
CHAPTER III

MESSAGE LAYERS FOR RESOURCE-RICH CLUSTER
COMPUTERS

As discussed in the previous section, cluster computers provide a cost-effective platform
for processing distributed applications. If a cluster computer’s communication library is
visualized as a means of providing a virtual parallel-processing machine for distributed
applications, there is one component of the virtual architecture that current generation
communication libraries omit: peripheral devices. Traditional cluster communication li-
braries are designed to transfer data only between host CPUs, not peripheral devices. For
these libraries it is assumed that cluster interactions with a peripheral device are performed
by a host-level application that resides in the same host as the device. Therefore in order
to interact with a remote peripheral device, an application must communicate with the
remote host’s CPU and request an operation be performed on behalf of the application.
This method of controlling a peripheral device through a proxy incurs costly overheads that
limit the dynamic use of peripheral devices in distributed applications.

The fact that peripheral devices can strongly influence a cluster computer’s performance
challenges the notion that communication libraries should be designed in such a CPU-centric
manner. Peripheral devices are becoming increasingly more powerful and therefore repre-
sent a valuable opportunity for accelerating cluster computer applications. The inclusion of
powerful peripheral devices in the cluster architecture results in a new category of cluster
computer that we refer to as resource-rich cluster computers. Since these clusters exhibit dif-
ferent communication requirements than traditional clusters, it is beneficial to examine the
design of new communication libraries that are well suited to these clusters. These libraries
specifically allow both host CPUs and peripheral devices to be efficiently utilized as com-
putational resources by distributed applications. The resulting virtual parallel-processing
machine provided by the communication library is depicted in Figure 3.1.

This chapter provides the groundwork for designing message layers that are well suited
for resource-rich cluster computers. As a first step in this effort, definitions of the hardware

NI NI 

CPU 

NI NI 

CPU CPU 

System Area Network 

Message Layer Virtual Machine 

Application Space 

FPGA CPU Video 

Capture 
Storage 

Figure 3.1: Including peripheral devices in the virtual parallel-processing machine archi-
tecture provided by the communication library.

18



environment are provided as well as motivating examples of how these clusters can be
beneficial to end users. This work is followed by a discussion of fundamental concepts
that influence the construction of the communication library. These concepts are then
individually elaborated. Finally, this chapter is concludes with a listing of research projects
that are related to resource-rich clusters.

3.1 Emergence of Resource-Rich Cluster Computers

Resource-rich cluster computers are clusters where individual workstations are supple-
mented with powerful peripheral devices. It is important to examine the characteristics
of these clusters in order to determine how message layers should be designed for these
systems.

3.1.1 Availability of Powerful Peripheral Devices

In recent years commercial hardware vendors have constructed a number of powerful pe-
ripheral devices that are designed to perform a variety of application-specific operations.
One of the key motivations for this effort has been the need to produce high-performance
network servers for the Internet. In answer to market demand developers have constructed
a number of intelligent I/O cards for both LAN and storage operations. For LANs, develop-
ers have constructed high-performance network cards that feature embedded processors and
multiple physical links to the network. Some of these cards are equipped with firmware that
allows common network operations such as TCP connection management to be performed
on the network card as opposed to the host. Storage controller cards are also becoming
increasingly more powerful due to the active disk [77] and network-attached storage (NAS)
[65] efforts. Modern intelligent storage adaptor cards are capable of managing a disk’s file
system at the controller in a self-contained manner. These storage cards provide a file-
level interface to end applications and do not require the assistance of the host’s operating
system.

Another area where peripheral devices are becoming more powerful is in multimedia ap-
plications. Driven by consumer interest in high-quality video and audio editing, developers
have made significant improvements to multimedia peripheral devices. Modern audio and
video capture devices can be configured to automatically push high-resolution data samples
directly into host memory, allowing data streams to be captured in real time. Some of
these cards feature hardware to perform desirable operations such as compression, clipping,
and filtering. Other multimedia cards are available for rendering high-quality output for
people to observe. Audio playback and video display cards generate output signals from
large on-card buffers that can be written to by applications. Some of these output cards
feature processing devices that are capable of performing significant computations in real
time.

A third area where peripheral devices have become more powerful is in the field of
computational accelerator cards. These cards are designed to utilize custom hardware to
improve the performance of certain types of computations. Typically these cards employ dig-
ital signal processors (DSPs), field-programmable gate arrays (FPGAs), or even dedicated
application-specific integrated circuits (ASICs). Often these cards feature large amounts
of high-speed memory for storing large data sets on the card and function as a form of
co-processor for the host. The common procedure for utilizing a hardware accelerator card
is for the host application to pass data to the card, have the peripheral device process the

19



data, and then have the results transferred back to the host. Custom hardware accelerator
cards are often useful for processing large streams of data such as multimedia traffic.

3.1.2 Categorizing Peripheral Devices

Based on the previous examples it is possible to broadly categorize peripheral devices by
the manner in which they are utilized. Three common categories include the following.

• Data Sources and Sinks: Peripheral devices are often utilized to produce data for
the host (i.e., a data source) or store data from the host (i.e., a data sink). Some
peripheral devices such as storage adaptor cards are capable of performing both of
these operations. Typically these devices do not perform elaborate computations on
incoming or outgoing data.

• Intermediate Processing Elements: Peripheral devices such as the custom hard-
ware accelerators are primarily designed to process data for the host. Data is typically
injected into these cards, processed, and then ejected back to the host system. Incom-
ing and outgoing data rates for these cards do not have to be equal and are dependent
on the application.

• System Bridges: A peripheral device can also be designed to serve as a form of
bridge between two separate systems. The bridge device therefore manages communi-
cation between the two systems, performing protocol translations when needed. One
example of a bridge is a LAN adaptor card that is utilized to connect the cluster to
an application running at a host that is not part of the cluster. The cluster side of
the bridge communicates with a SAN protocol while the external side utilizes a LAN
protocol (such as TCP).

3.1.3 Characteristics of Resource-Rich Cluster Computer Hardware

A resource-rich cluster’s hardware architecture is similar to traditional cluster computers,
with the exception that workstations are equipped with powerful peripheral devices. Phys-
ically adding these devices to the cluster is relatively simple, as cards are placed in the
available PCI slots of a cluster’s workstations. Figure 3.2 depicts the physical architecture
of a resource-rich cluster computer. Each workstation features various peripheral devices
and is connected to the cluster through a high-performance SAN. This SAN functions as
a backbone for communication in the cluster and can be accessed by both host CPUs and
peripheral devices.

While resource-rich clusters are not a radical departure from traditional cluster archi-
tectures, there are several unique characteristics that communication library designers must
be aware of. The more significant characteristics include the following.

• Two-levels of Communication Infrastructure: Communication within a resource-
rich cluster takes place in two distinct levels: in the local host context (intra-host)
and between hosts using the SAN (inter-host). Intra-host communication can be
facilitated with software that intelligently utilizes the host’s local I/O system. Inter-
host communication requires software that transfers data through both the local I/O
system and backbone SAN substrate.

20



System Area Network 

Memory 
CPU 

I/
O

 B
u

s 

Network 

Interface 

Video 

Capture 

Ethernet 

Memory 
CPU 

I/
O

 B
u

s 

Network 

Interface 

FPGA 

Memory 
CPU 

I/
O

 B
u

s 

Network 

Interface 

RAID 

Figure 3.2: The inclusion of peripheral devices in the resource-rich cluster architecture.

• Globally-Shared Peripheral Devices: Resource-rich clusters feature a number of
peripheral devices that can be utilized by end applications. While each device in the
cluster is owned and managed by the operating system of the workstation in which it
resides, it is beneficial for devices to be accessible in the global context of the cluster.
The ultimate goal is for any resource to be able to efficiently utilize any other resource
in the cluster.

• Differences in Peripheral Device Capabilities: Peripheral devices are generally
designed to perform specific functions using minimal amounts of hardware resources.
While some devices feature programmable embedded processors and large amounts of
on-card memory, others may only be equipped with low-speed ASICs configured with
simple state machines. Therefore different peripheral devices have different capabili-
ties. These differences influence the extent to which a device can be integrated into
the resource-rich cluster environment and made available as a global resource.

• Limited Local I/O Capacity: Workstations have a fixed capacity for local I/O
operations. In addition to being limited, local I/O bandwidth is generally shared
among all peripheral devices in a host. Therefore it is important that data transfers
involving the local I/O system be orchestrated in an efficient manner. For example, if
data is being moved from one resource to another in a host, it should be transferred
directly with a single copy as opposed to a two-copy approach where the data is first
transferred into an intermediate host buffer.

3.1.4 Resource-Rich Cluster Computer Applications

There are a number of applications that can benefit from the use of resource-rich cluster
computers. One motivating example can be found in the field of high-performance network
servers. As depicted in Figure 3.3, a resource-rich cluster could be used to implement a
tightly synchronized web server that is capable of sustaining high network loads. In this
example each host in the cluster utilizes an intelligent LAN adaptor card to service incoming
requests from external clients and an intelligent storage adaptor to house portions of a large
database. In order to service incoming requests, the LAN adaptors communicate directly

21



SAN Backbone 

CPU 

Intelligent LAN 

Adaptor 

Storage 

Adaptor 

SAN 

NI 

CPU 

Intelligent LAN 

Adaptor 

Storage 

Adaptor 

SAN 

NI 

CPU 

Intelligent LAN 

Adaptor 

Storage 

Adaptor 

SAN 

NI 

Resource Rich 

Cluster Computer 

Client Client Client Client Client Client 

Files A-H 

 
File Cache 

 

Files I-R 

 
File Cache 

 

Files S-Z 

 
File Cache 

 

Figure 3.3: An example of a resource-rich cluster functioning as a network server.

with the appropriate storage controller card using the SAN and the communication library.
This form of large-scale server is particularly useful for applications such as digital libraries,
where the database is enormous and cannot simply be replicated at each host.

Resource-rich cluster computers can also be utilized for applications that process large
multimedia data streams. In a full-scale multimedia task, audio and video data is acquired
by multimedia capture devices, streamed through various computational resources in the
cluster, and then ejected to either storage or output devices. In this application the com-
munication library must efficiently transfer data between cluster resources in order to meet
real-time requirements. A variant of this task is to utilize host CPUs to generate the data
streams instead of capture devices. An example of this task is illustrated in the WireGL
project [43], where multiple hosts in a cluster generate objects that are combined and ren-
dered to a grid of output displays. These types of operations can be beneficial in scientific
applications where a small cluster is utilized to graphically render the computational results
of a larger cluster [26, 76].

3.2 Design of Message Layers for Resource-Rich Clusters

Physically constructing a resource-rich cluster is a relatively straightforward task: individual
components of the architecture can be purchased and assembled from commodity parts
that are widely available. A more challenging task is constructing software that allows
the hardware to function as part of a single system. Utilizing commodity software such as
the open source GNU/Linux operating system is a significant first step in this effort. Linux
provides well-defined APIs and built-in device drivers for managing many different hardware
devices. However, current generation commodity operating systems are only designed to
control a local host, not a cluster of hosts. What is needed is a communication library that
is located in or directly above the operating system to provide an application with a means
of utilizing the resources that are distributed throughout the cluster. As discussed in the
previous chapter, this communication library serves as a means of presenting end users with

22



a form of virtual parallel-processing machine for distributed applications.
Existing communication libraries are inappropriate for resource-rich clusters because

they do not provide mechanisms for accessing peripheral devices in the global context. Ex-
tending these communication libraries to provide such access is nontrivial or impossible
because the libraries are optimized under the assumption that the NI is controlled exclu-
sively by the host CPU. Therefore it is necessary to consider how a communication library
can be designed with fundamentals that support the needs of resource-rich cluster comput-
ers. In this effort it is beneficial to examine both system level issues as well as practical
features that assist end users. These factors influence the design of the communication
library and must be addressed in order for a resource-rich cluster to function efficiently.

3.2.1 Definition of a Communication Endpoint

One of the first tasks in designing a message layer is defining what constitutes an endpoint
in the cluster. In this thesis, a communication endpoint is a programming abstraction that
allows a resource in the cluster to be connected to the message layer. This abstraction
enables the resource to send messages to and receive messages from other resources that
are available in the cluster. For resource-rich clusters, host CPUs and peripheral devices
are allowed to function as communication endpoints.

There are three components of a general communication endpoint implementation.
First, an endpoint utilizes a block of its local memory to serve as a place for housing
queues for incoming messages. These queues allow other resources in the local host (e.g.,
the NI and other local endpoints) to pass messages directly to the endpoint’s address space.
Second, an endpoint is equipped with methods for interpreting and processing messages
from the incoming message queues. These methods allow the endpoint to react to the stim-
ulus of a new message. Finally, an endpoint features mechanisms for ejecting an outgoing
message to another resource in the local host (e.g., the NI or a local endpoint). These
mechanisms allow the endpoint to interact with other resources in the cluster.

While desirable, it is not necessary for a communication endpoint to implement all three
of these message-passing components. Designers may omit one or more of these components
based on the characteristics of the resource. For example, a peripheral device that functions
as a data source only needs to be equipped with mechanisms for ejecting outgoing messages.
Likewise, a data sink only needs to be able to accept and process incoming messages. The
advantage of implementing all three components of the communication endpoint software
is that doing so allows users to better customize their interactions with the resource. Users
can send data requests to these resources and receive feedback or data results.

3.2.2 Architectural Design Issues

The architectural characteristics of a resource-rich cluster have a strong influence on the
way that communication library software should be designed for these clusters. Key issues
that must be addressed include the following.

• End-to-End Flow Control: Flow control is utilized as a means of preserving buffer
space in the communication library implementation. Resource-rich clusters typically
employ a large number of communication endpoints, many of which have limited
computational facilities. Therefore it is infeasible for each endpoint to manage end-to-
end flow control for delivering messages. Instead, resource-rich cluster communication

23



libraries should utilize per-hop flow control schemes that simplify the workload of the
endpoints.

• Shared NI Access in a Host: In resource-rich clusters a host may be equipped with
multiple communication endpoints at both the host CPU and peripheral device levels.
Each of these endpoints must access the NI to communicate with other endpoints in
the cluster. Therefore the communication library must provide efficient means of
sharing the NI among multiple endpoints. These mechanisms must allow multiple
endpoints to coherently inject data into the NI. For this task we propose the use of
NI-based logical channels.

• Flexible and Powerful Programming Model: The communication library must
provide a programming model that is flexible enough to serve the diverse needs of
cluster users. This programming model must be able to support traditional host-
to-host communication mechanisms as well as means of interacting with peripheral
devices in the cluster. The model must also be extensible, allowing new functionality
to be added by end users when necessary. We propose the use of two APIs in the
communication library: one for active messages and the other for remote memory
operations.

• Simple Standardized Endpoint Interface: A variety of diverse cluster resources
must implement communication endpoint software. For robustness and portability it
is useful if the endpoint interface adheres to a standard form that is universal for all
endpoints. Since there is a large amount of diversity in the capabilities of peripheral
devices, it is important that this interface be designed in a manner that allows it to
be implemented on even the simplest of peripheral devices.

• Optimizations: Modern communication libraries are expected to deliver high levels
of performance for traditional host-level transactions. While a communication library
for a resource-rich cluster trades some performance for increased functionality, the
library should still be able to provide reasonable amounts of host-level performance.
Therefore it is necessary to include optimizations in the library when possible for
improving performance.

3.2.3 Design Overview

Designing a communication library for a resource-rich cluster requires the construction of
appropriate mechanisms to address the preceding design issues. While there are certainly
many possible solutions, we define a list of four key design characteristics that can be utilized
to provide a suitable communication library. These characteristics are discussed in detail
in the following sections and summarized as follows. First, per-hop flow control can be
utilized to address the need for dynamic buffer management in the communication library
without complicating the communication endpoint software. Second, the use of multiple
logical channels in the NI allows communication endpoints in a host to share a NI without
heavyweight synchronization protocols. Third, an active message style programming inter-
face provides a uniform means by which end users can efficiently utilize peripheral devices.
Finally, the programming interface can be supplemented with methods for interacting with
remote endpoint memory in order to improve the flexibility of the library as well as its
performance.

24



Network Interface Network Interface 

SAN 
Receiving 

Endpoint 

Sending 

Endpoint 

Send 

Reply 

Figure 3.4: Endpoint-managed flow control schemes typically require send/reply messages
to be transferred between endpoints to manage flow control credits. The dark buffers in the
NIs represent buffer space that is reserved until the send/reply transaction completes.

3.3 Per-hop Flow Control

Reliable communication libraries utilize flow control mechanisms to manage buffer space
in the library. Without flow control an incoming message can erroneously overwrite an in-
flight message that has not yet been processed. For simplicity several reliable message layers
implement flow control at the host level. This approach can be labeled as endpoint-managed
flow control, and requires an endpoint to acquire a flow control credit for the intended
destination before it injects a message into the NI. The credit represents a reservation of
buffer space along the entire communication pathway in the library (i.e., the sending and
receiving NIs and the receiving endpoint). Endpoints must maintain flow control state
information and communicate with other endpoints when updating this information.

Endpoint-managed flow control is inappropriate for resource-rich clusters because it
complicates endpoint responsibilities. A more appropriate mechanism recommended for
resource-rich clusters is to manage flow control on a per-hop basis. In this approach a mes-
sage can progress along its communication pathway when enough buffer space is available
to receive the message in the next communication stage. While this adds complexity to the
design of the communication library it simplifies the work a communication endpoint must
perform in order to interact with the library. A key element of this design is managing flow
control between NI pairs. An optimistic approach is suggested for this effort in order to
reduce communication latency.

3.3.1 Disadvantages of Endpoint-Managed Flow Control

In an endpoint-managed flow control schemes an endpoint must secure a reservation of
buffer space for a message from all of the network elements that will be used to transfer
the message before the message can be injected into the network. Rather than perform
reservations on-demand, most endpoint-managed flow control schemes use a credit-based
reservation system, where network buffers are allocated in advance and assigned to the
endpoints in the system. An endpoint has a limited number of credits to communicate
with each endpoint in the system and must spend a credit before the communication can
begin. After receiving a message an endpoint must transmit a credit-replenishing reply to
the sender. An example of this scheme for a single transaction is depicted in Figure 3.4.
The shaded regions in the message queues represent buffer space that is allocated for a
transmission during the time between when the message is first transmitted and the reply
is received.

There are several negative aspects of endpoint-managed flow control for both traditional
and resource-rich clusters. First, endpoint-managed flow control schemes perform injection

25



Network Interface Network Interface 

Receiving 

Endpoint 

Sending 

Endpoint 

Data 

ACK 

Data 

ACK 

Data 

ACK 

PCI PCI SAN 

Figure 3.5: Per-hop flow control utilizes synchronization in the communication path to
allow messages to progress when buffer space is available.

policing at a coarse granularity. It is possible that an endpoint will delay injecting a mes-
sage into a NI that has buffer space for the message, simply because buffer space has not
yet been reserved for the entire communication path. Second, endpoint-managed flow con-
trol schemes require credit information to flow between endpoints. This information adds
to the network traffic and may be redundant. Finally, in endpoint-managed flow control
schemes each endpoint is responsible for dynamically managing its own flow control cred-
its. This requirement adds to the work that individual endpoints must perform in order to
communicate. As the number of nodes increases in the system, this management becomes
a substantial effort that requires larger memory and compute resources. These resources
may exceed the capabilities of some peripheral devices, thereby preventing their use in the
cluster.

3.3.2 Per-hop Flow Control

An alternative approach to endpoint managed flow control is for the communication library
to perform buffer management on a per-hop basis. In this approach a message is transmitted
to the next stage in the communication path as soon as buffer space is available to receive the
message. As illustrated in Figure 3.5, the communication library moves data in three phases:
sending-endpoint to sending-NI, sending-NI to receiving-NI, and receiving-NI to receiving-
endpoint. Each of these phases employs flow-control mechanisms to guarantee that data
is transferred reliably from one stage to the next. This approach is commonly referred to
as NI-based flow control because the most challenging aspect of the implementation is the
transfer of data between NI pairs.

For resource-rich cluster computers the primary advantage of per-hop flow control is
that it can greatly simplify the software for communication endpoints. In this scheme
an endpoint simply injects a message into its local NI as soon as buffer space becomes
available in the NI. From the endpoint’s perspective the communication process completes
after the injection because the individual network elements in the communication path are
guaranteed to reliably transport the message to its destination endpoint. Unlike endpoint-
managed flow-control schemes, the per-hop approach does not require endpoints to maintain
state information for in-flight messages. This property simplifies the amount of work an
endpoint must perform to communicate in a reliable fashion, and is particularly valuable in
case where peripheral devices with limited capabilities are being used as endpoints.

Another benefit of a per-hop flow control scheme is that buffer space can be managed
dynamically. In this approach a communication element such as a NI makes a decision to
accept or reject an incoming message based on whether the element currently has enough
buffer space to house the message. Therefore the hardware devices that propagate a mes-
sage allocate buffer space on demand as needed by applications. An example of how this

26



trait can be beneficial can be found in a scenario where two endpoints are communicating
exclusively with each other at a particular point in time and are not receiving data from
other endpoints in the cluster. In this situation the NIs of the elements effectively allocate
all of their buffer space for the communication between the two nodes. This buffer space
allows more messages to be in-flight between the endpoints at the same time, which im-
proves overlap in the communication pipeline. Endpoint-managed flow control schemes do
not allow such dynamic use of resources because allocations are managed at a high level
with coarse granularity.

3.3.3 Optimistic NI-NI Flow Control

NI-based flow control mechanisms can be implemented in a variety of manners. A popular
approach is to employ a credit-based scheme where each NI has a limited number of credits
for communicating with other NIs in the cluster. As observed in the endpoint-managed flow
control case, this approach may result in a NI unnecessarily delaying a transmission because
acknowledgements have not propagated back to the sender. Another approach is to utilize
a scheme where the sending NI requests a reservation of buffer space from the receiving NI
before a message is transmitted. This approach is useful in times of high network loads
because data messages are only transmitted when they can be received. However, this
approach has poor performance for the common case where the network is not saturated
because a reservation must be acquired before a data message can be transmitted.

An alternative approach to NI-based flow control is to utilize an optimistic transmission
scheme. In an optimistic approach the sending NI transmits a message with the expecta-
tion that the receiving NI will be capable of accepting the message when it arrives. The
receiving NI transmits a positive or negative acknowledgement to the sender depending on
whether the message could be accepted or not. If the sending NI receives a positive ac-
knowledgement the buffer space allocated for housing the in-flight message is deallocated.
If a negative acknowledgement is received the sender performs a rollback on the outgoing
message queue and retransmits the message and all of the following messages that are to
the same destination.

An optimistic NI-based flow-control protocol has several benefits. First, similar to a
credit-based scheme, an optimistic protocol allows a newly detected message to be trans-
mitted without delay. Second, the optimistic approach does not require any form of credit
management. Instead messages must be identified and tracked by the NIs. However, this
work is normally required by any NI-based flow control scheme. Third, the NIs naturally
allocate buffer space in this approach to meet runtime needs. This trait takes place auto-
matically without explicit signaling between NIs. Finally, the optimistic approach allows
the network’s delivery latency to be overlapped with useful work. The sending NI can begin
transmitting a message at a time when the receiving NI cannot accept it. By the time the
message arrives at the receiver it is possible that the receiver will be able to accept the
message, thereby reducing the latency of delivery.

3.4 Logical Channels

An important characteristic of resource-rich clusters is that there are multiple communi-
cation endpoints in a host that need to interact with the SAN. Since a host generally has
more endpoints than NI cards, it is necessary to construct mechanisms that allow the end-
points to share the NI. In traditional approaches, this sharing is performed in the kernel

27



Kernel 

Driver 

Endpoint 1 

Endpoint n 
Network Interface 

Network 

Figure 3.6: The traditional approach to providing shared access to a network device through
the use of the kernel.

by constructing multiple virtual network interfaces for end applications. Unfortunately this
approach is inefficient for resource-rich clusters because it is difficult to present these virtual
interfaces to peripheral device endpoints in an efficient manner.

Without kernel-based NI management, it is necessary to implement synchronization
mechanisms in the individual endpoints to guarantee that the NI is accessed in a mutually
exclusive manner. Utilizing explicit signaling between endpoints is complex and impedes
performance. Therefore we propose moving the task of managing shared access to the
network into the NI. In this approach the NI employs multiple message queues that are
referred to as logical channels. Each endpoint has exclusive ownership of a small number of
the NI’s logical channels. The endpoint utilizes these logical channels as virtual interfaces
for communication with the network. The task of mapping the logical channels onto the
physical network is dynamically performed by the NI. In addition to providing a sharable
means of low-latency communication, logical channels can also be utilized by applications
to provide isolation between different types of network data streams and allocate bandwidth
among peripheral devices.

3.4.1 Sharing Network Access through Kernel Management

For traditional networks such as Ethernet, the kernel is utilized as a means of sharing
a physical NI card with multiple applications. As depicted in Figure 3.6 the kernel has
exclusive ownership of the NI and provides virtual communication interfaces for multiple
application endpoints. The kernel therefore must merge the messages injected by endpoints
into a single outbound NI queue and distribute incoming messages from the network to
the proper endpoints. In addition to providing a scalable means of sharing the NI, this
approach protects end applications from each other by insulating the applications from the
low-level hardware.

Utilizing the kernel as a means of sharing the NI is impractical for resource-rich clusters
due to the types of network interactions that are utilized in these clusters. The primary
problem with relying on the kernel to manage the NI is that the communication interfaces
provided by the kernel are designed to operate with host-level endpoints, not peripheral
device endpoints. Adapting a peripheral device to operate with these interfaces is difficult
and inefficient. The peripheral device would have to route all of its network transactions
through the kernel and utilize costly interrupts to invoke the necessary kernel operations.
This process requires extra data copies and taxes the memory and I/O systems of the host.

28



Endpoint 1 

Endpoint n 

Logical Channel 1 

Logical Channel n 

Network Interface 

Scheduler 

Network 

Figure 3.7: Utilizing multiple logical channels in the NI to provide shared access to the
network.

Another disadvantage of utilizing the kernel to manage the NI is that host-level endpoints
must invoke kernel calls for network operations. Since kernel calls can be relatively expensive
operations, it is beneficial if shared access to the NI can be accomplished without involving
the kernel driver.

3.4.2 Sharing Network Access through Logical Channels

Another means of sharing the NI with multiple endpoints is simply to remove the depen-
dencies that exist between endpoints that interact with the NI. One such approach is to
implement a small number of independent message queues or logical channels in the NI.
Each of these logical channels is assigned to an endpoint in the host when the system is ini-
tialized. Because an endpoint has exclusive ownership of its logical channel(s), it can send
and receive message without having to synchronize with other endpoints in the system.
The NI in this approach is responsible for mapping the logical channels onto the physical
network at runtime through the use of a simple scheduling algorithm. An example of this
approach is illustrated in Figure 3.7.

There are several benefits to using logical channels as a means of providing shared access
to the NI. First, this approach removes the need for any form of direct synchronization
between endpoints that are interacting with the NI. An endpoint can begin injecting data
into the NI as soon as buffer space is available in its logical channel. Second, endpoints
interact directly with the NI. Unlike kernel-managed approaches, an endpoint transfers data
directly into the NI without intermediate buffering. Finally, this approach provides a simple
interface for communication that can be implemented for many peripheral devices without
complex management mechanisms.

There are two primary disadvantages to utilizing logical channels in the NI. First, there
is a finite amount of buffer space available in the NI for implementing logical channels. As
the number of logical channels in the NI increases, the buffer capacity of each logical channel
decreases. Therefore it is expected that most resource-rich cluster users will allocate only
a few logical channels in the NI (i.e., roughly one per endpoint). Second, the presence
of multiple logical channels in the NI has a negative impact on the performance of the
NI. Because the NI must spend time managing each logical channel, the NI’s workload
increases as more logical channels are added to the NI. Additionally, NI firmware becomes
more complex when it is switched from servicing a single queue to multiple queues. This
complexity results in extra NI operations which detract from performance.

29



Logical Channel 1 

Logical Channel 2 

Network Interface 

Scheduler 

Network Endpoint 1 

Figure 3.8: Utilizing multiple logical channels to prioritize messages.

3.4.3 Application Level Use of Logical Channels

In addition to allowing multiple endpoints to share the same NI, logical channels can be
utilized by end applications as a simple means of separating traffic streams. For this use an
application requests two or more logical channels from the NI and assigns different traffic
streams to each channel. Data streams on different logical channels are isolated from each
other due to two properties of logical channels. First, each logical channel has a private
allocation of buffer space in the NI. Therefore if one traffic stream saturates its logical
channel’s buffer space, other logical channels are not affected. Second, in-order delivery in
the communication library is guaranteed only for messages that belong to the same logical
channel. This property is necessary in order to allow the NI to implement a fair scheduling
algorithm where each logical channel has equal access to the NI. The result is that a message
injected into an empty logical channel does not have to be delayed until all of the messages
in other queues are transmitted.

An example of how the presence of multiple logical channels in the NI can be exploited
by an end application is illustrated in Figure 3.8. In this example an endpoint obtains two
separate NI logical channels for two types of network traffic. The network bandwidth made
available for each logical channel is controlled through a scheduler implemented in the NI.

3.5 Active Message Programming Interface

One of the defining characteristics of a communication library is the programming interface
that is provided to the end user. Users of resource-rich clusters require a flexible program-
ming interface that can easily be extended to support new functionality. As a means of
addressing this need we propose constructing the communication library with two types of
programming interfaces: one that employs active message style processing (described in this
section) and another that provides a means of interacting with remote memory (described
in the following section). For the active message interface each communication endpoint is
equipped with various function handlers for processing incoming messages. Whenever an
endpoint injects a message it specifies the function handler the receiving endpoint should
use to process the message when it arrives. In addition to providing a powerful means of
controlling computations in a distributed processing environment, the active message pro-
gramming interface is well suited to controlling peripheral devices in a resource-rich cluster.
In this effort peripheral device functionality is encapsulated as a set of active message func-
tion handlers that all endpoints in the cluster can utilize.

30



3.5.1 Active Message Operation

The fundamental concept of active messages is that a message contains both application
data and information describing how the receiver should process the message. While active
network research [88] has discussed encoding complex processing instructions into active
messages, a more common approach is for endpoints to be equipped with predefined methods
for processing messages. These methods are commonly referred to as function handlers.
When the communication library is initialized each endpoint publishes a list of its function
handlers to other endpoints in the system. At runtime when an endpoint injects a message
into the communication library it must specify the function handler the receiver should use
to process the message. Endpoints are responsible for monitoring incoming message queues
and processing new messages with the appropriate function handler.

The appeal of an active message interface is that it provides basic programming mecha-
nisms that are both powerful and flexible. As opposed to simply transferring data between
endpoints active messages provide a means of invoking actions at remote endpoints. These
actions can be utilized in an active manner to remotely control the behavior of an endpoint.
For example a message handler can be designed to spawn, modify, or terminate a compu-
tation in an endpoint. With these types of operations a user can directly control the flow
of computations in a distributed system. Active messages can also be utilized in a passive
manner where a remote endpoint’s state is not affected by the execution of a handler. For
example, a handler can be designed to simply return the remote endpoint’s current dataset
to the sender of the message. From the remote endpoint’s perspective the processing of
the function handler takes place in the background and does not affect the endpoint’s main
thread of execution.

The original active message specification [27] is not directly applicable for resource-rich
clusters because it is only designed to operate with homogeneous endpoints. Therefore it is
necessary to construct a more robust specification that allows diverse endpoints to interact
with the active message interface. Three issues must be addressed in this specification. First,
function handlers must be managed in a dynamic fashion by the communication library. It
is not practical to statically configure endpoints with a list of the cluster’s handlers because
endpoint software would have to be recompiled every time a new application defined new
handlers. Second, handlers should be referenced with useful labels, such as string and
integer identifiers. In addition to being portable, these identifiers help make programs
more readable (e.g., referencing a handler by the string “handler compute PI” has more
meaning than a pointer to the handler’s virtual memory address). Finally, active messages
should be formatted in a manner that is interpretable by endpoints with different byte
orders and word alignments. Constructing a single message format that takes into account
these characteristics provides standardization among endpoints and allows an endpoint to
transmit a message without having to know the processing characteristics of the destination
endpoint.

3.5.2 Utilizing Active Messages with Peripheral Devices

The active message programming abstraction is particularly useful for resource-rich clusters
because active messages can be used as a simple but powerful means of controlling peripheral
devices. In this approach a set of active message function handlers are defined for all of the
actions that a peripheral device can perform. Endpoints in the cluster can therefore trigger
an operation at a peripheral device by transmitting a properly formatted active message to

31



CPU 

Storage 

Controller 
NI NI SAN 

am_fetch_file() 

am_return_file_data() 

Figure 3.9: Active messages can be used to facilitate an API for a peripheral device.

the device containing a reference to the function handler that needs to be invoked. Figure 3.9
illustrates an example of how a host-level endpoint can interact with an intelligent storage
controller at a remote host using the active message programming interface. In order to
obtain data from a desired file, the host CPU transmits an active message that contains the
name of the file and the function handler id am fetch file(). Upon receiving this message
the storage controller accesses the file and generates an active message with the handler
am return file data() and the requested data. The transaction completes when the host
CPU endpoint receives this reply and stores the data accordingly.

Using an active message programming interface to control a cluster’s peripheral devices
is beneficial for a number of reasons. First, it is relatively easy to integrate new peripheral
devices into the cluster using this interface. Designers simply construct a series of card-
specific active message function handlers for a peripheral device and provide references
for the handlers to application designers. Second, the active message interface serves as
a universal communication substrate upon which multiple APIs can be layered. In this
system each peripheral device has its own API that is comprised of card-specific active
message handlers. Endpoints therefore invoke a peripheral device’s API operations by
transmitting the corresponding active messages using the communication library’s message
passing functions. Finally, the active message interface is beneficial for controlling peripheral
devices because it allows an endpoint to utilize a peripheral device no matter where the
resources are physically located. Since API operations are separated from communication
mechanisms, users can issue API operations knowing that the communication library will
automatically perform any routing in the cluster that is necessary.

3.6 Remote Memory Programming Interface

The second programming interface proposed for a resource-rich cluster’s communication
library is one that allows an endpoint to directly interact with the memory of a remote
host. This remote memory interface is designed to provide an efficient means of transferring
data from one endpoint to another. A remote memory programming interface can also be
utilized as a means of performing custom interactions with a cluster’s peripheral devices.
This functionality is especially beneficial because it can be used to allow an endpoint to
control a peripheral device for which it is impossible to construct endpoint software. Issues
involved in implementing a remote memory interface include integrating the interface into
a library that also supports active messages, and providing the functionality to translate
an endpoint’s virtual address space into a physical address space.

32



3.6.1 The Need for a Remote Memory Interface

While active messages provide a flexible communication interface for end users, there are
certain operations for which active messages are not ideal. For example, consider the case
where an application needs to transfer a large block of data from one endpoint to another.
In the active message approach the data is encapsulated in an active message that is marked
with a data transfer function handler. The receiver processes this message by copying the
message’s payload data to the memory location specified in the message’s arguments. This
process is inefficient because two transfers are involved in the receiving endpoint: one from
the NI to the endpoint’s incoming message queue and another from the message queue to
the target address. With a remote memory programming interface it is possible for the NI
to transfer the data directly to the message’s target memory address.

Remote memory operations are also valuable in resource-rich clusters because they can
be used to support low-level interactions with remote peripheral devices. The architecture
of several peripheral devices makes it impossible to construct endpoint software that would
allow these devices to participate as intelligent resources in the cluster. For example, video
display adaptors are generally designed as data sinks and therefore it is unlikely that end-
point software can be constructed for such adaptors. However it is still desirable for other
resources in the cluster to be able to interact with the adaptor. With a remote memory
interface it is possible for an endpoint to transmit image data into the video adaptor’s frame
buffer. These forms of direct memory transactions can be useful in a number of resource-
rich cluster applications where data must be deposited into distributed memory locations
in an efficient manner.

3.6.2 Remote Memory Interface

From an end user’s perspective a remote memory interface is relatively straightforward. The
user supplies the interface with the source and destination addresses, the direction and size
of the transfer, and the identifier of the remote endpoint. The communication library is then
responsible for transferring the block of data utilizing the most efficient means available. In
the case of multiple transactions, remote memory transfers are completed in the order that
they are issued. Remote memory interfaces generally allow both read and write operations.
Write operations are simpler to implement as data is simply streamed from the sender’s
address space to the receiver’s. Read operations are more complex as the sender must issue
a message that fetches data from the receiver’s address space. Results are returned in a
reply message and written into the sender’s address space.

A host system operates with two related address spaces: virtual memory addresses and
physical (or bus) memory addresses. The API for a remote memory interface must be
designed to allow users to universally reference memory distributed throughout the cluster.
As a means of simplifying the interface for end users utilizing virtual memory references are
preferred since a memory reference is the same in both the host where the memory resides
and remote endpoints. As a consequence it is necessary for the communication library to be
capable of internally transforming virtual addresses to physical addresses that the NI can
utilize. The library must also provide mechanisms to prevent a memory region from being
moved by the kernel (e.g., a page fault) during a memory operation. Finally, it is beneficial
for a remote memory interface to be able to operate with physical addresses, in order to
provide efficient direct access to memory-mapped devices.

33



3.7 Related Work

Various aspects of this thesis are related to themes found in other research projects. A com-
mon goal of all these efforts is to enhance cluster computer performance by incorporating
powerful peripheral devices within the hosts. Researchers have designed custom I/O ar-
chitectures to support this functionality as well as specialized software to integrate specific
peripheral devices into the communication model. This thesis is distinguished from past
work in that it provides a general framework for integrating all manner of peripherals into a
low-latency message layer. Device-specific functionality is separated from network-specific
functionality to produce an extensible design and significantly improve the productivity of
the application designer with minimal sacrifices in performance. The following efforts rep-
resent state-of-the-art research being performed involving resource-rich cluster computers.

3.7.1 InfiniBand

Industry is currently developing a new generation of I/O fabric called InfiniBand (IB) [44]
that can potentially serve as a means of constructing resource-rich cluster computers. IB is
primarily designed as a turnkey solution for a number of high-end server issues. It provides
a high-performance communication substrate that functions as a system area network, a
storage area network, and a distributed I/O system. In addition to featuring expandable
multi-gigabit links, IB defines a protocol for efficient communication between peripheral
devices and host CPUs. This protocol could therefore be utilized by end users to allow
peripheral devices to be integrated into the cluster’s computational model. Therefore IB
represents a promising communication substrate for resource-rich cluster computers in the
near future.

A fundamental difference between the work presented in this thesis and InfiniBand can
be found in the hardware architectures used for these systems. In the work presented in this
thesis, it is assumed that cluster computers will be constructed with commodity hardware
that is currently available. This approach utilizes existing hardware and defines flexible
mechanisms for addressing the performance obstacles of the hardware. In contrast, IB is
a complete overhaul of the I/O architecture found in current generation clusters. With
the freedom to redesign the low-level architecture of the cluster computer, IB designers
constructed a new hardware environment that is conducive to high-performance communi-
cation. The difficulty in this approach is public acceptance: the success of IB as a commu-
nication substrate depends on the generation of new hardware products that provide better
performance than current products. In comparison, the work in this thesis utilizes current
generation hardware and can be adapted to exploit gains in faster network substrates as
they become available.

3.7.2 Extensions to the GM Message Layer

In recent years Myricom’s GM message layer has become the de facto standard for tra-
ditional clusters interconnected with Myrinet hardware. GM exhibits a number of basic
characteristics that make it a desirable starting point for constructing a message layer for
resource-rich clusters. In addition to utilizing NI-based flow-control mechanisms, GM sup-
ports multiple concurrent users of the NI through the use of multiple work queues. While
GM does not specifically support active messages, it provides a generic programming inter-
face that allows other APIs to be layered on top of it. GM also provides mechanisms for

34



low-level interactions with the virtual memory system, which can be extended to provide
remote memory operations.

While GM can be extended we note that there are fundamental design issues that make
the adaptation of the message layer to resource-rich clusters non-trivial. The primary dif-
ficulty is that the basic means for a communication endpoint to interact with the message
layer is through a work queue. In this approach an endpoint inserts a reference to a message
that needs to be injected. When the NI is ready it processes the work entry by pulling the
message into the NI. It then inserts a notification message into the endpoint’s completion
queue that specifies that the host memory housing the message can be reused by the ap-
plication. While suitable for host-level endpoints, this process may not be appropriate for
some peripheral devices because it requires the peripheral device to maintain a block of
data until the NI has retrieved it. Peripheral devices generally have limited memory and
resources to manage such interactions.

3.7.3 OPIUM

GM has been extended in previous work to allow the NI to directly interact with multiple
peripheral devices. In the OPIUM [20] project researchers examined the extension of GM
to support SAN interactions with a specific SCSI card. The goal of this work is to minimize
the number of traversals that take place across the PCI bus for servicing network requests
for file data. The researchers accomplished this task by modifying the storage card’s device
driver so that it could issue DMA operations to route file data directly to a buffer located
in NI card memory. In later work opium was modified to allow the NI to directly write data
into a video display card’s frame buffer [38].

While Opium provides the first steps in allowing peripheral device interactions with
the SAN, the work is directed at providing an ad hoc solution for two specific devices.
While the modifications that allow the host to control SCSI interactions with the network
is certainly useful for network attached storage efforts, the work is card-specific and may
not be suitable for other peripheral devices that could be used in the cluster. Likewise,
the work with integrating a video display card into the communication library does not
demonstrate an interaction with an intelligent peripheral device, because a display card’s
frame buffer can trivially be written by any PCI device in a host. This work however does
provide a motivation to improve the flexibility of the communication library in order to
allow peripheral devices to be utilized in an efficient manner by cluster applications.

3.7.4 Adaptive Computing Machines

Another area of work that is related to this thesis is the field of Adaptive Computing Ma-
chines (ACMs). In ACMs a number of field-programmable gate arrays (FPGAs) are utilized
as a means of processing an application with dedicated hardware [30]. In this approach the
FPGAs are configured to emulate application-specific circuitry that can rapidly perform
an application’s computations. Unlike ASICs which cannot be reprogrammed, FPGAs can
easily be configured to emulate different circuits as needed by the application. While ACMs
are not particularly useful for general-purpose applications, they can be valuable for appli-
cations that require complex computations be performed in real time [92, 57].

Initial work in ACMs resulted in custom hardware that employed arrays of FPGAs
[39]. Observing that these systems were expensive to construct, researchers in the late
1990’s began investigating the use of multiple commercial FPGA cards to function as an

35



ACM. In the Tower of Power project [52], sixteen x86 workstations were equipped with
commercial FPGA cards and linked using a Myrinet SAN. The researchers investigated the
use of existing Myrinet software to allow data to be transmitted between FPGA cards [11].
This effort resulted in the computational environment where researchers could effectively
utilize the distributed FPGA cards as part of an ACM.

One of the hardships that researchers had to face in the Tower of Power project is
transporting data between FPGAs in the cluster. Rather than implement new communi-
cation software the researchers layered their programming interface on top of a Myrinet
implementation of MPI. The researcher’s software therefore utilizes the host CPU to man-
age application interactions with an FPGA card. While simplifying the design effort, this
approach delays communication and results in extra traversals of the host’s I/O bus. Ad-
ditionally, selecting MPI as the base programming interface makes it challenging to modify
the system to support direct interactions between the FPGA card and the NI. MPI endpoint
software is complex and therefore nontrivial to implement for an FPGA card. However, this
work indicates that there is a definite interest in utilizing peripheral devices in a cluster to
perform custom computations.

36


