
A Configurable-Hardware Document-Similarity
Classifier to Detect Web Attacks

Craig Ulmer∗, Maya Gokhale+

∗Sandia National Laboratories, CA +Lawrence Livermore National Laboratory
cdulmer@sandia.gov, maya@llnl.gov

Abstract— This paper describes our approach to adapt-
ing a text document similarity classifier based on the Term
Frequency Inverse Document Frequency (TFIDF) metric
[11] to reconfigurable hardware. The TFIDF classifier
is used to detect web attacks in HTTP data. In our
reconfigurable hardware approach, we design a streaming,
real-time classifier by simplifying an existing sequential
algorithm and manipulating the classifier’s model to allow
decision information to be represented compactly. We
have developed a set of software tools to help automate
the process of converting training data to synthesizable
hardware and to provide a means of trading off between
accuracy and resource utilization. The Xilinx Virtex 5-
LX implementation requires two orders of magnitude less
memory than the original algorithm. At 166MB/s (80X the
software) the hardware implementation is able to achieve
Gigabit network throughput at the same accuracy as the
original algorithm.

I. INTRODUCTION

Document similarity is a well-known metric that can
be used in many contexts. A literature search may require
search and selection of documents similar to a specific
document. A digital library may wish to categorize
documents according to their content using a similarity
measure. Market research applications analyze keyword
occurrences in web pages to help target advertising.

In this work, we put the document similarity metric to
an unconventional use. Following the algorithm of Gal-
lagher and Eliassi-Rad [5], we use document similarity
to detect cyber attacks in HTTP traffic. Our document
collection consists of HTTP web page requests. The role
of the classifier is to detect attacks embedded in the
HTTP messages. An example of an SQL injection attack
embedded in a request is shown in Figure 1. The request
for an “odbc” connection has been modified to include
an SQL command to delete a data table.

Gallagher’s novel approach builds a classifier to rec-
ognize cyber attacks in the HTTP request “documents.”
Each document’s Term Frequency Inverse Document

Frequency (TFIDF) [11] vector is computed and com-
pared to reference documents’ TFIDF vectors according
to the well known vector space model. The reference
documents describe the characteristics of seven different
types of cyber web attacks plus the normal category. The
classifier assigns each incoming document to one of the
eight classes.

Building on the Gallagher approach, we have devised
a hardware, streaming algorithm to classify HTTP re-
quests as they arrive in a text stream transmitted over
a high-speed internetwork. Using our method, real-time
classification of HTTP requests into attack vs. normal
categories serves as an advanced intrusion prevention
method capable of detecting and thwarting web attacks
as they occur.

Our algorithm has been optimized for streaming com-
putation in a hardware pipeline that exploits on-chip
distributed RAM and Block RAM for high performance.
The hardware building blocks are highly configurable,
and their configuration parameters are generated semi-
automatically through analysis of the training data set.
The classifier demonstrates throughput of 166MB/s (80X
speedup over the sequential algorithm) at the same
accuracy as Gallagher’s sequential algorithm.

II. SEQUENTIAL ALGORITHM

A. Document Similarity

Document similarity using term weights is a well-
understood Information Retrieval technique. It uses a
term frequency tf(t, d) to record the number of times
a search term t appears in a document d normalized by
the total number terms in d:

tf(t, d) =
count(t, d)∑

v∈d

count(v, d)
(1)

To compensate for frequently appearing terms, the term
frequency is inversely weighted by the term’s frequency
in the entire document collection. The tfidf of t is sim-

GET /eH/first_str/2hFnull6/oixsotcwrseamgit2/38PrR_Lkmmzo.htm
Host: www.a215Een.st:15
Connection: close
Accept: */*
Accept-Charset: *;q=0.4
Accept-Encoding: *
Accept-Language: boHEor-sen0, gte-htmse4 oS, 3TeoUsHn-asrao;q=0.2, paly-wreihi, 78iiqths-ar;q=0.3
Cache-Control: no-store
Client-ip: 200.91.18.159
Cookie: uciy2kleicl=%3C%21--+%23odbc++++++++++++++connect%3D%226at8h%2CHcteil%2CeHnNa%22+++++statement%3D%22drop+table+elkbO…

odbc
connect

statement
drop table

Fig. 1. Sample HTTP request with malicious database activity

ply t’s tf multiplied by its inverse document frequency
idf relative to a document collection D:

idf(t) =
log |D|

|{d ∈ D : t ∈ d}|
(2)

tfidf(t, d) = tf(t, d) · idf(t) (3)

A document d is characterized by its tfidf vector Vd.
Each component i of Vd holds the tfidf score of the
i’th term in the document collection. In this vector space
model, the similarity between two documents d and a is
the cosine of the angle θ between the tfidf vectors Vd

and Va:
sim(d, a) = cos(θVd,Va

) (4)

i.e.
sim(d, a) =

Vd · Va

‖Vd‖‖Va‖
(5)

or equivalently

sim(d, a) =
∑

t∈d∩a tfidf(t, d) · tfidf(t, a)√∑
t∈d tfidf(t, d)2

√∑
t∈a tfidf(t, a)2

(6)

B. Data Set

Our experiments use a data set released by the Euro-
pean Conference on Machine Learning (ECML) and the
11th European Conference on the Principles and Practice
of Knowledge Discovery in Databases (PKDD) in 2007
as part of the 2007 Discovery Challenge [8]. The data
set contains more than 120,000 labeled HTTP requests,
of which 50,000 are for training, and 70,000 constitute
the testing data. 70% of the training requests are normal,
valid requests, and 30% contain cybersecurity attacks. In
the testing data, 60% are normal and 40% are attack.

There are seven different sorts of attacks: cross site
scripting, SQL injection, LDAP injection, XPATH injec-
tion, directory path traversal, command execution, and
Server Side Include (SSI) attacks. The 2007 challenge
was to detect and characterize the attacks. The work of
Gallagher [5] applies the TFIDF method to train and

HTTP
Classifier

TF-IDF
Dictionary

TF-IDF
Training

HTTP
Traces
(50K)

HTTP
Traces
(70K)

Attack
Label

Training

Testing

Fig. 2. Training and testing the classifier

run a classifier to detect attacks. To train the classifier,
all requests of a specific attack type in the training set
are combined into a single document, resulting in eight
reference documents. tfidf vectors are computed for
each reference document.

In the testing phase, each HTTP request in the testing
data set is considered to be a single document, and
the cosine similarity between the incoming request and
each reference attack document is computed. Once all
similarity scores are computed, a threshold operation is
applied to remove low values. This operation improves
the quality of the results when comparing the attack
scores to the normal score, most notably a large number
of terms are utilized. This parameter is typically set dur-
ing training to balance precision and recall [9] statistics.
A lower value implies a more hostile environment, where
it is important to filter anything that appears malicious,
even if it means mistakenly filtering harmless traffic.
The document is classified as belonging to class of the
most similar reference document. The process is shown
in Figure 2.

On the ECML/PKDD 2007 Discovery Challenge data

set, the Gallagher algorithm gave accuracy of 94% in
distinguishing attack vs. normal and 91% in correctly
distinguishing the type of attack. The single-threaded
Java software implementation of the algorithm runs at
about 2MB/s on a standard PC workstation (2.2GHz,
quad core, 8GB memory).

III. HARDWARE ALGORITHM

A straightforward interpretation of Equation 6 requires
access to the entire document collection a priori. Since
our goal is a streaming, hardware approach, we study
the equation for optimization opportunities. The major
challenges for an efficient hardware implementation of
the TFIDF classifier are to devise 1) a streaming, online
method that 2) minimizes the number of multiplies and
divides, and 3) minimizes memory usage.

Streaming: In a streaming environment, the data
must be processed in a single pass with very limited
buffering. We observe that according to Equation 6 a
term’s idf scores cannot be computed until the entire
document collection has been scanned. In a streaming
environment, the document collection is never complete,
and therefore the idf we used is based on the training
document collection, which is pre-computed and can
simply be retrieved from the dictionary.

Simplification: In our application we generate the
eight attack type scores for an input document and
label the document based on the largest score. There
is an opportunity to simplify Equation 6 in two places
where normalization is applied to allow the scores
of one document to be compared to another: (1) the
numerator’s tfidf contains a normalization by the
number of terms in the input document and (2) the
denominator’s

√∑
t∈d tfidf(t, d)2. Both operations

are constant across all attack types for an input and
therefore are removed.

With these simplifications it is possible to translate
Equation 6 into a form that can be facilitated through
table lookups.

sim(d, a) =
∑

t∈d∩a count(t, d) · C1 · C2

C3
(7)

where

C1 = idf(t, a)
C2 = tfidf(t, a)
C3 =

√∑
t∈a tfidf(t, a)2

(8)

Given that all three constants are relative to a
particular attack type, information can be combined to
reduce table lookup size. In our approach we combine
C2 and C3 and refer to the value as a categoryWeight.
Thus the classifier model requires nine statistics for
every term: a single C1 value to indicate the term’s
idf and eight categoryWeight values to indicate how
relevant the term is to a particular attack type.

Memory Minimization: To maintain high throughput,
the classifier model or dictionary must be stored on-
chip. In this application, the limited memory presents
a formidable challenge, as the full dictionary for the
ECLM training data set uses 47MB. We seek to encode
the dictionary in a combination of logic and memory
to approximately 128KB, a compression factor of two
orders of magnitude. Three different optimizations are
employed to help reduce the dictionary memory foot-
print. First we truncate the dictionary so that only the
N most significant terms per attack type are utilized.
Second, we quantize the categoryWeight and idf data
values in the dictionary in order to simplify numerical
diversity and allow better information compression. Fi-
nally, we utilize a hashing technique that employs an
array of Bloom filters to represent the dictionary data.
Each of these optimizations is discussed in detail.

A. Truncate Dictionary

The classifier model or dictionary holds statistical
tfidf information (idf and categoryWeights) for each
term encountered in the training data set. The number
of terms in the dictionary ultimately dictates how much
information is available during classification. A reason-
able accuracy can be achieved with only a small number
(e.g., 32) of high-value keywords. Supplementing these
terms with a large number (e.g., hundreds to thousands)
of less important but still relevant terms typically im-
proves accuracy until the classifier becomes overtrained.
After this point, accuracy may stay constant or degrade.
Increasing the number of dictionary terms increases the
amount of data a classifier must maintain.

A test program was constructed to evaluate the im-
pact that truncation and algorithm modification have
on accuracy. A dictionary was constructed based on
the training data set. We varied the number of terms
available in the dictionary and then measured the accu-
racy of both the original and streaming versions of the
algorithm. Evaluation was performed using the training
and testing data sets as inputs to the classifiers. The
results of the experiments are presented in Figure 3.

101 102 103 104 105 106

Total Dictionary Terms

90

92

94

96

98

100
A

cc
ur

ac
y

(P
er

ce
nt

)

Training Data, Original
Training Data, Streaming
Testing Data, Original
Testing Data, Streaming

Fig. 3. Impact of number of terms on accuracy

As expected, both algorithms performed exceptionally
well when evaluating the training data set. Accuracy
improved as more terms were included in the dictionary.
In comparison, a loss of 2 to 5% in accuracy was
observed in the testing data set experiments. This drop
is expected as the classifiers are evaluating data that was
not available during training. The testing experiments
plateau after two to eight thousand unique terms. This
plateau indicates the point at which the classifiers begin
to become overtrained.

In terms of the impact of the algorithm modifications
on classifier quality, these experiments indicate that the
original and streaming versions of the algorithm exhibit
similar accuracy. Differences between the two algorithms
can partially be attributed to a threshold operation in the
classifiers that is used to fine tune filter sensitivity (see
Section III-D for a description of this thresholding).

B. Quantize Term Scores

TFIDF training generates a large amount of statistical
data that is encoded in a dictionary and utilized at
runtime to determine the relevance of a document’s terms
to particular attack. This training typically exposes a
small number of keywords that are assigned a high
categoryWeight, while the majority of terms receive
much lower values. The log histogram for one of the
categoryWeights in the ECML data set is illustrated
in Figure 4 (upper). This histogram shows a great deal
of numerical diversity (e.g., a few thousand unique data
values for one category in the dictionary). However, is
this diversity truly necessary for accurate classification?
Our hypothesis is that it is not, given that our application
may only need a gross estimate of a term’s relevance
(i.e., “high, medium, or low”).

0.0 0.1 0.2 0.3 0.4 0.5 0.610-1

100

101

102

103

In
st

an
ce

s

Log-Histogram of Original Weights for an Attack

0.0 0.1 0.2 0.3 0.4 0.5 0.610-1

100

101

102

103

In
st

an
ce

s

Log-Histogram of Quantized Weights for an Attack

Fig. 4. Log histogram of tfidf score values

Based on this hypothesis, we constructed a program
that resamples or quantizes a dictionary’s data values to
a smaller number of unique data values. This approach
employs a simple exemplar clustering algorithm that
is weighted towards preserving larger data values. As
illustrated in Figure 4 (lower), the number of unique
data values is reduced to eight while maintaining a fair
representation of the spectrum. Each of the nine vectors
(idf and eight categoryWeights) in the dictionary is
quantized individually. These data values are also trans-
formed from a floating point representation to fixed point
in order to simplify the hardware implementation.

101 102 103 104 105 106

Total Dictionary Terms

90

92

94

96

98

100

A
cc

ur
ac

y
(P

er
ce

nt
)

16 Quantization Levels
8 Quantization Levels
4 Quantization Levels

Fig. 5. Impact of quantization vs. term size on accuracy for
competition data

In order to test our hypothesis we generated a wide
range of truncated, quantized dictionaries from the train-
ing data set and evaluated accuracy when the classifier
was applied to the testing data set. As illustrated Figure

5, reasonable accuracy can be achieved even when the
dictionary is heavily quantized to contain just a few
unique data values per vector. Over quantizing does
result in instability and losses in accuracy. Based on this
data set, we assert that a dictionary with roughly 4K
terms and eight unique values per vector is sufficient.

C. Hash Methods

Terms in the original ECML training data set were on
average 24 bytes long and in total were 19MB. Even with
a reduced dictionary with only a few thousand terms, it
is infeasible to store the original text in the dictionary. In
addition to capacity issues, it is challenging to lookup an
entry in the dictionary of this size with minimal memory
accesses, necessitating hashing. A plain hash table for
dictionaries of this size will still not likely fit entirely
in an FPGA’s internal Block RAM. It is necessary to
consider more probabilistic hash functions that estimate
whether an input belongs to a set. Bloom filters [2] are
a common technique for compactly implementing a set
membership test. A Bloom filter consists of several hash
functions and a bit vector. All hash functions are applied
to an input term and the resulting hash values index
into the bit vector at multiple locations. The term is
considered a member of the set if all selected bits are set.
The Bloom filter is a probabilistic technique as collisions
may result in false positives, although there will be no
false negatives. The number of hash functions and size
of the bit vector may be configured to optimize between
memory constraints and desired accuracy. Reducing the
false positive rate requires more memory for the filter.

Our approach to implementing a quantized dictionary
is to employ a large array of Bloom filters, with each fil-
ter representing a particular data value in the dictionary.
At runtime an incoming term is hashed according to the
needs of the Bloom filters. The hashes are dispatched
globally and each Bloom filter tests whether the input
is a member of its set. If a Bloom filter identifies a hit,
the data value associated with the filter is presented to
the corresponding scoring unit. While this approach does
not scale when there are a large number of quantization
levels or attack types, it does provide a compact means
of housing a dictionary with a large number of terms.

In our initial implementation, we focused on com-
bining C1, C2, and C3 to minimize the amount of
data required by the dictionary. While this approach
worked, it suffered in accuracy because of both false
positive rates and the lack of numerical diversity. Instead,
implementing two statistics, idf and categoryWeight,
in the dictionary provides a larger numerical range (i.e.,

multiply two 8-value numbers) and can cause better
Bloom filter accuracy (i.e., a false positive must occur in
both the idf and categoryWeight lookup to propagate).

D. Hardware Layout

The layout of the top-level hardware design is
illustrated in Figure 6. This architecture has five
components.

Score

Bloom
Filter
For

Weight
N

Bloom
Filter
for

Weight
1

IDF Lookup

H Hash Generators

Input Stream Tokenizer

Bloom
Filter
For

Weight
N

Bloom
Filter
for

Weight
1

Category 1
Valid

Clip

Score

Bloom
Filter
For

Weight
N

Bloom
Filter
for

Weight
1

Category C
Attack

Clip

OK
Not
OK

Select Largest Score at End of Input

Fig. 6. Top level hardware design

Input Stream Tokenizer: The first unit parses an input
message and generates a byte stream of lowercase
tokens. This unit is the most complicated part of the
design as tokens vary in length and can be delimited by
multiple characters. Tokenization is a serial operation
that operates on byte-sized data values and is therefore
the bottleneck in the design.

Hash Generators: The second unit examines the
incoming token byte stream and generates H different
hashes for each token. A variety of hash functions
were considered. We ultimately selected a Pearson
[5] hashing approach that employs 4 × H randomly-
generated 256-entry lookup tables to hash each token.
In order to avoid hash collisions between small tokens,
we inserted a unit to append a token’s bytestream with a
2-byte length. This unit adds two stall cycles per token
to the byte stream, but greatly improves the quality of
the hash functions.

IDF Lookup: A single set of Bloom filters is used
to perform a dictionary lookup of the input term’s
idf value. If the term is not found in any of the
Bloom filters, an output of zero is produced. The
design only requires a single IDF Lookup Unit, as the
idf value for an input token is the same for all categories.

Category Analysis Units: The bulk of the work
in the design is performed by an array of category
analysis units. Similar to the IDF Lookup unit, a
category analysis unit employs an array of Bloom
filters to lookup an input token’s categoryWeight for
a particular attack type. This value is then multiplied
by the idf value to compute the term’s relevance,
which is added to a cumulative score for the input
message. When all tokens are processed, a threshold
operation is applied to remove scores that do not meet a
specified value. This threshold operation allows users to
tune how sensitive the classifier is to malicious behavior.

Majority Vote: The last unit in the dataflow examines
the final scores of the different categories when all tokens
are processed and selects the category with the largest
value as the winner. The message is labeled as “ok” or
“not ok” based on whether the winning classifier is the
“normal” category or an attack category.

E. Generating the Hardware Classifier

An important aspect of this work is being able to
rapidly generate custom hardware designs based on
different input training data sets and user-selected pa-
rameters. This feature is essential in network security
applications where new attack vectors and categories are
added on a regular basis. Our approach to making a
customizable hardware implementation is based on two
components. First, a general-purpose hardware design
was developed that is parametrized and can be adapted
to different classification work based on updates to the
Bloom filter data. Second, we developed a tool chain for
automatically building hardware. As illustrated in Figure
7, the tool flow is based on six steps:

1) Training: A TFIDF training program is used to
analyze a labeled training data set and generate
the full dictionary of term statistics. This data is
exported to a SQLite database for later queires.

2) Truncate: For each classification category, the top
T terms and their statistics are extracted. The user
selects the parameter T .

3) Quantize: Each vector in the dictionary is run
through a quantizer to reduce the number of unique

data.h

Software
Classifier

(C)

pkg.vhdl

Hardware
Classifier
(VHDL)

Modified
Dictionary

Full Dictionary

TF-IDF
Training

Training
Data

Truncate

Quantize

Build Hashes

Build Headers

Fig. 7. Tool Flow for Building Hardware

data values in the dictionary. The number of quan-
tization levels is a user-selected parameter chosen
to trade between accuracy and memory footprint.

4) Build Hashes: Data from the modified dictionary
is then converted into a series of Bloom filters. The
user may tune a Bloom filter error rate parameter
to scale the memory footprint of the filters and
the number of number of hash functions that are
utilized.

5) Build Software: The tool chain can export hash
data to a C header file that is utilized by validation
tools (e.g., verify all dictionary tokens hash prop-
erly) and a stand-alone evaluation program (e.g.,
classify all inputs in a file).

6) Build Hardware: Finally, the tool chain constructs
a VHDL package file that includes all the data
necessary to instantiate the Bloom filters.

While the current approach requires the hardware
design be recompiled when a new model is applied,
it would be straightforward to allow updates to be
completed through writes to the Bloom Filter Block
RAMs.

IV. IMPLEMENTATION EXPERIMENTS

A number of experiments were conducted to validate
both the hardware design and the tool chain. In all
of the experiments we targeted a Xilinx Virtex 5-LX
50 part (XS5VLX50T-FG1136C-1) found on the Xilinx
ML555 reference board. This part features sixty 36Kbit
Block RAMs, allowing 240KB of 32b data values to be

stored internally. We employed the ISE 11.1 tools and
the built-in synthesis tool XST. For verification, a special
design was constructed that supplied a number of input
documents to the classifier. ChipScope was utilized to
verify the output results were correct.

A. Utilization Characteristics
In order to observe how different parameters affect

the hardware implementation, we constructed a reference
design that simply instantiates an input FIFO, the clas-
sification core, and routes all of the I/Os to the FPGA’s
pins. This design does not serve as a functional system,
but provides a means by which realistic implementations
can be observed. We supplied a large number of config-
urations and measured the amount of resources required
by each implementation.

103 104 105

Total Dictionary Terms

0

20

40

60

80

100

B
R

A
M

U
til

iz
at

io
n

(P
er

ce
nt

)

8 Quantization Levels
4 Quantization Levels
2 Quantization Levels

Fig. 8. Memory footprint for different build parameters

103 104 105

Total Dictionary Terms

0

20

40

60

80

100

S
lic

e
LU

T
U

til
iz

at
io

n
(P

er
ce

nt
)

8 Quantization Levels
4 Quantization Levels
2 Quantization Levels

Fig. 9. Slice utilization for different build parameters

Resource utilization numbers are presented in Figures
8 and 9. As expected, more quantization levels translates

TABLE I
THROUGHPUT COMPARISON

Classifier Throughput
Original Java 2MB/s
Streaming C 34MB/s

Streaming HW 166MB/s

to more Block RAM utilization in the smaller designs.
However, these memory requirements become less dis-
tinct as more terms are included in the dictionary. This
trait can be attributed to the fact that Block RAMs are
allocated in large capacities (2KB), and that the lower-
term dictionaries do not fully utilize their Block RAM
allocations (e.g., a 128B Bloom filter is implemented
with a 2KB BRAM). In terms of slice utilization, the
different designs remain relatively constant until Block
RAM resources are fully consumed. While the ISE tools
are sophisticated enough to switch to using slices as
memory when Block RAM is exhausted, doing so rapidly
fills the FPGA.

B. Performance Measurements

Performance of the hardware implementation depends
on two factors: the average length of tokens in the input
stream and the maximum rate at which the hardware can
be clocked. For the former, each input contains a variable
number of variable-length tokens. Our design processes
data in a byte-stream manner and incurs two pipeline
stalls at the end of each token encountered. For an input
with C characters and T tokens, this delay results in a
streaming efficiency of C

C+2·T . The design therefore has
streaming efficiencies ranging from 0.5 in the worst case
(when the input is a series of one character tokens) to
nearly one in the best case (when the input is a single
token). Inputs in the ECML testing data set were found
to provide an average streaming efficiency of 0.85.

For clocking measurements, we generated a design
that employed eight quantization levels and a dictio-
nary with 3,919 terms of statistics. We found that the
maximum clock rate for this design was 196MHz. Mul-
tiplying the streaming efficiency of the ECML testing
data set by this clock rate results in a streaming rate of
166MB/s. This data rate is sufficient for Gigabit network
speeds and greatly outpaces software implementations
without impacting accuracy. Throughputs for different
implementations are summarized in Table I. All three
implementations have an accuracy of 94% in differenti-
ating attack vs. normal.

V. RELATED WORK

Reconfigurable computing researchers have utilized
FPGAs in a variety of network security applications over
the last decade. A significant amount of this work has
focused on techniques for transforming the rules utilized
by the well-known SNORT [10] network intrusion de-
tection system into hardware that can be loaded into an
FPGA. Hutchings et. al. [7] constructed tools that ana-
lyzed strings found in SNORT’s ruleset and then trans-
formed the resulting collection of regular expressions
into synthesizable, string-matching hardware. Similarly,
Gokhale et. al. [6] developed tools to convert SNORT’s
ruleset into content-addressable memory (CAM) tables
that were then programmed into an FPGA that processed
Gigabit Ethernet streams. While our work focuses on
a different approach to classifying malicious traffic, it
employs the same idea of using tools to translate a
software application’s data set to a custom hardware
implementation that can be deployed in reconfigurable
hardware.

In terms of architectural approaches, researchers have
investigated a number of options for implementing
SNORT rule checking in FPGA hardware [1]. These
approaches typically compile rulesets into hardware in
a way that leverages either the distributed memory re-
sources of an FPGA or its ability to house large amounts
of logic. Memory-based approaches include TCAMs
[12], hash dictionaries [13], and parallel Bloom filters
[4]. Logic-based approaches such as DFA or NFA [3]
typically instantiate a large number of hardware state
machines to compare many different patterns at the same
time. Our approach is largely memory based as it utilizes
many parallel Bloom filters to locate statistical weights
for each input string.

VI. CONCLUSIONS

In this work, we have described an online, streaming,
configurable hardware classifier capable of processing
a text stream at 166MB/s. The classifier detects seven
different attack types and differentiates between attack
and normal HTTP web page requests with an accuracy
of 94%. Optimizations were employed to enable
streaming, reduce computation, and minimize memory
usage. Even with a two order of magnitude reduction
in the size of the dictionary, the hardware algorithm
shows the same accuracy as the original software
implementation. The sequential Java implementation
has a throughput of 2MB/s, and a C implementation of
the streaming algorithm has throughput of 34MB/s with
the same accuracy. The performance of the hardware

classifier allows it to be used as a real-time analysis
component of an advanced intrusion prevention pipeline
in network security applications.

Acknowledgments Brian Gallagher and Tina Eliassi-
Rad invented the document similarity method of HTTP
request classification and developed the software classi-
fier. We are indebted to them for discussions concerning
the classifier and for providing the sequential Java ver-
sion. The ECML/PKDD data set was obtained from the
ECML/PKDD 2007 Workshop and is administered by
Dr. Mathieu Roche.

REFERENCES

[1] T. AbuHmed, A. Mohaisen, and D. Nyang. A Survey on Deep
Packet Inspection for Intrusion Detection Systems. ArXiv e-
prints, Feb. 2008.

[2] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM, 13(7):422–426,
1970.

[3] C. R. Clark and D. E. Schimmel. Scalable pattern matching
for high speed networks. In Proceedings of the 12th Annual
IEEE Symposium on Field-Programmable Custom Computing
Machines, pages 249–257, 2004.

[4] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lock-
wood. Deep packet inspection using parallel bloom filters. In
IEEE Micro, pages 44–51. IEEE Computer Society Press, 2003.

[5] B. Gallagher and T. Eliassi-Rad. Classification of http attacks:
A study on the ecml/pkdd 2007 discovery challenge. (TR-
414570), 2009.

[6] M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S. Poole, and
V. Hogsett. Granidt: Towards gigabit rate network intrusion
detection technology. In Proceedings of the 12th International
Conference on Field-Programmable Logic and Applications,
pages 404–413, 2002.

[7] B. L. Hutchings, R. Franklin, and D. Carver. Assisting
network intrusion detection with reconfigurable hardware. In
Proceedings of the 10th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, page 111, 2002.

[8] Ludovic Denoyer and Hung Son Nguyen. ECML/PKDD 2007
Discovery Challenge. Available http://www.ecmlpkdd.org/,
2007.

[9] D. L. Olson and D. Delen. Advanced Data Mining Techniques.
Springer, 2008.

[10] M. Roesch and S. Telecommunications. Snort - lightweight
intrusion detection for networks. pages 229–238, 1999.

[11] G. Salton, A. Wong, and C. S. Yang. A vector space model for
automatic indexing. Communications of the ACM, (11):613–
620, 1975.

[12] H. Song and J. W. Lockwood. Efficient packet classification for
network intrusion detection using fpga. In FPGA ’05: Proceed-
ings of the 2005 ACM/SIGDA 13th international symposium on
Field-programmable gate arrays, pages 238–245, New York,
NY, USA, 2005. ACM.

[13] S. Yoon, B. Kim, and J. Oh. High-performance stateful intrusion
detection system. In IEEE Computational Intelligence and
Security, 2006.

