtual parallel-processing machine architecture provided to end users in
current message layers.

an application running at one host CPU transmits data to another CPU by providing the
message layer software with a message that is labeled with the reference identifier for the
destination. In current generation message layers, host CPUs are the only resource included
in the virtual machine architecture.

While there are many ways in which a virtual machine can be realized for a cluster,
a common approach is to load each host in the cluster with an executable program that
is part of an overall parallel-processing application. Each executable contains user-defined
functionality for the local host as well as message layer library functions and information
about the cluster’s global resources. After all hosts in the cluster have executed message
layer initialization functions, the virtual parallel-processing machine becomes operational
and each host begins processing the application code defined in its local executable program.
Maintaining the appearance of a virtual machine is a relative straightforward process in the
message layer after this point, as the message layer must simply service application queries
regarding cluster resources and route transmissions to the appropriate cluster resources.

17

