APPENDIX C

THE GRIM API

GRIM is a communication library that allows designers to easily construct applications that
utilize a cluster’s distributed resources. GRIM provides a relatively simple but powerful API
that feature two separate programming interfaces that can be utilized concurrently by an
application. The first of these interfaces is for active messages. In active messages a sender
specifies a function handler that is invoked at the receiver when the message arrives. This
interfaces allows users to trigger actions at remote endpoints and is particularly well suited
for interactions with remote peripheral devices. The second interface provided by GRIM is
one for remote memory transactions. These operations allow an endpoint to send or fetch
a block of memory from a remote endpoint. Remote memory transactions are useful for
efficiently moving large blocks of memory in the cluster with minimal overhead. GRIM is
constructed as a linkable C library that can optionally support POSIX threads. Users can
tailor GRIM’s behavior through the manipulation of configuration files without having to
recompile the application. This appendix describes the basic characteristics of the GRIM
APL

C.1 Configuration Interface

GRIM utilizes a small number of configuration files to specify the hardware environment
for the virtual parallel processing machine. There are two types of files utilized to specify
the configuration. First a single application configuration file serves as a top-level means of
configuring the system. This file contains basic high-level information such as the number
of nodes to use for the application and the configuration of each node. It is expected that
end users will commonly adjust this file to meet the needs of the application. The second
category of configuration files is for static information that does not frequently change in
the cluster. These files define routing tables for the cluster as well as available hardware
resources.

C.1.1 Application Configuration

From a user’s perspective there is one configuration file that is central to specifying how
the GRIM environment is defined. At initialization time GRIM reads a file specified by
the GRIM_CONFIG environment variable to determine its configuration. In the current
release this configuration file is located in grim/config/grim config. This file contains
the following variables:

e NUM_NODES: This specifies how many hosts are available in the system.

e LCP_FILE: This variable specifies a file that contains the routing information for
the Myrinet network.

After these initial constraints users define the configuration for their cluster, including
the resources that are to be utilized in each host. A cluster must be defined with a cluster

146

name, a configuration file for the cluster, and a list of resources to be utilized in the cluster.
For example a cluster with two hosts (paris and metz) with a Celoxica card could be listed
in the configuration file as:

#--The French Cluster-—-

CLUSTER French_cluster
CLUSTER_RESOURCE French_cluster_config.txt
ROUTING_MYRI grim_routes_myri.txt
HOST paris

USE MYRI

USE CELOXICA

HOST metz
USE MYRI

It is possible for multiple cluster configurations to be listed in the configuration file
in order to allow users to easily migrate an application between different clusters without
adjusting the configuration file. Before GRIM parses this file it determines the name of the
host that it is operating on. It then selects the proper cluster to use from the configuration
file by selecting the configuration that contains the host the program is running on.

C.1.2 Cluster Resource Configurations

GRIM utilizes multiple configuration files to specify various information for cluster re-
sources. The application configuration file specifies the location of each of these files. GRIM
parses the resource configuration files based on whether the resources are utilized by the
cluster. The following files are utilized:

e Myrinet Routing Table: Because Myrinet uses source routing it is necessary to
define all of the routing information for the cluster in advance. Routes must be
selected in a deadlock free manner. Each line in the configuration specifies the source
node and the paths to all other nodes in the cluster.

e Myrinet Host Mapping File: This file contains the listing of hosts utilized in
the cluster and the physical ID of each host. The physical ID is the number that is
referenced with the Myrinet routing table because it reflects the port number in which
the host is physically connected to the Myrinet switches.

e Celoxica Circuit File: The software that manages the Celoxica card requires in-
formation describing the FPGA configuration images that can be loaded into the
FPGA card. This file lists all of the available FPGA configuration files and notes
which circuit is loaded in which user-defined computational slot. Incorporating ad-
ditional user-defined circuits in GRIM requires that the circuits be identified in the
grim_handlers.h header file.

147

C.2 Initialization: grim_enable()

The GRIM communication library is initialized through the grim_enable () procedure. This
function performs a number of startup operations for the library and should only be called
once by an application. This function must be called before any of the library’s variables or
functions can be accessed. The grim enable() procedure performs the following internal
operations:

e Reset variables: The GRIM library begins operation by allocating and resetting all
variables. These variables include node information as well as various databases.

e Parse configuration files: Each node in GRIM must load information from con-
figuration files to determine information about the global cluster environment. This
information contains both general information (e.g., routing tables and host names)
and application-specific information (e.g., the number of hosts used in application).

e Construct a local database of resources: Each node in the cluster utilizes con-
figuration file information to construct a database for resources in the cluster. This
database contains both local and global information, and is referenced by end appli-
cations to determine the location of requested resources.

e Initialize local devices: The next step for a node in the cluster is to initialize the
local set of peripheral devices that are to be utilized in the cluster environment. These
initializations are device specific, performing operations such as loading a peripheral
device with firmware.

e Allocate host incoming message queues: Next GRIM interacts with a device
driver to open a block of memory that is both pinned and contiguous. The library
obtains both a virtual and physical address for the memory so that it can be accessed
by the user-space application and the peripheral devices. This memory is utilized to
house incoming message queues.

e Initialize and link message queues: After all local peripheral devices and host
memory is available, GRIM must establish message queues and initialize message
queue pointers for the resources in the local host. The size of each message queue
is based on the amount of memory available in the resource to house messages and
the number of queues that must share this space. Users can request particular sizes
for message queues in the configuration files, although this information is ignored if
it exceeds queue capacities. After queues are allocated, the library stores pointer
information in the appropriate outgoing message queue registers for each resource.

e Handler library initialization: Next, GRIM initializes both the local and global
handler databases. Once initialized the database is loaded with a set of built-in
function handlers that are available at all nodes.

e NI synchronization: All of the NIs for the nodes used in the cluster perform syn-
chronization. In this procedure a NI alerts all other NIs that it is reset and waiting
to hear from the other nodes. A NI must wait until it receives a reset notification
from all other NIs before it can proceed in a normal mode of operation. This process
is necessary in order to reset the sequencing information used by NI pairs and to
guarantee that a NI will not transmit data to a node that has not been initialized.

148

e Peripheral device activation: The final step in initialization is to notify all pe-
ripheral devices that the node is fully initialized and that operation in the cluster is
to begin.

Once grim_enable() completes, host applications can begin utilizing the library.

C.3 Runtime Information

After initialization, users can obtain basic information about the host an application is
running on. Each host in the cluster is assigned both a physical node number (PNN) and a
virtual node number (VNN). The PNN is a constant number that is assigned to a particular
host. It is utilized internally by the library to manage routing tables. The VNN is a number
that is assigned to a host at runtime based on the cluster’s configuration file. GRIM assigns
VNNs linearly to hosts in the configuration file, starting with VNN 0 for the first host in the
file. This approach allows users to easily specify which nodes in the cluster are utilized in the
virtual machine, without having to change the files containing physical routing information.
FEnd users should always reference host nodes with the VNN in applications for portability.

Table C.1: API for obtaining cluster host information.

u32 id = grim getVNNFromName (string name)
string name = grim_getVNNName (u32 id)
u32 id = grim getMyVNN ()

string name grim_getMyName ()

grim_printVNNConfiguration ()

Users can obtain basic information about the local host an application is running on
through the commands listed in Table C.1. The first four of these functions provide either
a 32-bit VNN identifier for a host or the host’s name. The last command prints out infor-
mation about the runtime configuration of hosts utilized in the system for an application.

C.3.1 Referencing a Cluster Resource

In addition to referencing hosts in the cluster, users must be able to reference individual
communication endpoints. A reference to a communication endpoint is constructed with
three pieces of information: the VNN of the endpoint’s host, the type of communication
device the endpoint is (e.g., host-CPU level, Celoxica card, I2O card, etc.), and a logical
channel identifier to associate transmissions to the endpoint.

149

Table C.2: Functions for generating a reference to a communication endpoint.

u32 = grim getDestID (u32 destination node VNN,
us8 destination device,
ul6 logical channel)
u32 = grim getResource(u32 destination node VNN,

u8 device type,
ulé logical channel)

As listed in Table C.2, GRIM provides two functions for generating a reference to a com-
munication endpoint. First, grim getDestID() can be utilized to obtain a 32-bit reference
to an endpoint if the location of the endpoint is known in advance by the user. The user
must supply the VNN and device type of the endpoint, as well as the desired logical channel
for communication with the endpoint. This function is useful for referencing well-known
endpoints, such as the host-level endpoint that is available at every node. The second func-
tion for generating a reference to an endpoint is grim getResource(). This function is
designed to allow users to query the cluster’s resource database in order to locate a desired
resource. Users can specify a particular VNN with which to restrict the search, or specify
that any VNN can be utilized.

C.}, Active Message Interface

The first of two programming interfaces provided in the GRIM communication library is for
active message style interactions with endpoints. In this system the sender includes infor-
mation in each message that specifies how the message is to be processed at the destination
endpoint. Each endpoint contains a set of active message function handlers that are used to
process incoming messages. An endpoint must register a handler with the communication
library before the handler can be utilized by other endpoints in the cluster. During registra-
tion users associate a string identifier with a handler and are returned an integer identifier
that can be utilized to reference the handler in subsequent API calls. Endpoints invoke ac-
tions in other endpoints simply by sending active messages that are properly encoded. Each
endpoint is responsible for periodically invoking a polling operation that extracts messages
from incoming message queues and processes the messages accordingly.

C.4.1 Handler Registration

Each communication endpoint in the cluster can be equipped with a different set of active
message handlers. Therefore it is necessary to provide functions in the cluster that allow
endpoints to register their own unique handlers and publish this information to the global
cluster context so that other endpoints can reference and utilize the handlers. This process
takes place in three phases with the functions listed in Table C.3.

150

Table C.3: The functions utilized to register and reference active message function handlers.

grim register_handler(handler_call_t function,
string name)
grim_syncHandlers ()
u32 = grimresolveHandler (string name)

The first part of handler registration takes place when an endpoint registers its func-
tion handlers locally with the grim register handler() function. With this function
an endpoint updates a local table that associates a string identifier with a virtual mem-
ory pointer to a function handler. This information does not leave an endpoint until the
grim_syncHandlers() function is executed. The grim syncHandlers() function transmits
the local list of function handlers to an endpoint in the cluster which is responsible for
managing a global database of function handlers for the cluster. This node will merge the
incoming list of handlers into the global database and transmit a copy of the global list of
handlers to the endpoint requesting the synchronization. The requesting endpoint will then
update its local tables and assign a global integer identifier to every local function handler.
Once equipped with this information, an endpoint can call the grim resolveHandler ()
function to determine the global integer identifier of a function handler in the cluster. This
ID can be utilized in active message transmissions with other endpoints.

C.4.2 Send and Receive Operations

As listed in Table C.4, GRIM provides a grim_send () operation for transmitting an active
message to a destination and a grim poll () function for receiving and processing incoming
messages. In the grim_send () function the sender must provide a resource reference id for
the destination endpoint, the handler id, four active message arguments, and an optional
payload. The GRIM communication library will take this message, transfer it in its entirety
(performing segmentation and reassembly if necessary), and execute the function at the
receiving endpoint using the information provided.

Table C.4: The functions for sending and receiving active messages.

grim_send (u32 destination resource id,

ulé function handler id,

s32 handler argument 0,

s32 handler argument 1,

s32 handler argument 2,

s32 handler argument 3,

ulé payload length,

u32+ payload starting address)
grim_poll ()

The grim poll() function must be performed regularly at the receiving endpoint in
order to facilitate the processing of active messages. This function detects that new messages

151

are available for processing in the endpoint’s incoming message queues, extracts the message,
and performs the specified computation. When POSIX threads support is enabled in GRIM,
it is not necessary for end applications to execute grim_poll() operations. Instead a thread
is dedicated to periodically performing the poll operation.

C.5 Remote Memory Interface

The second programming interface provided in the GRIM communication library is one
for interacting with memory located at a remote node. Because host applications and
peripheral devices operate with different address spaces (i.e., virtual and physical), the
remote memory API must be specific about the types of addresses that it operates with as
well as provide mechanisms for translating between address spaces. In GRIM the primary
means of referencing a block of memory for end applications is a virtual memory address.
Like many communication libraries that perform remote memory operations, GRIM users
are only allowed to utilize virtual address spaces that are created with special allocation
function calls. These calls allocate and pin the requested memory regions and supply the
NI with memory translation information. The GRIM library also provides mechanisms
for remote memory transactions with physical addresses. These mechanisms operate with
low overhead because address translation is not necessary, but offer no protection if a user
supplies the mechanisms with bad addresses.

C.5.1 Managing Memory

The first part of the remote memory interface is designed to assist users in managing memory
that can be accessed by the NI. The first call listed in Table C.5 is the grim malloc_pinned()
function. This function interacts with GRIM’s pinned memory device driver to allocate a
sufficient block of memory that is guaranteed to be pinned. Internally GRIM allocates
large blocks of contiguous memory and then allocates memory requests from these blocks
in order to simplify the number of virtual to physical memory address translation entries
loaded in the NI. The result of this function is a virtual address that an application can
use as a regular pointer and pass as a reference to other endpoints in the system. When an
application finishes using a block of pinned memory it can call the grim free pinned va()
call to free the allocation.

Table C.5: Function calls for managing memory used by the remote memory interface.

u8x = grimmalloc_pinned(u32 number of bytes)

grim free pinned va(u8x pinned virtual address)

u8«* grim_get_pinned_pa (u8+ pinned virtual address)

u8x* grim_get_pinned_va (u8* pinned physical address)

In addition to allocating and freeing pinned memory, the GRIM library provides mecha-
nisms for translating addresses. The grim get_pinned pa() function translates the virtual
address of a block of memory allocated by grim malloc_pinned() into a physical address.
This address can be used for physical memory transactions that bypass address translation
in the NI. The grim get_pinned_va() similarly can be utilized to translate a physical ad-
dress reference of a pinned memory block into a virtual address. This function is primarily

152

provided for completeness.

C.5.2 Remote Memory Operations

GRIM is designed to provide both send (see Table C.6) and fetch operations for interactions
with a remote endpoint’s memory. Both of these operations can be supplied with an optional
lock to provide a simple form of notification. A lock is simply the virtual address of a 32-
bit integer that is allocated from GRIM’s pinned memory. In the grim sendMemory ()
call the sender specifies the ID of the destination endpoint, the source and target virtual
addresses of the block of data to transfer and the size of the block of memory. If a virtual
address of a lock is supplied, the receiving NI will DMA the value specified in the call’s lock
value variable into the address after the entire block of memory has been transferred. The
grim fetchMemory() function operates in a similar manner, but transfers data from the
remote endpoint to the local endpoint. Once the operation completes the NI of the node
initiating the fetch operation will transfer a zero into the local endpoint’s lock address, if
specified.

Table C.6: Functions for transferring data between an endpoint and a remote endpoint.

grim_sendMemory (u32 destination resource id,
u32+ target virtual address,
u32+ source virtual address,
ul6 number of bytes)

grim_sendPhysicalMemory (u32 destination resource id,
u32x target physical address,
u32* source virtual address,
ulé number of bytes)

GRIM also supports an interface for transferring data directly to a physical address
in the remote endpoint’s system. When the NI of the receiving endpoint receives such a
message it transfers the data directly without any form of virtual memory translation, as
none is needed. While this mechanism allows for the operation to take place without the
overhead of translation, users must be aware that there is no memory protection employed
with this function. Supply erroneous information to this function can easily cause the NI
to write data into an unknown memory address in the system, which is likely to crash the
host system. The physical memory interface however is useful for interacting with devices
such as a video display device’s frame buffer.

C.5.3 Reserving NI Memory

Additional functions are provided in the GRIM library to allow NI memory to be directly
utilized by applications. While it is expected that most applications do not need such
functionality, it is conceivable that some applications may need a temporary place to store
data close to the wire (e.g., supporting a frame buffer in the NI). The first function listed
in Table C.7 is grim reserveNIMemory () and is designed to allocate a block of memory in
the NI. This function must be called before the grim_enable() function is called. After
grim_enable() is called the grim_getReservedNIMemory () function can be utilized to gain

153

both virtual and physical memory address pointers to the region of memory allocated in
the NI

Table C.7: Functions for reserving memory in the local NI card.

grim reserveNIMemory (u32 size)

grim_getReservedNIMemory (u8*x virtual memory address,

u8xx physical memory address)

C.6 Multicast

GRIM provides support for multicast and broadcast operations. The current implemen-
tation is tree based and performs message replication in the NI cards. A multicast tree
is referenced in GRIM by a string and an integer value. Once a multicast tree is defined
an endpoint can subscribe or unsubscribe from its data distribution. All endpoints in the
cluster are allowed to inject messages into a multicast tree.

C.6.1 Multicast Tree Management

Table C.8 lists the API provided in GRIM for managing the multicast distribution trees.
The function grim findMulticastTree() is used to determine a unique integer value to
reference a particular multicast tree in the cluster. If the requested tree name has not been
referenced, the library constructs a new tree and assigns ownership of the tree to the end-
point that first attempted to locate the tree. After a tree has been identified an endpoint can
specify that it whishes to be a part of the tree and subscribe to multicast traffic. An endpoint
can use the grim _subscribeMulticast() function if a multicast tree has been identified
or the grim subscribeMulticastByName() function if the tree id is not yet known. In
both cases the use must specify which NI logical channels will be subscribing to the mul-
ticast messages. The channel list is a Boolean mask. The grim unsubscribeMulticast ()
function is utilized to remove the endpoint from the multicast distribution tree.

Table C.8: Functions for managing multicast distributions.

u32 = grim findMulticastTree (string name)
u32 = grim subscribeMulticase (u32 multicast id,
u8 channels)
u32 = grim_subscribeMulticaseByName (
string name,
u8 channels)
grim unsubscribeMulticast (u32 multicast id,
u8 channels)

C.6.2 Sending Multicast and Broadcast Messages

Table C.9 lists the functions utilized to inject messages into the broadcast and multicast
trees. These functions are identical to the normal active message send functions except

154

that the grim_sendMC() function requires the specification of the multicast tree id instead
of the destination endpoint, and the grim broadcast () does not require the specification
of a destination endpoint. All endpoints are allowed to utilize these functions, whether they
subscribe to a multicast tree or not. Any active message function handler can be utilized
with these functions, although users must be aware that the sending of a multicast active
message may result in the invocation of the function handler at multiple nodes. Therefore
users must be cautious when designing active message function handlers that are intended
for multicast operations.
identification information is not accurately provided to the endpoint invoking the function
handler. Therefore if such information is required it is necessary to include it in one of the
active message function arguments that are passed with the message.

In the current implementation, the original sending endpoint

Table C.9: Functions for injecting multicast and broadcast messages.

grim_sendMC (u32 multicast id,

ulo function handler id,

s32 handler argument O,

s32 handler argument 1,

s32 handler argument 2,

s32 handler argument 3,

ul6 payload length,

u32+ payload starting address
grim broadcast (ul6 function handler id,

s32 handler argument O,

s32 handler argument 1,

s32 handler argument 2,

s32 handler argument 3,

ulé payload length,

u32* payload starting address

C.7 Advanced API Functions: TPIL

As a means of provided accelerated performance for applications injecting data into periph-
eral devices a library has been constructed for x86 host endpoints named TPIL: the tunable
PClI injection library. TPIL provides basic mechanisms for transferring data to a PCI device
using hardware units that have evolved in the x86 architecture. When users need to add
new peripheral devices to the GRIM communication library, it may be beneficial to utilize
the TPIL API in order to enhance performance. The API is summarized in Table C.10

155

Table C.10: The TPIL API for accelerating injections of data into a peripheral device
from a host CPU.

Tdev = +tpil_create(u32 device file 1id,
u8«* device mmap,
u32 mmap size,
u32 device ioctl)
tpil_h2c(Tdevx tpil device,
u8#* destination,
u8#* source,
u32 number bytes)
Tcfg = +tpil_benchmark(Tdevx tpil device)
tpil_configure(Tdev* tpil device,
Tcfgx tpil configuration)

The function tpil_create() is utilized to initialize TPIL and generate a reference that
can be utilized in subsequent API calls. This function provides pointers to the file handler of
the device and its memory map, the size of the memory map, and a reference to the ioctl()
functions that TPIL can utilize to transfer data with the assistance of a kernel driver.
The ioctl() calls are optional and are a means of utilizing a card’s DMA engines. The
tpil_h2c () function is utilized to perform host-to-card transfers of data. The user must
supply a pointer to where data is to be written (i.e., a pointer to somewhere in the card’s
memory map), a pointer to the data that is to be injected, and the size of the transfer.
TPIL will utilize internal information to determine which transfer mechanism is the best
option.

TPIL provides mechanisms for configuring how transfers are performed. First the
tpil_benchmark() function can be utilized to examine the characteristics of the host ma-
chine. Generally this operation is performed offline as it performs several lengthy tests to
determine how long it takes to inject data into a peripheral device. The results of these
measurements can be exported for use in other programs. The tpil_configure() function
is utilize to configure the transfer mechanisms for a particular device. Users can either uti-
lize the information obtained from the benchmarking operations or supply custom settings.
These settings are simply the cutoffs in which different transfer mechanisms are employed.

156

