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ABSTRACT 
 
The recent emergence of high-quality floating-

point libraries for FPGAs has sparked a renewed 
interest in accelerating scientific applications through 
Reconfigurable Computing (RC) techniques. 
Unfortunately, the sheer size of these floating-point 
units makes it difficult to house a large number of 
units in a single FPGA. In order to support the 
adaptation of non-trivial algorithms to hardware, it is 
therefore necessary to consider methods by which a 
set of floating-point units can be reused to perform 
different operations in an algorithm. 

In this paper we discuss a “recycling 
architecture” that reuses a fixed number of floating-
point units to implement an algorithm. We customize 
the hardware data path for this architecture at 
compile time based on a static computational schedule 
that is generated for an algorithm. As a means of 
illustrating tradeoffs, we step through the adaptation 
process with an example application that computes 
ray-triangle intersection points. By reusing hardware, 
we are able to halve resource requirements while 
maintaining acceptable performance. As a means of 
motivating future work, we also discuss our 
experiences constructing tools that translate an 
algorithm’s equations into a synthesizable netlist. 
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1. Introduction 

1.1 Reconfigurable Computing 
Reconfigurable Computing (RC) [1] refers 

to the practice of utilizing reconfigurable 
hardware devices to accelerate the computational 
performance of a system. In RC, an application’s 
performance-critical computational kernels are 
adapted to function as digital circuitry that can be 
emulated by a reconfigurable hardware device. 
By implementing the kernels in efficient 
hardware, it is possible to obtain significant 
performance speedups over solutions that 

implement an algorithm entirely in software. A 
number of RC researchers have reported 
improvements in many application domains, 
including cryptography [2], signal processing [3], 
and pattern matching [4]. 

Field-Programmable Gate Arrays (FPGAs) 
are the dominant form of reconfigurable 
hardware utilized by RC researchers, due to the 
wide availability of commercial products and the 
broad flexibility of the hardware. Modern FPGAs 
such as the Xilinx Virtex II/Pro (V2P) [5] have 
the capacity to emulate hardware designs that are 
comprised of millions of logic gates. 
Additionally, these “platform FPGAs” feature 
large amounts of internal memory, dedicated 
integer multiplication units, and embedded 
processors that can be utilized in a flexible 
manner. 

1.2 Floating-Point Operations in FPGAs 
While commercial FPGAs have improved 

significantly over the last decade, they still lack 
native support for floating-point calculations. As 
a result, RC researchers that use FPGAs in 
scientific work have either (1) adjusted their 
applications to use fixed-point calculations, or (2) 
implemented their own floating-point units using 
FPGA logic. Implementing a floating-point unit 
is non-trivial and requires a sizable amount of 
FPGA resources to even be feasible. However, 
the availability of high-capacity FPGAs has 
renewed interest in building floating-point 
libraries for FPGAs [6,7]. 

One such library for the Xilinx V2P FPGA 
has been developed [8] by Keith Underwood and 
K. Scott Hemmert at Sandia National 
Laboratories. This library includes a diverse set 
of floating-point operations that are available in 
both single- and double-precision. The units are 
deeply pipelined (10 to 20 stages) and operate at 
high clock speeds (up to 200 MHz). For this 



paper, we make use of single-precision adders 
and multipliers available in the library. However, 
this work is applicable for use with other 
floating-point libraries. 

1.3 Algorithm Adaptation: Full Pipeline 
The simplest means of adapting an algorithm 

to hardware is to allocate a floating-point unit for 
each computation in the algorithm. This 
adaptation results in a long, continuous pipeline 
that we refer to as a full pipeline. For example, 
consider the trivial case where an algorithm 
computes y=(a+b)+(c+d). A full-pipeline 
implementation would employ two adders to 
compute (a+b) and (c+d) in parallel, and then 
route the results to a third adder to generate y. In 
addition to being straightforward to implement, 
this approach offers excellent performance 
because all floating-point units operate in parallel 
once the pipeline fills. Users can issue a new 
algorithmic operation every clock cycle. Results 
are produced after a delay that is equivalent to the 
longest path through the system (2*N clock 
cycles in this example, where N is the number of 
pipeline stages in an adder). 

2. Reusing Floating-Point Units 
While full-pipeline implementations provide 

excellent performance, they are impractical for 
general use due to two reasons. First, current 
generation FPGAs only have enough capacity to 
house a small number of floating-point units (i.e., 
less than 100). Therefore, full-pipeline 
implementations are generally only possible for 
algorithms with a small number of operations. 
Second, practical RC systems have finite memory 
resources from which input values are supplied. 
As such, it is possible that an FPGA would have 
the capacity to house a full pipeline, but 
insufficient bandwidth to supply new input data 
values to the pipeline every clock cycle.  

In order for RC to move forward in the 
scientific community, it is necessary to develop 
alternative design techniques that enable large-
scale algorithms to be mapped to resource-
constrained hardware. Our solution to this 
problem is to construct a hardware architecture 
that reuses a set of floating-point units over time 
to perform different operations that are required 
by the algorithm. This hardware is customized to 
the algorithm’s data flow, and is referred to as a 
recycling architecture in this paper. 

2.1 The Recycling Architecture 
As depicted in Figure 1, the recycling 

architecture is comprised of four components: (1) 
an array of floating-point units, (2) an input 
selection unit to route data values to the right 
units at the right times, (3) an intermediate 
buffering unit to store results for later use, and (4) 
a control unit for managing the architecture on a 
cycle-by-cycle basis. 
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Figure 1: The Recycling Architecture 

 
The concept of reusing floating-point units 

through a recycling architecture is attractive for 
multiple reasons. First, this approach provides us 
with a means of executing large algorithms on 
FPGAs that have limited floating-point and/or 
memory bandwidth resources. Second, the 
recycling architecture shares similarities with the 
architecture of a general-purpose CPU, and 
therefore it is possible to leverage existing 
techniques for maximizing the hardware’s 
utilization. Finally, unlike CPUs, the recycling 
architecture’s hardware data path can be 
customized to the characteristics of the algorithm. 
This customization can include adjustments to the 
number of floating-point units, the amount of on-
chip buffering, and the manner in which 
resources are interconnected. 

2.2 Ray-Triangle Intersection Example 
The tradeoffs associated with developing a 

recycling architecture are best illustrated with a 
practical example. In this paper we focus on the 
adaptation of a computational kernel that 
computes the intersection point between a ray and 
a triangle. We selected this kernel because it is 
frequently required in visualization applications 



such as photon mapping [9]. Photon mapping 
applications inject millions of photons into a 
scene and then track the photons’ paths as they 
reflect off objects. A ray-triangle intersection 
algorithm is used to determine which object a 
photon will hit next and where the collision will 
take place. The sheer number of photons and 
objects in a scene highlight the importance of 
performing the intersection computation as 
rapidly as possible. 

The Moller-Trumbore [10] algorithm is a 
well-known method for efficiently computing the 
ray-triangle intersection point. Given a ray and a 
triangle, the algorithm produces a TUV 
intersection point, where T is the distance from 
the ray origin to the triangle and UV is the offset 
of the intersection within the triangle. The 
algorithm exclusively utilizes additions, 
multiplications, and comparisons, except for one 
division that is used to scale the final TUV 
values. 

For our work we assume that the ray-triangle 
intersection algorithm will be used in a photon 
mapping context, where it is necessary to 
compute the intersection point of each photon 
with each triangle. In order to minimize the work 
performed in the inner loop, we have modified 
the algorithm to defer the final division and 
scaling operation until all intersections have been 
computed. This optimization requires 
comparisons to be performed using a 
numerator/denominator notation, but removes 
two stages of floating-point computation from the 
critical path. 
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Figure 2: Ray-Triangle Intersection Data Flow 

 
 

A high-level representation of the modified 
algorithm implemented in this work is depicted in 
Figure 2. Data flows from top to bottom in this 
diagram, with results generated by one row of 
boxes being used in one or more of the lower 
boxes. The rows of boxes perform (A) three 
vector subtractions, (B) two dot products, (C) 
four cross products, (D) numerator-denominator 
cross multiplication, and (E) comparisons to 
determine if the intersection is closer than the 
current value. We reference individual operations 
by a numerical identifier that is assigned based on 
the operation’s location in the diagram. In terms 
of floating-point operations, the algorithm 
requires 26 multiplies, 24 adds, and 4 compares. 

2.3 Hardware Environment 
We selected the Xilinx V2P20 FPGA as the 

target FPGA for this study. This decision was 
motivate by the availability of a V2P20 reference 
board for experiments. While the V2P20 is 
relatively small by current standards, it features 
enough capacity to house 10-20 single-precision 
floating-point units. Working with a small part is 
beneficial in that it motivates the designer to 
implement the hardware as compactly as 
possibly. We note that for larger FPGAs, the 
design can simply be replicated in order to 
improve performance. 

An initial investigation was performed to 
determine how many of each type of floating-
point unit should be utilized in the design. From 
Figure 2 we see that the algorithm performs 12 
multiplies, 9 adds, and 4 compares at most in any 
row. After estimating that only half the chip 
should be allocated for floating-point units, we 
decided to constrain the recycle architecture to 
employ 6 multiply, 5 add, and 4 comparison 
units.  

2.4 Related Work 
Our work draws upon the insight provided 

by a variety of related research projects. In terms 
of scheduling, the compiler community has 
developed a number of techniques that are 
directly applicable in this work, such as modulo 
scheduling [11] and register coloring [12]. 
However, it is clear that software compiler efforts 
have different constraints than hardware 
developers. Most notably, software compiler 
efforts typically assume that the hardware is 
predefined and cannot be changed. Hardware 
developers on the other hand have the ability to 



adjust both the schedule of operations and the 
hardware data path that executes those 
operations. 

Hardware compilers have been discussed a 
great deal in the literature. Prominent efforts such 
as StreamsC [13] and Handel-C [14] have 
produced tools that convert C-like languages into 
FPGA hardware. Hardware compilers typically 
exploit parallelism by instantiating as many 
computational units as possible to implement an 
application’s operations. This technique works 
well for integer applications because integer 
operations can be implemented compactly in an 
FPGA. However, the sheer size of floating-point 
hardware limits the effectiveness of this 
technique for floating-point applications. As 
such, most high-level compilers for FPGAs do 
not support floating-point operations. While 
recent efforts such as Trident [15] seek to remedy 
this shortcoming, we believe that floating-point 
will be a central challenge in RC for several 
years.  

We differentiate our work from high-level 
compiler efforts based on our focus. Rather than 
build a general-purpose hardware compiler, we 
are focused on techniques and tools for creating 
complex computational kernels that can be used 
as components in other hardware designs. While 
an optimizing compiler is desirable, we expect 
that there we will always need to perform a 
moderate amount of design and optimization by 
hand in hardware development. 

2.5 Paper Organization 
The remainder of this paper steps through 

the process of adapting the ray-triangle 
intersection algorithm to a recycling architecture 
implementation. Sections 3-5 describe the 
construction of a computational schedule for the 
algorithm, the mapping of operations to specific 
units, and the design of hardware to buffer 
intermediate values. Section 6 provides 
performance estimates for the implementation, 
while Section 7 outlines opportunities for 
automating the design process. Finally, we 
conclude the paper with a brief summary of our 
experiences. 

 
 
  

3. Operation Scheduling 
At the heart of the recycling architecture is 

an array of floating-point units. These units are 
used to perform the computations needed by an 
algorithm at different points in time. As such, the 
first task in mapping an algorithm to a recycling 
architecture is to generate a computational 
schedule that sequences the flow of execution for 
an algorithm on the hardware. 

3.1 Pipeline Challenges for Scheduling 
There are two characteristics of floating-

point unit pipelines that make scheduling 
challenging. First, different floating-point 
operations have different pipeline latencies (e.g., 
the adder used in this work is 10 stages long 
while the multiplier is 11). As a result, the 
designer must perform temporal alignment when 
different types of operations are executed in 
parallel. Second, there is a sizable amount of 
delay between when an operation is issued and 
when the result is produced. This delay makes it 
challenging for the scheduler to find enough work 
to keep the units utilized unless the algorithm 
exhibits a significant amount of parallelism. 

In order to simplify the task of scheduling, 
we (1) add buffering to the floating-point units so 
that all operations have the same number of 
pipeline stages (i.e., 11) and (2) employ a strip-
mining technique to maximize resource 
utilization. With this technique, we sequentially 
process a strip of N independent iterations of an 
algorithm at a time, where N is equivalent to the 
number of stages in the pipeline. This technique 
enables us to perform scheduling on a strip-by-
strip basis that hides the fact that the floating-
point units are deeply pipelined  

3.2 A Single-Strip Schedule 
As a first step in scheduling the ray-triangle 

intersection algorithm, we constructed a 
computational schedule that processes a single 
strip of 11 iterations at a time. We refer to the 
amount of time required to perform a single 
operation for a strip of values as a single stage of 
execution in the schedule. Modulo scheduling 
was applied to enable the back-to-back 
processing of multiple strips of data to take place 
more efficiently. The schedule is listed in Table 
1. Each numerical identifier in the table refers to 
a particular operation in Figure 2. 

 



Table 1: Single-Strip Schedule 

Stage Add Multiply Compare 
0 0-4   
1 5-8   
2  9-14  
3 21-23 15-20  
4 24-26   

5  30-32, 
36-38 

 

6 40,42 27-29, 
33-35  

7 39,41, 
44,46   

8 43,45,48   
0  47,49  
1   50-53 
2   (output)  
 
The single-strip schedule requires 12 stages 

of execution to produce all the output values for a 
single strip of 11 iterations, resulting in a total 
execution time of 132 clock cycles. Utilization 
for the 5 adders and 6 multipliers is 40% and 
36% respectively. Should multiple single-strips 
of data be processed back-to-back, the overlap 
provided by modulo scheduling increases 
utilization to 53% and 48%. 

3.3 A Double-Strip Schedule 
The low resource utilization of the single-

strip schedule motivated us to consider a 
modified schedule that processes two strips of 
data (i.e., 22 iterations) in a single pass. In order 
to include the second strip of operations, the first 
strip’s schedule had to be relaxed and the overall 
schedule lengthened. The resulting double-strip 
schedule is presented in Table 2. Each identifier 
in the table refers to a particular operation in 
Figure 2. Operations that are for the second strip 
of data are listed in brackets. 

While this schedule requires three extra 
stages of execution, it processes twice as many 
values as the single-strip schedule. Utilization for 
processing a double-strip of computations is 64% 
for the adders and 57% for the multipliers. 
However, if multiple double-strip computations 
are processed back-to-back, this utilization 
increases to 80% and 72%. 

 

Table 2: Double-Strip Schedule 

Stage Add Multiply Compare 
0 0-4   
1 5-8   
2 [0-4] 9-14  
3 [5-8] 15-20  
4 21-23 [9-14]  
5 24-26 [15-20]  

6 [21-23] 30-32, 
36-38  

7 40,42 
[24-26] 

27-29, 
33-35 

 

8 39,41, 
44,46 

[30-32, 
 36-38]  

9 43,45,48 
[40,42] 

[27-29,  
33-35]  

10 [39,41, 
44,46] 47,49  

11 [43,45,48]  50-53 
0  [47,49] (output) 
1   [50-53] 
2   [(output)]  

3.4 Schedules with Additional Strips 
It is possible to continue unrolling the 

algorithm further in order to process more strips 
of data in a single pass of work. As the double-
strip schedule illustrates, the advantage of 
increasing the number of iterations processed in a 
pass enables the designer to backfill empty slots 
in the schedule and achieve higher utilization of 
the computational hardware. 

However, increasing the number of strips 
processed in a single pass also increases the 
complexity of the hardware that must be 
generated to implement the schedule. This 
complexity can have a negative impact on the 
maximum clock rate of the system (e.g., see 
Table 4). Given that the double-strip schedule 
achieves respectable utilization, we did not unroll 
the loop beyond two strips (22 iterations).  

4. Mapping Operations to Units 
Once a designer has created a computational 

schedule, the next step in building a recycling 
architecture is to map individual operations to 
specific floating-point units. This mapping has a 
direct effect on the input selection unit’s 
hardware, which is responsible for routing data 
values to the input ports of the floating-point 
units. Therefore, it is beneficial to examine how 
mapping optimizations can be applied to yield 
hardware that is more efficient. 



4.1 Input Selection Unit 
Our approach to implementing an input 

selection unit for a particular algorithm is to 
generate application-specific hardware that routes 
data values to the input ports of the floating-point 
units. As illustrated in Figure 3, this routing can 
be accomplished through the use of data buses 
and multiplexers. Each input port for a floating-
point unit is equipped with a multiplexer that is 
connected to a subset of the available data buses. 
At runtime, configuration data is supplied to each 
multiplexer in order to perform the necessary 
routing. Multiplexer configuration data is defined 
at compile time based on the data flow of a 
mapped schedule. 

 
Inputs

Input
Selector
Control

Intermediate
Data Values

Input Selection Unit

 

Figure 3: The Input Selection Unit 

 
The mapping of a schedule’s operations to 

specific floating-point units affects the routing 
that the multiplexers must provide, which in turn 
affects the input selection unit’s overall 
performance. Therefore it is beneficial to map 
operations in a way that balances the workload 
and minimizes the size of the largest multiplexer 
in the input selection unit. Our strategy for 
creating an acceptable mapping is based on a 
two-part heuristic. First, we step through a 
schedule and assign operations to units based on 
input similarities. Second, an operation’s inputs 
are swapped if doing so reduces the total number 
of unique sources that are required by the unit’s 
input ports. In the case of a subtraction operation, 
the sign bits are swapped accordingly. 

4.2 Balancing the Double-Strip Schedule 
The double-strip schedule’s operations were 

assigned to floating-point units using our 
mapping strategy. For comparison, a second 
mapping was generated using a first-come-first-

serve (FCFS) approach that simply flood-fills the 
units. The distribution of multiplexers in the input 
selection unit for each mapping strategy is 
presented in Table 3. The heuristic approach 
decreases the largest multiplexer size from 7 in 
FCFS to 5 in our heuristic. Additionally, the 
heuristic approach’s distribution favors smaller 
multiplexer sizes. These experiments demonstrate 
that it is possible to adjust the hardware 
requirements for the input selection unit simply 
by assigning computations to floating-point units 
in a more logical manner.  

 

Table 3: Multiplexer Distribution 

Number of 
Multiplexers Multiplexer 

Size 
FCFS Heuristic 

7 2 0 
6 3 0 
5 10 4 
4 5 10 
3 2 8  

 

5. Intermediate Values 
The final task in converting an algorithm to 

a recycling architecture is to implement a unit 
that is capable of buffering intermediate data 
values. This unit captures results generated by the 
floating-point unit and supplies the values back to 
the input selection unit as needed by the schedule. 
At first glance it would appear as though it would 
be best to buffer intermediate values using on-
chip block RAM (BRAM). However, while 
BRAMs provide a convenient means of storing 
large amounts of data, a single BRAM only 
provides two access ports for exchanging data. 
As such, BRAM bandwidth is likely to be 
insufficient for schedules that fetch a moderate 
number of independent intermediate values 
during execution. 

Our approach is to instead implement all 
intermediate buffering with registers. Modern 
FPGAs can easily support hundreds of registers 
that can be accessed independently by the input 
selection unit. In order to handle the fact that the 
recycling architecture processes a strip of 11 data 
values per execution stage, we place 11 registers 
in series and refer to the memory as a delay 
block. Delay blocks are implemented compactly 
in the V2P architecture through the SRL16 
primitive. For this work, we consider two 



strategies for utilizing the delay blocks: one 
where the delay blocks are independently 
writable and another where a chain of delay 
blocks is associated with a specific floating-point 
unit. 

5.1 Two Buffering Strategies 
One approach to buffering intermediate data 

values is to allocate a number of independent 
delay blocks that can be written to by different 
floating-point units. At runtime a floating-point 
unit writes a strip of results to a pre-specified 
delay block, which in turn preserves the data until 
it is required later in the schedule. As illustrated 
in Figure 4, routing data between the floating-
point units and the delay blocks can be performed 
by equipping each delay block with a multiplexer 
that is connected to relevant floating-point units. 
The advantages of this buffering strategy are that 
delay blocks can be reused and that register 
coloring techniques can be applied to minimize 
the total number of delay blocks in the system.  
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Figure 4: Independently-Writeable  
Delay Blocks  

 
An alternate approach to buffering data 

values is to assign a chain of delay blocks to each 
floating-point unit, as Figure 5 depicts. The 
number of delay blocks in a chain is equivalent to 
the largest number of execution stages that a strip 
of results must be buffered for the floating-point 
unit. While this approach does not permit delay 
blocks to be shared between floating-point units, 

there are multiple benefits that arise from its 
simplicity. First, the delay blocks do not require 
input multiplexers and are therefore smaller and 
faster than the previous approach. Second, a 
chain’s delay blocks do not require explicit 
management at runtime, which simplifies the 
control hardware for the system. Finally, the 
pipelined nature of the delay chain implies that 
delay units are automatically reused temporally. 
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Figure 5: Chaining Delay Blocks 

 

5.2 Delay Block Implementation 
Two designs were constructed to observe the 

performance differences between the 
independently-writable and chaining strategies 
for buffering intermediate data values. In terms of 
resources, the independently-writable strategy 
required 40 delay blocks while the chaining 
strategy required 81. The longest chain of delay 
blocks required in the chaining approach was 6 
for the adders and 1 for the multipliers. While the 
chaining approach requires twice as many delay 
blocks, synthesis results indicated that the overall 
design was 6% faster and 19% smaller than the 
design that employed the independently-writable 
strategy. These benefits indicate that a simple but 
brute-force approach can yield better results than 
a complex but intelligent approach. As such, we 
employ chaining for buffering intermediate 
values in the remainder of this paper.  

 
 
 
 



6. Performance 
We implemented complete recycling 

architecture hardware designs for both the single- 
and double-strip versions of the ray-triangle 
intersection algorithm. Following simulation 
experiments to confirm that these designs were 
functionally correct, we compiled the designs to 
hardware and tested them on an Avnet Virtex 
II/Pro Development Kit [16]. This board features 
a Xilinx V2P20 FPGA that has enough capacity 
to house small floating-point designs. The 
designs were compiled using the Xilinx ISE 6.3 
tool chain, which performs synthesis through the 
Xilinx Synthesis Tool (XST). 

For comparison purposes, we also 
implemented the ray-triangle intersection 
algorithm as a full pipeline of 54 floating-point 
operations. This pipeline is 74 stages deep and 
produces an output every clock cycle once the 
pipeline is filled with data. Due to the capacity 
constraints of the V2P20, the full-pipeline design 
was built targeting the larger V2P50 FPGA. Area 
estimates for this design are scaled to be in terms 
of V2P20 capacity for relevancy. 

6.1 Build Results 
The build results for the three designs are 

presented in Table 4. Area estimates are based on 
the percentage of a V2P20’s available slices that 
are utilized by a design. Speed refers to the 
maximum clock rate at which the design can 
operate in a part with a -7 speed grade.  The 
performance estimate is determined by 
multiplying the average number of floating-point 
operations that are performed per clock period by 
the design’s maximum clock rate.  

Several observations can be made from the 
build results. First, the recycling architecture 
enables a large design to be implemented in an 
FPGA that does not have the capacity to house 
the full pipeline in its entirety. Second, a 
significant performance drop is incurred when 
moving away from the full pipeline. This drop is 
to be expected because the full pipeline has 100% 
utilization and allows more computations to be in 
flight at the same time since it has nearly five 
times as many floating-point units as the 
recycling architecture. However, the performance 
of the recycling architectures is still roughly 
equivalent to performance observed on a host 
CPU. Finally, the recycling architecture designs 
are capable of operating at higher speeds than the 

full pipeline. While it is likely that the full 
pipeline’s clock rate could be improved, doing so 
involves a fair amount of fine tuning through 
floor-planning tools.  

 

Table 4: Design Performance Measurements 

Design Area  
(V2P20)  

Speed 
(MHz) 

Performance 
(GFLOPS) 

Single-
Strip 70% 155 0.9 

Double-
Strip 79% 148 1.2 

Full 
Pipeline 

199% 142 7.1 
 

6.2 Memory Bandwidth 
In addition to area and performance, another 

metric by which the full pipeline and recycling 
architectures can be compared is memory 
bandwidth requirements. Each computation 
performed by the ray-triangle intersection 
algorithm requires a total of 17 floating-point 
inputs (i.e., 68 bytes). In order to keep the full-
pipeline design saturated, this input data must be 
supplied every clock cycle. While many FPGA 
platforms support multiple banks of memory, few 
are able to sustain this performance. In 
comparison, the double-strip schedule requires 
2x17x11 floating-point values to be fetched every 
12x11 clock cycles. As such, this recycling 
architecture must read 3 floating-point values (12 
bytes) on average every clock cycle. This data 
rate is much more manageable and can easily be 
implemented on many FPGA platforms. 

7. Future Work: Automation 
Having explored several design options for 

adapting a single floating-point algorithm to 
hardware, the next logical step in this work is to 
automate the development process. As a means of 
working towards this goal, we have constructed 
an initial set of data-flow graph tools. These tools 
(1) translate a set of equations to a computational 
graph, (2) determine an optimal computational 
schedule for a specified number of units, (3) 
locate an optimal mapping of operations to units, 
and (4) generate a synthesizable VHDL netlist for 
the hardware.  

 
 
 



7.1 Design-Space Tradeoffs 
The data-flow graph tools were used to 

conduct a broader study of design tradeoffs for 
the ray-triangle intersection algorithm. In this 
experiment we removed the strip-mining 
constraint and varied the number of floating-point 
units available in the architecture. We then 
measured the total number of clock cycles 
required to process 128 iterations of the ray-
triangle intersection algorithm. 
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Figure 6: Performance Tradeoffs 

 
The results of the experiment are presented 

in Figure 6. From these results, we observe that 
performance improves as we increase the number 
of floating-point units in the system or the 
number of iterations processed in a schedule. Of 
the two, increasing the number of iterations has 
more of an effect, due to the fact that the floating-
point units are deeply pipelined. Another 
important observation is that it is possible to 
achieve a performance goal through a 
combination of these two options. This 
characteristic is particularly useful when the 
FPGA can only house a small number of floating-
point units. 

8. Summary 
Floating-point units consume significant 

resources in modern FPGAs. Therefore it is 
beneficial to develop methodologies by which 
floating-point units can be reused to perform 
different computations required by an algorithm. 
In this paper we have described a design 
technique for mapping large floating-point 
algorithms to FPGAs that is based on the notion 

of a recycling architecture. By customizing the 
data path of this architecture and optimizing the 
computational schedule, it is possible to 
implement non-trivial algorithms on resource-
constrained FPGA platforms.  

The authors thank K. Scott Hemmert and 
Keith Underwood for allowing us to use their 
floating-point libraries in this work. 
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