
CHAPTER VII

STREAMING COMPUTATIONS

Resource-rich cluster computers feature a large number of host CPUs and peripheral devices
that can be used by applications as a pool of available resources. A challenge in working
with such resource models is constructing applications that effectively utilize the cluster’s
distributed resources. In this chapter we describe support for a pipelined computing model
where accelerators available as peripherals in distinct nodes can be configured through
GRIM to operate as a single computational pipeline. Such a model can support a wide
range of applications, including streaming media and signal processing applications.

Adapting a message layer to support streaming computations requires an examination of
how cluster resources can be utilized as elements in a computational pipeline. A streaming
computation is visualized as a connection-oriented service, where a number of operations
are performed on data that is passed through a connection. This programming abstrac-
tion requires two specific features from an implementation. First, individual resources in
a connection must be capable of performing a specified computation on an incoming data
stream. In GRIM this functionality can be accomplished through the use of GRIM’s built-
in active message mechanisms. Second, a resource in a connection must be equipped with
mechanisms for forwarding computational results to the next resource in the connection.
This functionality is implemented in GRIM through both the library’s native reliable de-
livery mechanisms and a programmable forwarding directory. This directory allows users
to configure the exact functionality of a streaming operation in flexible manner.

As a motivating example the Celoxica RC-1000 FPGA endpoint has been adapted to
support streaming computations. In addition to equipping the RC-1000 endpoint with a
forwarding directory, several enhancements were made to the endpoint’s architecture. These
modifications include a virtual memory system that allows on-card memory to be shared by
applications and a system for dynamically reconfiguring the FPGA with hardware circuits
needed at runtime by applications. This chapter provides implementation details of the
streaming computation extensions, as well as performance measurements of the RC-1000
endpoint that relate to the streaming environment.

7.1 An Overview of Streaming Computations

In pipelined implementations a complex computational task is divided into a linear series of
subtasks that can be performed by individual resources. Each resource is then configured
to function as a pipeline stage, performing a specified computation on incoming data and
forwarding the results to the next resource in the pipeline. The benefit of this approach is
that when streams of data are injected into the pipeline, it is possible for the pipeline stages
to concurrently operate on different portions of the stream. The desired result is that the
system is capable of producing output results at the same rate that data is injected into
the pipeline.

Multimedia applications provide a strong motivation for systems that are capable of
performing high-throughput streaming computations. In a number of these applications
raw multimedia data streams must be processed in real time. Unfortunately it is often

96



CPU 

NI 

Video 

Capture 

CPU 

NI 

Media 

Processor 

CPU 

NI 

Media 

Processor 

CPU 

NI 

Media 

Processor 

System Area Network 

Figure 7.1: A streaming computation example.

Video 

Capture 

CPU 

Computation 

1 

Computation 

2 

Computation 

N 

CPU Connection X 

Figure 7.2: An example of a connection-oriented streaming computational pipeline.

infeasible to use a single host computer to perform this processing because of the high
data rates that are involved and the computational complexity of the operations that need
to be performed. Therefore it is beneficial if a series of resources in a cluster can be
utilized as a streaming computational pipeline. An example of such a pipeline is depicted
in Figure 7.1. In this system a video capture card generates a video stream that is relayed
through multiple peripheral devices distributed throughout a cluster. The devices perform
specific operations on the data stream until the data is properly prepared for consumption
by a host-level application.

7.1.1 Connection-Oriented Streaming Computations

While streaming computations can be implemented in a variety of manners, a particularly
useful abstraction is to visualize a streaming computation as a form of a connection-oriented
service. In this abstraction data injected into a connection is processed by a series of
computational stages that are defined when the connection is established. As Figure 7.2
illustrates, any endpoint in the cluster can inject data into a connection, but computational
results are only transmitted to a single endpoint. A new connection can be created by
any endpoint in the system. After obtaining a unique identifier for a new connection,
an endpoint must configure the individual resources that are to be used in the connection.
Configuration information specifies the operation a resource should perform as well as where
the results of an operation should be transmitted in the cluster.

There are multiple benefits to implementing a streaming computation as a connection-
oriented service. First, connection-oriented communication is well understood by program-
mers and is therefore a programming abstraction that can be adopted without much dif-
ficulty. Second, this approach can be used in a flexible manner to implement a variety of
useful computational systems. For example, users can chain multiple connections together

97



by forwarding the results of one connection to another. Therefore users can construct com-
plex operations by using a set of basic operations as building blocks. Finally, computational
connections provide a simple programming abstraction that allows any endpoint to invoke
complex operations without having to know the underlying mechanics of the connection.
This feature is especially valuable for simple peripheral device endpoints in resource-rich
clusters.

7.1.2 An FPGA-based Pipeline Unit

GRIM has been extended with software to support a connection-oriented form of streaming
computations. In this effort peripheral devices can be configured to function as the pipeline
stages of a streaming computation. Of the peripheral devices that are currently supported
in GRIM, the most attractive device for this work is the Celoxica RC-1000 FPGA card
discussed in the previous chapter. This card is a natural candidate for use in streaming
operations because it is designed to function as a computational accelerator. Therefore the
current RC-1000 endpoint implementation has been modified to support streaming compu-
tations. These modifications are implemented as extensions to the FPGA’s frame, which
is the block of logic that implements the endpoint state machines for the RC-1000. While
the focus of this chapter is on implementation details for adapting the RC-1000 endpoint
for streaming computations, other endpoints can be extended with this functionality in a
similar manner.

7.2 Pipeline Computations

The first of two functional requirements for an endpoint to behave as a pipeline stage is for
the endpoint to be capable of performing a predefined computation on incoming messages
for a data stream. This functionality can be implemented in a relatively straightforward
manner using GRIM’s active message programming interface. For the RC-1000 FPGA
endpoint, the active message function handler is used to select the computational circuit
that processes an incoming message for a data stream. Observing that FPGAs have a
limited capacity for housing computational circuits, the RC-1000 FPGA endpoint has been
extended with software that allows the FPGA to be dynamically reconfigured with different
circuitry as needed by applications. The FPGA frame in this approach detects when it does
not have the circuitry necessary to process a message and signals a function fault to the host.
The host software is designed to resolve these faults, allowing the FPGA to be reconfigured
on demand as needed.

7.2.1 Using Active Messages to Control Pipeline Computations

An endpoint that functions as a pipeline stage in a streaming computation must be con-
figured to perform a user-specified operation on a data stream’s incoming messages. This
functionality can be accomplished through GRIM’s active message programming interface.
In this approach a message arriving at a pipeline stage is labeled with a stream identifier
and an active message handler that specifies the operation the endpoint should perform on
the message. Since all pipeline processing instructions are included in an incoming message,
it is necessary for the endpoint transmitting the message to format the message. While it
may seem counterintuitive to have to place an endpoint’s processing instructions at the
preceding endpoint in the pipeline, doing so simplifies the configuration process. In this
system forwarding information (used to transmit results to the next pipeline stage) and

98



processing instructions (used to specify the operation the next pipeline stage performs) are
stored at the same location (the preceding pipeline stage).

Most endpoints can easily be adapted to perform the computational part of stream-
ing operations because this approach relies on the existing active message infrastructure.
Similar to other messages, endpoints simply process streaming computation operations by
executing the proper active message function handler. For the RC-1000 FPGA endpoint
the FPGA frame’s current active message interface is sufficient for implementing this func-
tionality. Messages arriving at the RC-1000 endpoint for a streaming computation are
examined by the FPGA frame and processed using the user-defined circuit that matches
the arguments specified in the message’s header.

7.2.2 Dynamic FPGA Circuit Management

One of the difficulties involved in utilizing an FPGA as a computational resource is that
each FPGA is only capable of housing a limited amount of user-defined circuitry. While
the industry is constantly increasing the gate capacity of commercial FPGAs, it is unlikely
that a single FPGA will ever be able to house all of the computational circuits that could
be utilized by end applications. This limitation becomes a significant issue as the number
of streaming computational pipelines used in a cluster increases. If these pipelines require
diverse types of processing, it is likely that the number of computational circuits needed
by the pipelines may outnumber the total space available for housing the circuits in the
cluster’s FPGA resources. What is needed is a system that can dynamically reconfigure
the cluster’s FPGAs to emulate the hardware operations that are needed by applications
at runtime.

Modern commercial FPGAs generally provide two forms of reconfiguration that can
be utilized by software that dynamically manages an FPGA endpoint’s circuits. First, all
FPGAs support a form of full reconfiguration, where an FPGA is reprogrammed in its
entirety. Circuit management software can utilize this operation to reprogram an FPGA at
runtime with a configuration that contains a circuit that is required by an application. In
this approach multiple FPGA configurations are generated offline and stored in a database
that the software manages. Second, some FPGAs support partial reconfiguration, where a
region of the FPGA can be reprogrammed without affecting the rest of the chip. With this
option circuit management software can be designed to replace one computational circuit for
another. Unfortunately, partial reconfiguration operations can incur significant overheads
due to the amount of effort that is required in rerouting an FPGA’s active signals. While
the FPGA management techniques described in this section can be applied to both forms
of reconfiguration, the focus of this effort is on utilizing full reconfiguration mechanisms.

7.2.3 Supporting Function Faults in the FPGA Frame

In order to support dynamic circuit management the RC-1000 FPGA endpoint had to
be modified with functionality for assisting the reconfiguration process. These extensions
allow the FPGA frame to detect the need for reconfiguration, and provide a means for the
FPGA to save and restore its runtime state information during the reconfiguration process.
The extensions operate as follows. Whenever the host system loads new computational
circuits into the FPGA it stores a list of function ids for the circuits in the FPGA card’s
SRAM. After the host activates the FPGA the frame pulls these ids and other runtime
state information into the FPGA. The frame uses this information at runtime to determine

99



Host 

CPU 

FPGA 

Circuit X 

Circuit Y 

Configuration A 

Circuit X 

Circuit Y 

Configuration A 

Configuration B 

Circuit E 

Circuit F 

Configuration C 

Circuit G 

Message: 

Use Circuit F 

State 

Storage 

SRAM 0 

1 

2 

3 

4 

5 

6 

Figure 7.3: The process of reconfiguring an FPGA during a function fault.

if an incoming message can be processed by the FPGA’s currently loaded computational
circuits. If the FPGA is not equipped with the proper circuits, it initiates a function fault
that must be resolved by the host’s dynamic circuit management software.

Figure 7.3 depicts the steps that are taken during a function fault. After (1) the FPGA
detects that it is not equipped with circuitry to process a message it (2) stores its dynamic
state information in on-card SRAM. The FPGA then suspends its execution and (3) sends
an interrupt request to the host processor. The host software detects the fault, determines
which function is needed by the FPGA, and (4) fetches an appropriate configuration from
a database. The host (5) loads the FPGA with this configuration and updates the FPGA’s
list of available circuits. The host then restarts the FPGA which (6) fetches its dynamic
state information from SRAM. The FPGA uses this information to begin processing the
message that caused the function fault. The message can now be processed because the
FPGA is loaded with the computational circuit that is needed by the message.

7.2.4 Function Fault Overhead

Measurements were performed to estimate the amount of overhead that is involved in pro-
cessing an FPGA function fault. For the FPGA portion of this overhead, the FPGA frame’s
state machines were examined to determine how many FPGA clock periods are required
by the frame to generate and recover from a function fault. Clock periods can be related
to wall clock time by dividing the number of clock periods by the FPGA’s clock frequency
(20 MHz). For the host’s portion of a function fault’s overhead, instrumentation software
was added to the host library to measure the amount of time required to perform fault
resolution operations. A P3-550 MHz host was used in these measurements.

The results of the measurements are presented in Table 7.1. While the FPGA operates
at a relatively slow clock rate it is able to perform all of its function fault operations in only
a few microseconds. Unfortunately there are significant overheads for the host to resolve a
fault. The two dominant operations in this procedure are for the host to reconfigure and then

100



Table 7.1: The amount of time required to manage an FPGA function fault.

Resource Action
FPGA
Clocks

Time (µs)

FPGA

Store queue pointers 6 0.30

Store missing function 2 0.10

Trigger function fault 1 0.05

Release SRAM bank 0 1 0.05

Host

Acquire SRAM bank 0

-

13

Process fault 8

Load configuration from file (optional) 10,205

Reconfigure FPGA 95,114

Set FPGA clock 2,405

Set function IDs 2

Reset FPGA 56,813

Release SRAM bank 0 7

FPGA
Acquire SRAM bank 0 8 0.40

Reload queue pointers 4 0.20

Reload functions IDs 9 0.45

reset the FPGA. The reconfiguration process is time consuming because approximately 700
KB of information must be serially loaded into the FPGA using PIO operations. Resetting
the FPGA is time consuming because the operation requires a 50 ms delay for proper
execution. Newer FPGA cards will reduce this overhead by a factor of 5-10, with custom
architectures doing even better. However, the current model is on par with connection
oriented programming models where pipelines are constructed and changed infrequently.

7.3 Pipeline Forwarding

The second operation that a pipeline stage must perform is forwarding computational results
to the next resource in the pipeline. This task is an integral part of a streaming computation
because it allows a collection of distributed resources to be utilized in a connection. At
a fundamental level, forwarding mechanisms should allow pipelines to be constructed in
a flexible manner. In addition to routing messages between resources, it should also be
possible for users to route data through the same resource multiple times. The benefit of
using the same resource to implement multiple pipeline stages is that dynamic application
data can be more readily shared among the pipeline stages. One means of constructing a
flexible system for managing the transfer of data between pipeline stages is to employ a
forwarding directory at each endpoint in the pipeline. A forwarding directory is a user-
programmable table that contains information that specifies how a pipeline stage should
transmit the results of a streaming computation to the next stage in the pipeline. These
tables are easily updated and serve as a simple means by which users can configure both
the routing and computational operators used in a streaming computation.

101



Stream A 

FPGA 

Stream A 

Circuit 2 

Circuit 1 

FPGA 

Stream A 

Stream B 

Stream A 

Stream B Circuit 2 

Circuit 1 

Stream A 

FPGA 

Stream A 

Circuit 2 

Circuit 1 

(b) (a) (c) 

Figure 7.4: Forwarding examples for (a) a single computation on a single stream, (b)
multiple computations on a single stream, and (c) multiple streams.

7.3.1 Forwarding

After a pipeline stage generates computational results for an incoming message it is neces-
sary to forward the results to the next stage in the pipeline. Forwarding mechanisms must
be flexible enough to be utilized in a number of manners. Figure 7.4(a-c) illustrates three
fundamental examples of how data may be forwarded between resources in a pipeline. In
the first example (a), a resource is configured to function as a single stage in a pipeline.
Results from this operation are forwarded to another resource in the cluster. It is expected
that most applications will utilize resources in this manner because the approach is the
most straightforward to manage and implement. The second example (b) illustrates a more
elaborate case where a resource is utilized to perform two sequential operations in a com-
putational pipeline. This approach requires a means of buffering results at a resource and
is beneficial for applications where data locality can be exploited. In the final example (c) a
resource is utilized to process data for multiple independent streaming computations. This
approach allows a resource to be utilized by multiple applications and requires mechanisms
for isolating data streams.

7.3.2 Forwarding Directory

One method by which diverse forwarding operations can be implemented in a streaming
environment is to store forwarding information at the resources utilized in a connection. In
this approach each endpoint is equipped with a forwarding directory that contains infor-
mation specifying where and how the endpoint should transmit the results of a streaming
computation operation. A message arriving at an endpoint contains information that iden-
tifies the message as belonging to a particular computational stream. This stream identifier
is used to extract information from the forwarding directory that specifies how the com-
putational results of the operation should be formatted for transmission in the network.
Therefore users can construct new connections or modify the flow of existing pipelines
simply by updating the appropriate forwarding directory entries of the resources that are
involved. Updates can be performed using a built-in set of active message handlers that
modify forwarding directory entries.

Figure 7.5 illustrates how a forwarding directory at an FPGA endpoint can be utilized
as a means of forwarding data from one pipeline stage to another. In this example an active
message arriving at the FPGA contains information specifying that the message belongs
to computational stream X and requires processing by the FFT active message function
handler. After decoding the message’s header, the FPGA utilizes an FFT computational
circuit to process the payload section of the incoming active message. The results of this
computation are stored in the payload section of an outgoing active message. The header
for this message is supplied from entry X of the forwarding directory. This header specifies

102



Destination: FPGA 

Forwarding Entry: X 

AM: Perform FFT 

In Message 
FPGA 

Computational Circuits 

Circuit 1: FFT 

Circuit N: Encrypt 

Forwarding Directory 
Destination: Host 

Forwarding Entry: X  

AM: Receive FFT 

Out Message 

Figure 7.5: The forwarding directory provides information for transmitting a pipeline
stage’s results to another endpoint.

where the communication library should transmit the message as well as the operation that
should be performed at the next pipeline stage.

7.3.3 FPGA Implementation

The RC-1000 endpoint’s frame was modified to support a forwarding directory. The direc-
tory consists of 256 entries that are stored in the first SRAM memory bank of the card.
An entry in the forwarding table is comprised of eight 32-bit words that house all of the
values necessary for generating the header of an outgoing message. The frame provides
a special active message function handler that allows users to program individual entries
of the forwarding table. When the FPGA frame detects the arrival of a new message, it
examines the message’s header to establish the necessary data paths between resources in
the FPGA. Users can store the results of an active message operation in on-card scratchpad
memory, a recycling buffer, or in the outgoing message queue. The recycling buffer allows
the message generated by one FPGA computation to be routed back to the input of the
FPGA endpoint. In this manner a single FPGA can be configured to implement multiple
pipeline stages for a computational stream. Forwarding directory performance is included
in Section 7.5 as part of the overall performance of the RC-1000 FPGA endpoint when it
is used for streaming operations.

7.4 Managing Pipeline State Information

In many streaming applications it is beneficial if application data can be stored at the
individual resources utilized in the computational pipeline. This data can include dynamic
state information or static arguments such as filter parameters that are used to process
incoming messages. Unfortunately peripheral device endpoints have a limited amount of on-
card memory for housing application data. As the number of streaming computations using
a resource increases, the amount of on-card memory available to each application decreases.
Therefore it is beneficial to consider mechanisms that allow peripheral device memory to
be shared in a more flexible manner. For the RC-1000 endpoint a basic virtual memory
system has been constructed that allows the card’s scratchpad memory to be treated as a
paged resource. Scratchpad pages are dynamically swapped with host memory as needed by
applications. These mechanisms provide a basic form of protection for applications sharing

103



the FPGA card and allow the endpoint to be transparently utilized by different applications.
Similar mechanisms can be implemented for other peripheral device endpoints.

7.4.1 Managing On-Card Memory for an Endpoint

Peripheral device endpoints have a limited amount of on-card memory that can be utilized
for housing application data. This memory is valuable to application designers because it
allows application data to be stored at the endpoint. In the case where multiple applications
utilize the same endpoint, it is necessary to provide some form of management for on-card
memory to prevent conflicts between applications.

The simplest approach is to utilize an allocation scheme where each application obtains
a block of on-card memory that is exclusively owned by the application. While this method
may be suitable for some endpoints and applications, there are three major drawbacks.
First, as the number of applications utilizing an endpoint increases, the amount of available
on-card memory for each application decreases. Second, applications must be designed to
work in a cooperative manner with the memory system. Depending on how memory is
allocated, this approach may make it more challenging for applications designers to work
with peripheral devices. Finally, this system provides no protection between applications.
Therefore an application can erroneously overwrite another application’s data.

Another approach to managing on-card memory is to implement a virtual memory
system for the endpoint. In this approach card memory is divided into page frames and
applications reference on-card memory with virtual addresses. Before the endpoint begins
processing a message it determines if the message’s memory references can be satisfied with
the pages that are currently loaded in the card’s page frames. If a page is not loaded the
endpoint must replace the current page with the requested data. Unloaded pages can be
stored anywhere in the system, although the most practical location is host memory. While
page faults for on-card memory can incur substantial overheads, implementing a virtual
memory system for a peripheral device provides basic protection for applications that share
the device.

7.4.2 Virtual Memory for the RC-1000 FPGA Endpoint

A basic virtual memory system has been constructed for the RC-1000 FPGA card’s scratch-
pad memory. This system operates on a coarse granularity with a virtual memory page
being defined as a 2 MB block of SRAM. SRAM memory banks 1 and 2 of the RC-1000
are therefore used as page frames for housing virtual memory pages that can be accessed
by user-defined circuits. Incoming messages that utilize scratchpad memory reference data
with a virtual memory address. This address is comprised of a page identifier and an offset
into the page. Before the frame begins processing a message it examines the page identi-
fiers of the virtual memory addresses supplied in the message to determine if the page is
currently loaded in one of the two page frames. If a message’s pages are loaded the frame
establishes the necessary data paths for the computational circuits to access the memory.
The offset value of the virtual address is used as the starting address within the page for
accessing data.

If a requested page is not loaded in one of the page frames, the FPGA frame must
invoke mechanisms for loading the proper data into card memory. Figure 7.6 illustrates the
organization of the memory system used in this procedure. First, the FPGA frame stores
the missing page identifier in SRAM. It then suspends the FPGA’s execution and sends the

104



Host 

CPU 

Circuit 

Canvas 

FPGA 

Page 

Frame 1 

SRAM 2 

Page 

Frame 0 

SRAM 1 

User 

Page A 

Figure 7.6: A virtual memory system is implemented for on-card SRAM. SRAM banks
1 and 2 serve as page frames for an application’s scratchpad data. Unloaded pages are
swapped into host memory.

host an FPGA page fault signal. The host receives this signal, determines which page frame
needs to be updated, and then performs the necessary page swap. A page swap involves
transferring the page frame’s current data to a buffer in host memory and then transferring
the desired page from host memory to the card. After a swap the host updates the FPGA’s
list of loaded page identifiers and restarts the FPGA. The restarted FPGA loads the new
page identifiers and continues processing the message that originally caused the fault. From
the user’s perspective these operations take place automatically in a transparent manner.

7.4.3 Page Fault Performance

The main drawback to implementing a virtual memory system for a peripheral device end-
point is that there can be significant overheads in resolving page faults. In addition to
using the host CPU to resolve a fault, large blocks of data must be transferred to and from
host memory. Performance measurements were made of the RC-1000 endpoint software to
determine how much overhead is involved in a page fault.

The results of the page fault measurements are listed in Table 7.2. As these tests reveal
the most time consuming portion of this procedure is the transfer of scratchpad memory
pages between the card and host memory. The differences between loading and unloading a
page are due to the fact that in the current implementation the load operation is performed
by a zero-copy DMA while the unload operation is performed by a one-copy DMA. Based on
these measurements, page faults are expensive operations in this implementation. In order
to reduce the number of page faults that take place at run time, users should implement
exclusive ownership mechanisms for the card that guarantee that only one application will
utilize the RC-1000 endpoint for a period of time.

There are several means by which the virtual memory system could be improved for
this card. First, the page size could be reduced in order to allow multiple pages to be
stored in the scratchpad memory banks. This approach allows the data sets of multiple
applications to be concurrently loaded in card memory, thereby reducing the frequency of
page faults. Another interesting approach is to physically attach and utilize a storage device

105



Table 7.2: Overhead for managing an FPGA page fault.

Resource Action
FPGA
Clocks

Time (µs)

FPGA

Detect fault 1 0.05

Store page ids 3 0.15

Issue fault signal 1 0.05

Release SRAM banks 0-2 1 0.05

Host

Acquire SRAM banks 0-2

-

13

Process fault 8

Unload 2 MB page 43,494

Load 2 MB page 17,927

Notify FPGA 1

Release SRAM banks 0-2 7

FPGA
Acquire SRAM banks 0-2 8 0.40

Reload page ids 2 0.10

to the FPGA card for housing unloaded pages. The RC-1000 card features a large number
of I/O pins that can be utilized to attach a hard drive or other storage devices such as flash
memory. A disk controller can be constructed in the FPGA for managing disk interactions.
Therefore page faults could be managed entirely by the card, swapping card memory to disk
without the intervention of the host. The downside of this system is that it is challenging
to implement and adds to the overall complexity of the FPGA frame.

7.5 Performance of FPGA as a Pipeline Stage

Measurements were performed to determine how much overhead is involved when the RC-
1000 FPGA is utilized as a pipeline stage in a streaming computation. In these experiments
message data arrives at the RC-1000 endpoint from either the host endpoint or the NI card.
Messages contain 4 KB of payload data (i.e., 1024 words of 32b data) and specify a pass
operation for the active message handler. This operation simply transfers the incoming
payload data to the outgoing message’s payload. FPGA clock times are extracted directly
from the state machines and related to wall clock time by dividing clock periods by the
FPGA clock speed (20 MHz).

The results of the measurements are listed in Table 7.3. Starting with the resources that
inject the message into the RC-1000 endpoint, it is clear that the NI can insert messages into
the RC-1000 more efficiently than the host endpoint. This is because the NI controls the
RC-1000’s memory arbitration mechanisms and the NI has better control over its injection
mechanisms because it directly manipulates a PCI DMA engine.

For the FPGA endpoint, the majority of the overhead in processing the message comes
from streaming the individual data values through a computational unit. In this system
the fetch, compute, and store operations take place in a pipelined fashion, allowing the
operations to overlap. This feature demonstrates how an FPGA can be beneficial for pro-
cessing data because it illustrates how custom pipelines can be constructed in the hardware
to achieve high throughputs. It is important to note that the store operations require 3
clock cycles in the current implementation, as opposed to reads which can fetch a new data

106



Table 7.3: RC-1000 overhead involved in processing a 4 KB message.

Resource Action
FPGA
Clocks

Time (µs)

(Host/NI)
Acquire SRAM bank 0

-
(13 / 5.5)

Inject 4 KB message (107 / 32)

Release SRAM 0 (7 / 3)

FPGA

Acquire SRAM banks 0,3 8 0.40

Fetch incoming message header 7 0.35

Fetch forwarding information 5 0.25

Fetch payload data 1024 51.2

Computation latency 1 0.05

Store results 3072 153.6

Store outgoing header 48 2.4

Update message queue pointers 3 0.15

Release SRAM banks 0, 3 1 0.05

FPGA
Acquire SRAM bank 3

-
13

Perform DMA 69

Release SRAM bank 3 7

value every clock period. After processing a message the FPGA must format the outgoing
message with a header obtained from the forwarding directory. Control is then passed to the
host system, which detects the message and initiates the DMA that transfers the message
to either the NI or another endpoint in the local host on behalf of the RC-1000 endpoint.

7.6 Summary

Streaming computations are a means of utilizing a collection of distributed resources to
improve the throughput of a complex operation. In this effort, a series of cluster resources
are utilized to implement a computational pipeline. While the cluster resources function
as the computational stages in the pipeline, the message layer provides the framework for
delivering data between the pipeline stages. Each resource in a pipeline is equipped with
a forwarding directory that allows users to specify how data flows through the pipeline
and the operations that are performed on the data streams. As a means of investigating
implementation details, the RC-1000 FPGA endpoint has been extended to support stream-
ing computations. Additional enhancements were made to the endpoint to allow multiple
applications to utilize the resource at the same time.

107


