
26

From Silicon to Science: The Long Road to
Production Reconfigurable Supercomputing

KEITH D. UNDERWOOD
Intel Corporation
and
K. SCOTT HEMMERT and CRAIG D. ULMER
Sandia National Laboratories

The field of high performance computing (HPC) currently abounds with excitement about the po-
tential of a broad class of things called accelerators. And, yet, few accelerator based systems are
being deployed in general purpose HPC environments. Why is that? This article explores the
challenges that accelerators face in the HPC world, with a specific focus on FPGA based systems.
We begin with an overview of the characteristics and challenges of typical HPC systems and ap-
plications and discuss why FPGAs have the potential to have a significant impact. The bulk of
the article is focused on twelve specific areas where FPGA researchers can make contributions to
hasten the adoption of FPGAs in HPC environments.

Categories and Subject Descriptors: B.6.1 [Logic Design]: Design Styles—Logic arrays

General Terms: Design, Performance, Standardization

Additional Key Words and Phrases: FPGA, HPC, reconfigurable computing

ACM Reference Format:
Underwood, K. D., Hemmert, K. S., and Ulmer, C. D. 2009. From silicon to science: The long road
to production reconfigurable supercomputing. ACM Trans. Reconfig. Technol. Syst. 2, 4, Article 26
(September 2009), 15 pages. DOI = 10.1145/1575779.1575786.
http://doi.acm.org/10.1145/1575779.1575786.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Com-
pany, for the United States Department of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.
Authors’ addresses: K. D. Underwood, Intel Corporation, P.O. Box 5200, MS-1319, Albuquerque,
NM 87185-1319; email: kdunder@gmail.com; K. S. Hemmert and C. D. Ulmer, Sandia National
Labs., P.O. Box 5800, Albuquerque, NM 87185-1319.
c© 2009 Association for Computing Machinery. ACM acknowledges that this contribution was

authored or co-authored by a contractor or affiliate of the [U.S.] Government. As such, the
Government retains a nonexclusive royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or direct commer-
cial advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 2009 ACM 1936-7406/2009/09-ART26 $10.00 DOI: 10.1145/1575779.1575786.

http://doi.acm.org/10.1145/1575779.1575786.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 4, Article 26, Pub. date: September 2009.



26: 2 · K. D. Underwood et al.

1. INTRODUCTION

In the world of high performance computing (HPC), the last five years have
been filled with excitement about the promise of a new wave of accelerator
technology. Accelerators ranging from the ClearSpeed processor [ClearSpeed
Technology 2008] to the IBM Cell processor [Gschwind et al. 2006] have been
introduced alongside the long explored FPGA based systems such as the Cray
XD1 [Cray Canada, Inc. 2005a; Fahey et al. 2005] and the SRC-7 [SRC Com-
puters, Inc. 2007]. Despite boundless energy and enthusiasm around such
systems, virtually no full-scale systems with accelerators have been deployed
at the major supercomputing sites—the RoadRunner system [Crawford et al.
2008] is the only major installation to date. Why do we see this seeming para-
dox in the field?

The answer lies in the fundamental mismatch between the research demon-
strating the system’s capabilities and the needs of the production users of the
systems. On one hand, accelerators promise exactly the things that the end-
user craves: order-of-magnitude performance increases, drastically more mem-
ory bandwidth, user managed memory hierarchies, and a willingness to listen
to the little guys—how most perceive HPC customers. On the other hand,
many things that the HPC user expects from a platform are noticeably ab-
sent from accelerator based systems. For example, application portability (see
Section 3.2) is critical to the end user, but virtually unheard of in the accelera-
tor community.

We begin with the context from which HPC users see the world along with
several reasons why there is hope for FPGAs in HPC systems (Section 2). This
is followed by a discussion of the specific gaps between the current state of the
art and the expectations of users. We discuss twelve research areas to close
those gaps with some context for the current state of the art. Ultimately, it
will be the ability of the FPGA research community to meet the needs of the
end user that will determine when, and if, FPGAs will be broadly deployed in
HPC systems.

2. A PERSPECTIVE ON HIGH PERFORMANCE COMPUTING

High performance computing (HPC) describes a broad field that is driven by
the needs of end user applications. The systems are designed around those
needs; thus, they tend to have thousands of nodes and are designed with high
bandwidth interconnects to enable application scalability. HPC systems also
focus on creating highly reliable systems to support long application runs.
Here, we give a brief overview of the expectations of applications and appli-
cation developers and discuss why accelerators scare them, but have great
potential for their needs.

2.1 Applications

Scientific applications have large code bases—tens of thousands to millions
of lines [Rodrigues et al. 2004]—that are rarely rewritten, but are constantly
evolving. This is the not-so-dusty “dusty deck” problem. Application porta-
bility is key, as applications last for decades and run on a variety of different
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platforms over their lifetimes. Given the diversity of system types in produc-
tion at any given time, the developers generally avoid unique system features
that only exist on a small subset of platforms and that may only exist for
one generation. Ironically, rather than being tied to the development effort,
this aversion is tied to the validation effort of maintaining unique platforms.
Additionally, these large conglomerations of code rarely make a large DGEMM
[Lawson et al. 1979] or FFT call.

In production, these codes leverage thousands of processors and use many
terabytes of memory. Processors communicate extensively using message pass-
ing, as the memory is partitioned over many physical nodes. Despite running
on thousands of nodes, the applications run for months; thus, they use check-
point and restart to recover from system failures. To do this successfully, they
must know when a failure occurs that could corrupt data. Note that, while
the work of the application is primarily floating-point, the processor must exe-
cute far more integer instructions than floating-point instructions [Rodrigues
et al. 2004] and those instructions are mostly used for address computations
[Rupnow et al. 2006].

Arithmetic precision is a topic of great tension between the accelerator com-
munity and the application community. Accelerator enthusiasts point out that
single precision floating-point arithmetic is adequate for many computations,
as has been demonstrated with some applications [Scrofano et al. 2006]. How-
ever, two key factors make double precision support critical. First, many solver
algorithms [Heroux et al. 2005; Balay et al. 1997] already require aggressive
preconditioners to converge on real data sets and are beginning to expose the
need for better than double precision. Second, and more importantly, each plat-
form a developer supports must be validated with each revision of the applica-
tion. Validation generally comes in the form of regression testing, such that an
answer that is different in any but the least significant position or two poses
a major problem for the validation process—even if the quality of the answer
is not measurably different. While this challenge can be solved, developers
will not take on the effort until a platform is widely deployed. HPC customers
will not purchase something that cannot be used at all on some noticeable
fraction of their workload. Most accelerators have simply given up and in-
cluded double precision support [Crawford et al. 2008; ClearSpeed Technology
2008]. Thus, FPGAs will have to do the same for much of the arithmetic in most
applications.

2.2 Accelerators are Daunting

There is a mismatch between the long lifetime of HPC applications (with
their conservative development methodology) and the nature of modern ac-
celerators. HPC has a multi-billion dollar code base that is growing every day.
With tens to hundreds of applications running on any given system, the cost
of rewriting the code base dwarfs the cost of a given system. To complicate
matters further, there are many accelerators to choose from and each one has a
different programming model. Worse still, with many of the current program-
ming methodologies, the architectures (particularly FPGAs) change enough
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with each generation to require additional application modifications. That is,
there is no high-performance forward portability for applications. This becomes
a validation nightmare for the developer.

2.3 FPGAs have Potential

While FPGAs face many challenges to entering the broad HPC market, nu-
merous factors are driving customers to seek an alternative to traditional
architectures. In many cases, FPGAs have substantial advantages to offer. For
example, the next generation of HPC systems is forecast to exceed 10 MW, but
FPGAs promise to do more for less in terms of performance/Watt by adapting
the architecture to the application. In addition, memory bandwidth has sub-
stantial impact on sustained application performance, and FPGAs have the
opportunity to provide higher memory bandwidth than commodity systems.
Scientific applications also have many integer operations, which FPGAs per-
form very well. Finally, some HPC users are expressing a desire for ExaFLOPs
of performance before 2020. With such a goal, the users may be willing to try
something somewhat different.

3. TWELVE STEPS FOR FPGAS TO PENETRATE HPC

There is no single silver bullet to progress reconfigurable computing technology
to the point where it can penetrate the broad HPC market segment. Relatively
minor flaws are significantly amplified at 10,000 node scales; thus, many ar-
eas must be addressed in an incremental way until a compelling solution is
reached—presented here as a twelve step program. HPC is a harsh environ-
ment where a technology is never secure. The Moore’s Law advance of mi-
croprocessors will always be putting performance and feature pressures on
alternative technologies—just as it did when the killer micros overtook the
traditional vector platforms in most HPC centers.

3.1 Step 1: Standardization

One of the most important activities the reconfigurable computing community
can engage in is standardization, such as the work that OpenFPGA is doing
[Stahlberg 2008]. The ubiquity of parallel processing in HPC only emerged
after PVM [Sunderam 1990] and MPI [Message Passing Interface Forum 1997;
Hempel and Walker 1999] made write-once, run-anywhere a reality. The com-
petition between FPGAs, GPGPUs, and other accelerators is detrimental to the
entire community. HPC customers are wary of being locked into any single ap-
proach, and today’s development model means that not even the programming
skills are portable across technologies; thus, standards are needed across the
spectrum, from languages to libraries to data transfer [Palaniswamy 2008].
Researchers can have a huge impact in this area by simply engaging and pro-
viding an objective viewpoint.

3.2 Step 2: High Performance Forward Portability

For the foreseeable future, every processing technology will need to pro-
duce a new iteration every two to three years to remain competitive. For
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microprocessors, HPC applications running as is reap much of the performance
advantage,1 particularly with recompilation. In contrast, an FPGA application
often requires repartitioning between hardware and software and rearchitect-
ing of the hardware components, because the best way to perform many op-
erations changes as the device density changes. There are not enough people
skilled at programming FPGAs to port every library, much less every applica-
tion, in every generation; thus, this discrepancy in high performance portabil-
ity must be solved.

High performance portability could begin with architectural research to
create a virtualized hardware layer (akin to PipeRench [Chou et al. 2000])
that provides high level virtualization of resources. Beyond that, an abstract
machine model that has adequate semantics to express the power of reconfig-
urable hardware (e.g. variable bit widths) would provide a better target for
compilers and an optimization point for hardware architectures. Finally, a
programming model that allows the developer to express medium granularity
parallelism would provide a convenient point to virtualize access to hardware
resources and simplify the move to future architectures. Specifically optimiz-
ing every bit width to the problem and the platform to maximize efficiency is
the antithesis of this objective.

3.3 Step 3: Enhanced Device Performance

The performance win for an accelerator has to be compelling! Since accel-
erators will inevitably change the application, developers want a 10× moti-
vation to adopt a new technology, since smaller advantages would disappear
to Moore’s Law in 18 months. That 10× must include cost and power: per-
formance/Watt and performance/$. Achieving this goal will require new device
architectures that target scientific applications; this means providing the right
support for floating-point along with the correct balance of memory, memory
bandwidth, and integer support. A truly exceptional device architecture will
be difficult to achieve, due to the diversity in applications; however, defining
good coarse grained architectures can improve device performance by improv-
ing clock rates and silicon efficiency.

3.4 Step 4: Enhanced System Architecture

One of the fundamental challenges with all accelerators is defining the system
architecture. If the history of parallel computing has taught us anything, it is
that vanquishing Amdahl’s law is dependent on specifically decomposing the
problem to virtually eliminate serial portions of the code. To accomplish this,
FPGAs in an HPC environment must be treated as first class citizens, similar
to the examples in Figure 1. FPGAs can be placed so that they can process the
network data stream [Underwood et al. 2001] (Figure 1(a)), as a true peer on
the network (Figure 1(b)), on the processor bus (Figure 1(c)), or in a variety of
other locations (see El-Ghazawi et al. [2008] and Gokhale and Graham [2005]
for a more complete taxonomy). The only requirement is that the FPGA be

1HPC applications are already parallelized and scale well on multicore processors.
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Fig. 1. System architectures: (a) FPGA capable of processing network traffic; (b) FPGA as a
network peer; (c) FPGA on processor bus.

allowed to process data concurrently with the processor and that it be allowed
to initiate its own network transactions. This places requirements on both the
architecture and the programming model and leaves numerous open questions.
For example: what is the right memory architecture for an FPGA? How many
FPGAs should be on a node? Should the system be a collection of heteroge-
neous nodes (Figure 1(a) and (c)) or a heterogeneous collection of homogeneous
nodes (Figure 1(b))? The answer should be based on system level simulation,
but the first step along this path is for researchers to stop treating every inter-
face as if it were a PCI bus. Many systems are more powerful than the “copy
data in, do work, copy data out” model that most application examples use.

3.5 Step 5: Simplify Library Usage

Standard libraries make it easy for FPGAs to have an impact. Some accel-
erators already interface to the standard BLAS [Lawson et al. 1979] libraries
(ClearSpeed, GPUs). FPGAs need to extend this trend to capture libraries that
are relevant to HPC, such as sparse solvers. The key here is for the community
to provide a well maintained (preferably open source) solution that integrates
FPGA acceleration with the commonly used libraries (Trilinos [Heroux et al.
2005], PETSc [Balay et al. 1997], ATLAS [Whaley et al. 2001], FFTW [Frigo
and Johnson 1998], etc.). It should be performance-portable—it must run well
across a variety of platforms. As has been often said, a rising tide lifts all boats.
This can be achieved at relatively low effort by adapting the typical applica-
tion example methodology of many academic efforts to integrate with standard
software packages.

3.6 Step 6: Define Concurrent APIs

Standard library interfaces are critical, but few applications use standard
libraries in a way that is easy to accelerate with FPGAs. For example, instead
of a single 1D FFT call that is 2 million points, LAMMPS [Plimpton et al.
1997] performs a 3D 128 × 128 × 128 double precision FFT, which becomes 214
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Fig. 2. Comparison of FPGA performance to processor performance for double precision FFTs.

1D FFTs of 128 points. Similarly, some sparse solvers will call thousands of
small DGEMM operations instead of one large DGEMM call. Unfortunately,
standard library APIs are blocking—they do not allow concurrency between
the calling routine and the device executing the routine. While this makes
perfect sense for code running on microprocessors, an accelerator must exploit
the application level concurrency. By switching to a non-blocking interface, our
previous efforts [Underwood et al. 2006] demonstrated a dramatic difference
in performance. By exploiting the ability to overlap data transfer with compu-
tation on the FPGA, the FPGA moves from a factor of two performance loss to
a factor of two performance gain (Figure 2); thus, one of the keys to deliver-
ing performance is to extend traditional APIs with non-blocking functionality
to enable concurrency. This allows the application to expose the same concur-
rency as would be achieved by creating an extra thread for each API call, but
at a much lower overhead and complexity.

3.7 Step 7: Perform Better Studies

Researchers have provided numerous studies of the potential of FPGAs (and
other accelerators), but they often fall into a fatal trap: the study is not ulti-
mately useful to the end user. The assumptions that simplify the study to a
manageable level tend to make the study much less representative of real ap-
plications. These practices include measuring the performance of application
kernels and using input sets that are unrealistically small. Other challenges
include the repeated study of applications from domains that are known to be
FPGA-friendly as well as hand-tuning the bit width based on a small number
of input sets. In contrast, a good demonstration of the capabilities of FPGAs
would measure the performance of the full application on multiple realistic
inputs. It would also indicate the effort level of porting the application, in-
cluding how much hand coding of the application had to be performed in HDL
versus what could be done using a compiler.

Regrettably, realistic inputs are difficult to quantify. Unrealistic inputs in-
clude most input sets that are more than five years old. Applications evolve
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rapidly and real science grows the problem size along with the memory stor-
age capacity of typical platforms. This problem is not unique to accelerators,
but there is not even a SPEC [SPEC 2004]2 style benchmark for accelerators.
The research community should therefore create and maintain a set of bench-
marks (similar in concept to SPEC) based on input from the end-users. Those
benchmarks should have real problems that are updated every two years as
inputs, and the benchmarks themselves should be updated every four years.
Furthermore, much of the work of porting benchmarks (e.g. factoring the code
into pieces that can be independently accelerated) should be done by the or-
ganization maintaining the benchmark. This can be achieved at incremental
effort for each graduate student doing research, while increasing the repro-
ducibility of published results.

3.8 Step 8: Improve the Programming Environment

While there has been a lot of progress in compiling C code to FPGAs, few have
achieved high efficiency and ease of use [El-Araby et al. 2007]. In addition,
there has been little work on other languages (except for the SRC compiler
[Poznanovic 2005], which should be commended for supporting Fortran). Un-
fortunately, most scientific applications are written in a mixture of C, C++,
and Fortran. Compilers will have to tackle these languages to succeed in HPC.
More importantly, perhaps, is the need to give feedback to the user. Traditional
vector compilers, for example, give feedback to the users to indicate pieces of
source code that inhibit vectorization. Modern microprocessor compilers give
similar types of feedback about pieces of code that impact TLB usage or caching
behavior. FPGA compilers must give specific feedback on a line-by-line basis to
the user to indicate which pieces of code impact performance—to tell the user
how good a job the compiler did.

Finally, the programming environment must provide a variety of traditional
support functions. Prior work has explored providing some callback capabil-
ities to implement C-library calls [Pozzi et al. 2005], and this is absolutely
critical. Most C-library calls are expected by the user (e.g. even printf()), but
these calls can be proxied as they are in modern HPC environments [Kelly and
Brightwell 2005; Adiga et al. 2002].

The biggest step here is to simply provide the users with the features they
expect: broad language support, reasonable performance feedback, and stan-
dard C-library calls. The next step, however, is to stand back from the problem
and recognize the commonality among all modern compiler challenges: the
expression of parallelism. Medium grained parallelism must be expressed in
a way that is familiar to users (e.g. objects and threads). In this domain, a
promising direction is found in Greaves and Singh [2008]. When enough par-
allelism is expressed, this objective ties back into Step 2 by facilitating the
virtualization of the hardware execution resources.

2http://www.spec.org
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3.9 Step 9: Improve the Infrastructure

Although the compiler is crucial for making FPGAs usable in HPC, it is not the
full story. Application developers expect robust debuggers, performance analy-
sis tools (e.g. VTuneTM and Intel R©Thread Profiler), and correctness checkers
(e.g. Intel R©Trace Analyzer and Collector and Intel R©Thread Checker). These
tools must correlate hardware execution directly to source code. While some
work has been done in debuggers [Graham et al. 2001; Hemmert et al. 2003],
work on performance analysis is just beginning [Koehler et al. 2008]. All of
these provide excellent examples of where to start, but a much more robust set
of tools is a critical feature as reconfigurable computing attempts to go main-
stream. If Step 8 is achieved by allowing the developer to express medium
grained concurrency, then work in the parallel computing can be more directly
leveraged as a starting point for debugging and performance analysis.

3.10 Step 10: Deal with Communications

Communications is perhaps the single biggest issue for reconfigurable comput-
ing. The performance of the interconnect between the FPGA and the processor
dominates the performance of many applications of the technology, but the
communications issue goes beyond the processor-to-FPGA link. Device man-
ufactures could help to address the bandwidth challenges of current systems
and the large logic area required by many bus interfaces by incorporating a
hard macro for a high speed bus interface. Similarly, more high speed SERDES
blocks would certainly help; however, it remains for the research community
to deal with issues around the right integration model for FPGAs in the HPC
communications infrastructure. For example, what is the right communication
model? Should it be a subset of a message passing library like MPI [Patel et al.
2006], a lighter weight message passing system like SHMEM [Cray Research,
Inc. 1994], or something entirely new? A good model would be one that is light-
weight and has low overhead (i.e. small amounts of hardware and software to
support it), and semantically matches the needs of applications.

3.11 Step 11: Enhance Reliability

One of the largest challenges of the HPC environment is the extreme scale of
systems. With 10,000 to 100,000 nodes and applications that run across all
of the nodes in the system, the issue of both silent data corruption and de-
tected, but uncorrected, errors becomes enormous. Generally, procurements
carry a specification that a single application running on the entire system can
only fail once every 2 days. This yields an aggregate FIT (failure in time) rate
for all components on the node (including system software) of 2100 at 10,000
nodes and 210 at 100,000 nodes. As observed by others [Quinn and Graham
2005], at these scales, relatively modern FPGAs perform poorly and techniques
like triple modular redundancy (TMR) are both expensive and relatively easy
to defeat [Quinn et al. 2007]. Unfortunately, FPGAs introduce new modes of
architectural vulnerabilities that have not been extensively considered. For
example, a configuration bit change can add a routing stub to a critical path
and change timing, can connect two signals that cause contention, or can
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 4, Article 26, Pub. date: September 2009.
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introduce cross-coupling between signals where none existed before. This cre-
ates two large issues for researchers to address. First, how can the error
rate be reduced to an acceptable level without seriously impacting application
performance? And, second, how can such errors be detected in time to prevent
the corruption of the application state?

To satisfy the needs of HPC, researchers will need to find a way to local-
ize the impact of errors in the configuration state, determine when the errors
actually impact the application logic, communicate those errors to the appli-
cation logic, recover the application state associated with that error, and roll
back while the configuration is recovered. The solution is likely to begin with
an interaction between the high level compiler and the place-and-route tools,
to analyze the architecture vulnerability factor (AVF). The tools and architec-
ture will need to set aside logic that can then be added/configured after the
place-and-route for the application logic. The application logic can then lever-
age techniques such as those used by out-of-order execution engines to save
and roll back the state.

3.12 Step 12: Provide OS Support

An FPGA that is promoted to first class citizen will require some form of
operating system (OS) support. Some work has begun for general purpose
OS support [Fu and Compton 2005], but HPC does not require all of the same
OS support needed for the general market. For example, one user at a time on
a node is fine. However, HPC does require certain types of OS functionality,
such as user authentication over the network and file access protection en-
forcement. The fundamental challenge for FPGAs is that the user is supposed
to edit the hardware itself, and it becomes difficult to trust anything loaded
into the FPGA. This can even go so far as needing to protect the hardware
from malicious (or just naive) users. Conceptually, these goals are low-hanging
fruit, but it may require direct support from the architecture. The accelerator
device must support the notion of protected state, or else a cryptographic tech-
nique to guarantee that the authentication portion of the loaded bitstream has
not been corrupted. The advent of IO memory management units (IOMMUs)
[Ben-Yehuda et al. 2007] may help to solve parts of this problem by providing
appropriate protection of memory resources.

4. A REPORT CARD

At the request of the reviewers, we have attempted to assess the state of FPGA
research in Table I. Many caveats apply here, as we are clearly not familiar
with all of the work in both academia and industry. That said, after a brief
review of recent activity in major FPGA conferences, we rate the current status
of each step (poor, fair, good, excellent), the activity level in that area (none,
low, moderate, high), and the difficultly of raising the status of the area to
excellent.

There is virtually no standardization (Step 1) across the accelerator com-
munity, but the problem is not conceptually hard. The academic community
simply needs to engage with existing efforts [Stahlberg 2008] and provide the
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 4, Article 26, Pub. date: September 2009.
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Table I. The State of FPGA Research Toward HPC
Area Status Activity Difficulty

Step 1: Standardization poor moderate low
Step 2: High Performance Forward Portability poor low high
Step 3: Enhanced Device Performance good low high
Step 4: Enhanced System Architecture fair none moderate
Step 5: Simplified Library Usage fair low low
Step 6: Concurrent APIs poor low low
Step 7: Better Performance Studies fair moderate moderate
Step 8: Improved Programming Environment good high high
Step 9: Improved Infrastructure poor low moderate
Step 10: Enhanced Communications good moderate moderate
Step 11: Enhanced Reliability poor low high
Step 12: Provide OS Support poor low low

objective viewpoint that only it can. Step 2 (high performance forward porta-
bility) is in similarly bad shape, and is a much harder problem. There is rela-
tively little activity in this area beyond work on high level language compilers,
and the compilers still require far too much target specific tuning.

Step 3 (enhanced device performance) and Step 4 (enhanced system archi-
tecture) are in much better shape, though there is little academic activity at-
tempting to improve either for HPC applications. Truly excellent architectures
will be difficult to define due to the diversity of applications. Step 5 (simplified
library usage) is progressing much better than the related Step 6 (concurrent
APIs). Although vendors ship BLAS and FFT libraries, they have not extended
the APIs to expose the concurrency. Furthermore, they do not provide higher
level libraries (e.g. solvers like Trilinos [Heroux et al. 2005] and PETSc [Balay
et al. 1997]). This leads into Step 7 (better performance studies). Accelera-
tor research stands in striking contrast to high performance computing and
general microprocessor optimization work. In the latter, optimization work of-
ten goes into widely available libraries (e.g. ATLAS [Whaley et al. 2001] and
FFTW [Frigo and Johnson 1998]). In contrast, accelerator research tends to
be a single proof of concept effort that never makes it outside the lab—despite
the fact that it targets widely used core algorithms [Zhuo and Prasanna 2005;
deLorimier and DeHon 2005]—and the authors of this work are no different
[Underwood and Hemmert 2004; Underwood et al. 2007]. It is time for accel-
erator researchers to invest the extra effort and make their work applicable to
Step 5 and Step 6.

Step 8 (improved programming environment) and Step 9 (improved in-
frastructure) go hand in hand from the perspective of an application de-
veloper, but all of the research community’s attention has been focused on
compilers. Thus, compilers are in relatively good shape (though much remains
to be done), but research into other key components is extremely rare. The
problem of communications with an FPGA (Step 10) has improved dramati-
cally with recent parts that include hard cores for PCIExpress and 8+ Gb/s
SERDES [Alfke 2008; Mansur 2008]. Thus, the hardest part of the problem
is largely solved; however, these blocks remain difficult to use, because the
community still needs to define semantically useful, but generally applicable,
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 4, Article 26, Pub. date: September 2009.
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interfaces between the support for high speed signaling and the application
logic.

Providing reliability levels that are commensurate with the highest end
HPC systems (Step 11) is a major challenge. Traditional techniques and most
current work are designed for space based systems, where things like TMR
are appropriate. In HPC, TMR is far too expensive. Finally, we come to the
issue of operating system support (Step 12). Although the requirements here
are not dramatic, the tendency with modern system architectures has been
to completely isolate the hardware to provide this protection; thus, there has
been relatively little work on supporting the right things. As FPGAs become
first class citizens in the system, that will have to change.

5. ALTERNATE PATHS TO SUCCESS

So far, we have discussed the advancement of FPGA technology needed to
succeed in general purpose scientific computing on a broad scale. An alter-
nate view of success would be broadly deploying FPGAs for HPC applications,
without penetrating general purpose HPC. Here, we briefly discuss two such
models for success and how they interact with the twelve steps.

5.1 The Appliance Model

One potential model for FPGA based accelerators is as a computing appli-
ance—a system sold to perform a single application. Vendors are already
finding success with this model in different niche applications. For exam-
ple, TimeLogic’s [2008] CodeQuest (http://www.timelogic.com/codequest.html)
product utilizes FPGA hardware to perform pattern matching operations that
are common in many bioinformatics applications. For financial customers,
both Cray [Cray Canada, Inc. 2005b] and XtremeData [Woods 2008] have de-
veloped FPGA-based pseudo random number generators to accelerate Monte
Carlo simulations for options trading. Finally, Exegy (http://www.exegy.com)
[Davidson et al. 2006], and XtremeData (http://www.extremedatainc.com) have
all developed data mining appliances using FPGA accelerators to process large
amounts of streaming data.

Many of the characteristics discussed in Section 3 are less relevant in the
appliance model, while others are still critical. At one end of the spectrum,
the performance of the devices and the enhancement of system architectures
remain critical, because the vendor for the appliance will need to target mul-
tiple applications while leveraging the same hardware. At the other end of
the spectrum, any focus on HPC style libraries or concurrent APIs is irrele-
vant. Similarly, such appliances are unlikely to need novel OS support. In
between, emphasis on items like standards, forward portability, programming,
and development infrastructure will make it easier for companies to develop
and deploy such appliances.

5.2 The Data Ingest Problem

Another area that FPGAs can readily impact is data ingest engines, where
streaming data can be processed inline by FPGAs as it arrives from an
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external device [Gokhale et al. 2008]. This is similar to the appliance model;
however, the highest priority will be the system architecture to enable high
rate data flow through the FPGA and into the primary system. Reliability will
also be critical, as it will be extremely difficult to detect processing errors by
examining the resulting data stream.

6. CONCLUSIONS

Despite the excitement in the HPC community around accelerators, there
remains a large gap between what HPC system buyers, users, and administra-
tors expect and what accelerators (particularly FPGAs) provide. Even though
FPGAs frequently have a substantial performance advantage to offer, the gap
between expectations and capabilities can create a tremendous barrier to en-
try. Here, we have presented a collection of research and development objec-
tives that have the potential to bridge the gap and broaden the applicability of
FPGA-based systems. The twelve steps presented here cover four overarching
themes that require action on the part of the FPGA community. First, make
it easy to create portable applications that last for decades. Second, enhance
the technology to provide a large performance win across a wider range of
applications—and prove it! Third, provide the user with something that looks
like a typical development infrastructure. And finally, deal with the system-
level issues that are unique to HPC and that are addressed by most of the
existing microprocessor-based systems targeted specifically to HPC.
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