

A Configurable-Hardware Document-Similarity Classifier to Detect Web Attacks

Craig Ulmer cdulmer@sandia.gov

April 20, 2010

Craig Ulmer Maya Gokhale Sandia National Laboratories, California Lawrence Livermore National Laboratory

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Overview

- Network security is challenging, especially at link speed
 - FPGAs offer convenient means of brute-force pattern matching
 - Attackers game network intrusion detection systems
- Network researchers: machine learning for better classification
 - Document Similarity via TFIDF and Cosine Similarity
 - Found >94% accuracy in HTTP attack classification
 - But, slow and utilized 46MB of dictionary data
- Adapt document similarity to an embedded form
 - Simplifications, dictionary reductions, parallel Bloom filters
 - Tools to automatically generate FPGA hardware
 - Achieve 94% accuracy with 128KB dictionary at GigE rates

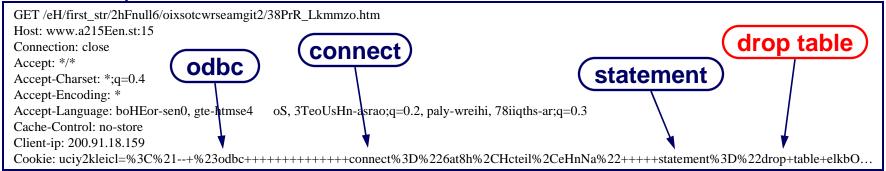
Outline

- Introduction
 - Discovery challenge and LLNL approach
- Adapting to embedded hardware
 - Algorithm modifications
 - Data modifications
- Implementation details
 - Core design
 - Tool flow
 - Performance and resource utilization
- Future work

ECML/PKDD 2007 Discovery Challenge

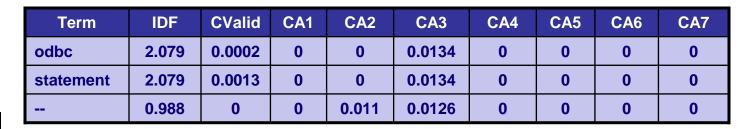
- HTTP Traffic Classification
 - Apply machine learning to identify malicious activity in HTTP
- Hand-labeled datasets of HTTP flows
 - Training: 50K inputs, 30% attacks
 - Testing: 70K inputs, 40% attacks
 - 7 Attack Types
 - XSS, SQL/LDAP/XPATH injection, path traversal, command execution, and SSI

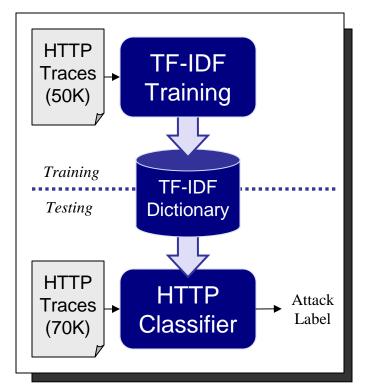
Flow Example



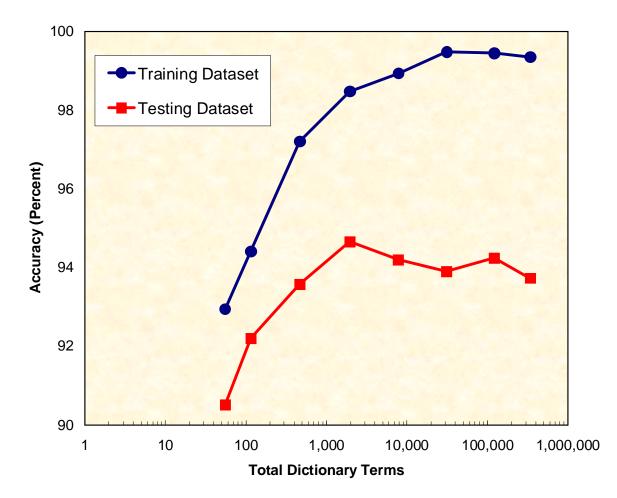
Prior LLNL Work

- Brian Gallagher and Tina Eliassi-Rad
- Document similarity: vector approach
 - Tokenize input
 - Assign weights to tokens via TFIDF
 - Cosine similarity for vector comparison
- Relies on a data dictionary
 - Generate term statistics during training
 - Reference statistics at runtime
 - Each term: IDF value and C weights





Original Accuracy



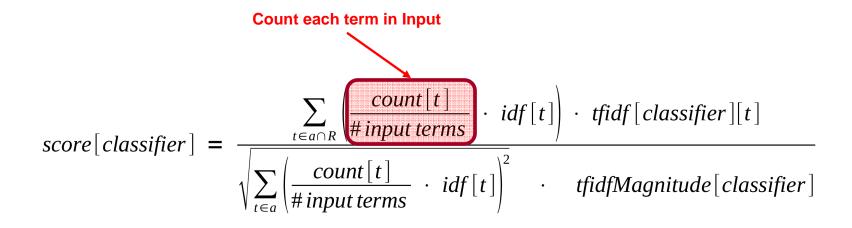
Outline

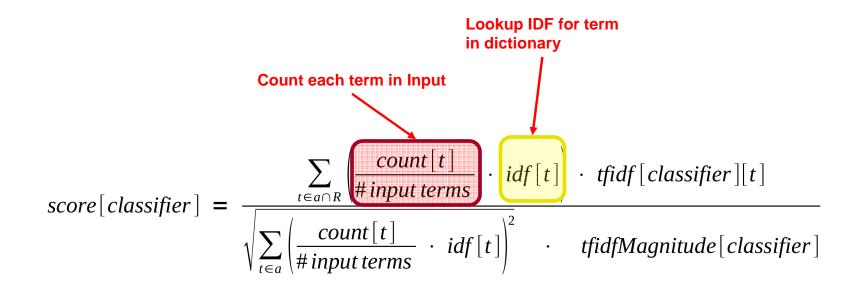
- Introduction
 - Discovery challenge and LLNL approach
- Adapting to embedded hardware
 - Algorithm modifications
 - Data modifications
- Implementation details
 - Core design
 - Tool flow
 - Performance and resource utilization
- Future work

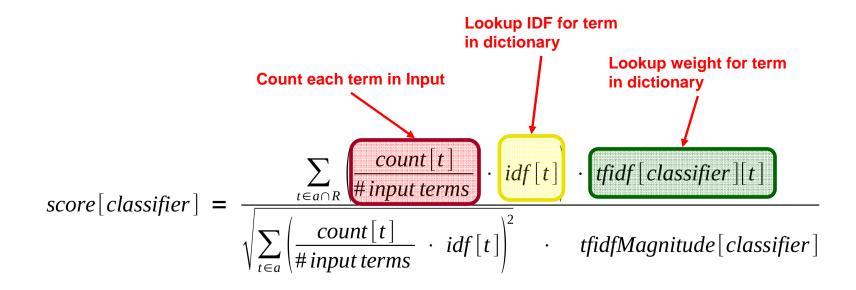
Hardware Adaptation Challenges

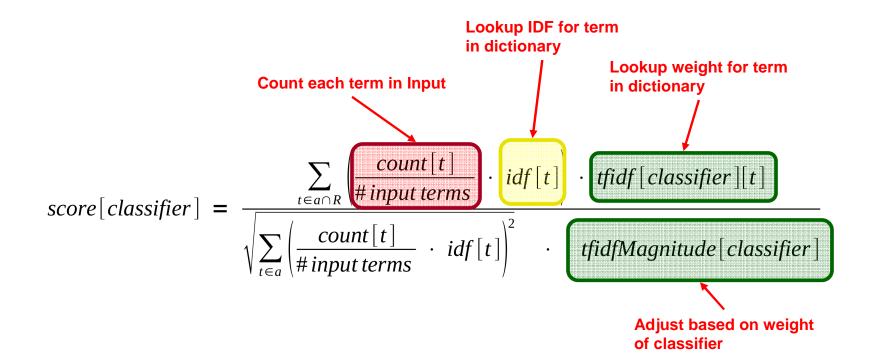
- Computation
 - Blocking form
 - Floating point math
 - Divide and square root operations
- Dictionary: 46MB, 1.8M terms
 - Large storage
 - Lookup overhead
- Path for converting to hardware
 - Build the hardware design once
 - Automatically update with configuration data

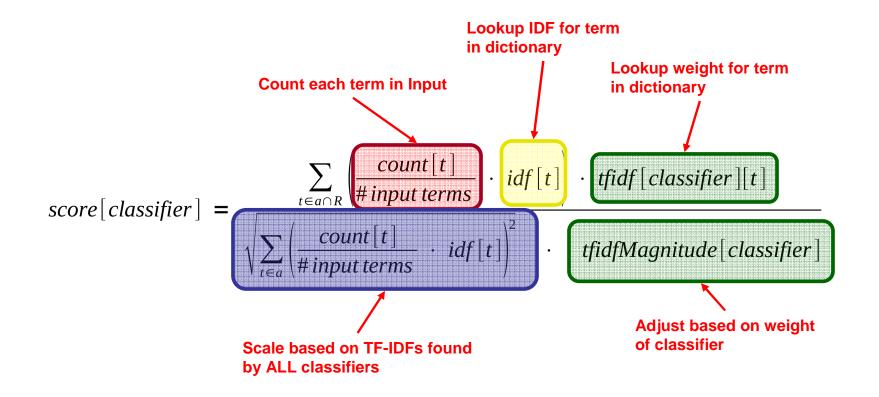
$$score[classifier] = \frac{\sum_{t \in a \cap R} \left(\frac{count[t]}{\#input terms} \cdot idf[t] \right) \cdot tfidf[classifier][t]}{\sqrt{\sum_{t \in a} \left(\frac{count[t]}{\#input terms} \cdot idf[t] \right)^{2}}} \cdot tfidfMagnitude[classifier]$$

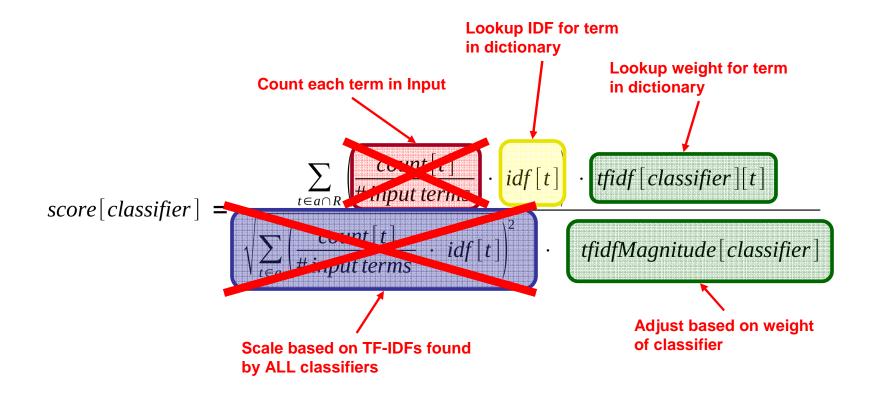




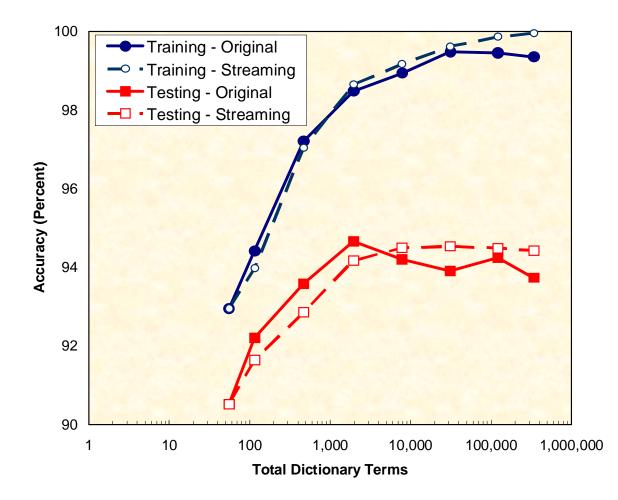






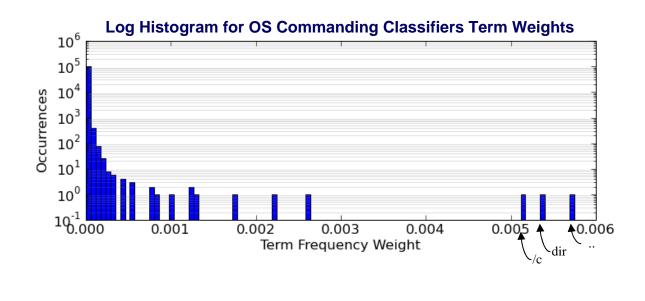


Modification 1: Impact on Accuracy

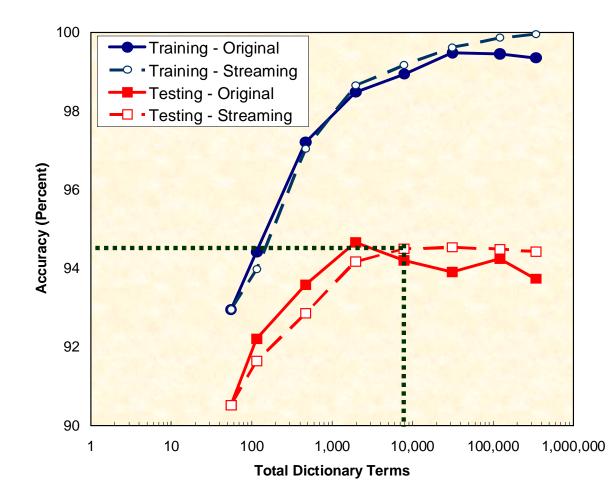


Dictionary Observations

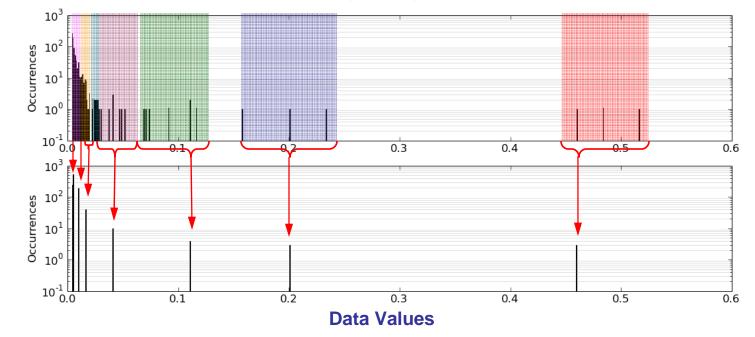
- Many terms in the dictionary
 - 1.8M terms (46MB text, 128MB data)
 - Many terms are junk ("rv:0.7.8"), but they also get very low weight
- Data values are not very diverse
 - Total unique values is < 2% of population
 - Eg: OSC Classifier has 102K terms, but only 415 unique weights



Modification 2: Truncate Dictionary

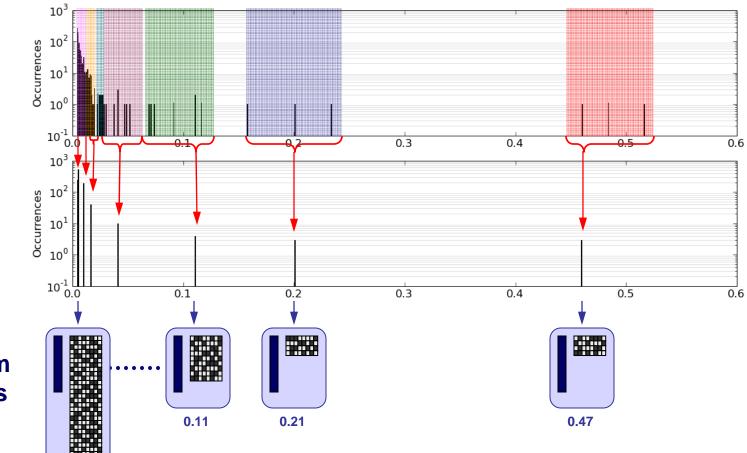


Modification 3: Re-Quantize Data Values



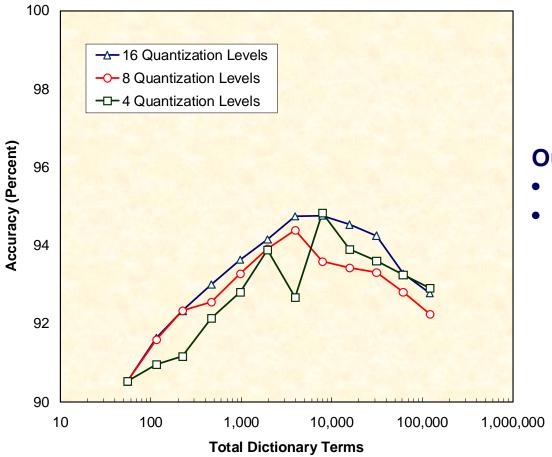
Log-Histogram

Modification 4: Map to Q Bloom Filters



Bloom Filters

End Impact on Accuracy



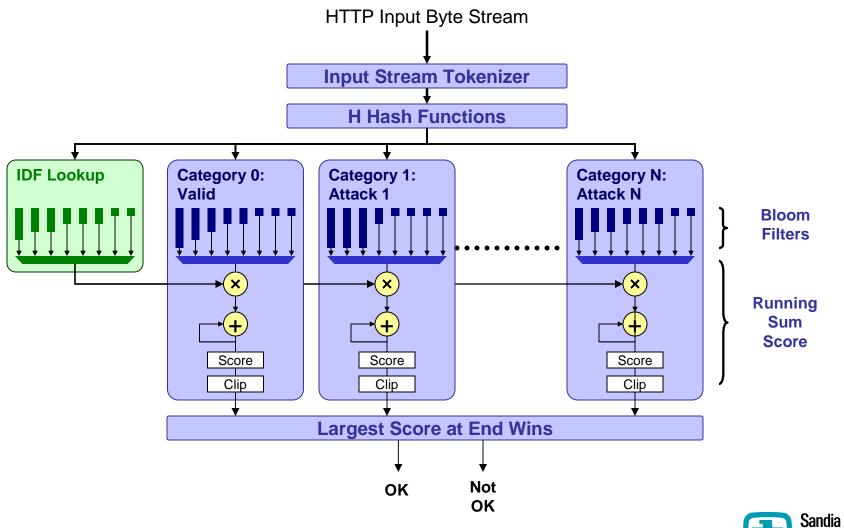
Our Choice:

- 8 quantization levels/classifier
- 4K total terms

Outline

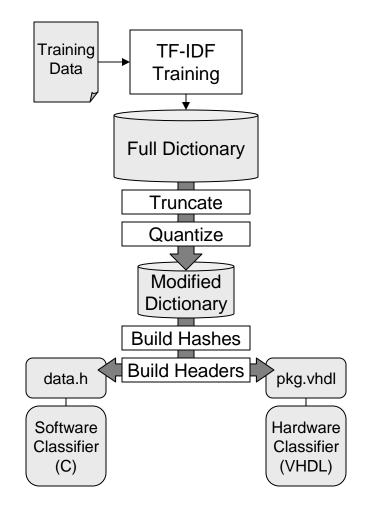
- Introduction
 - Discovery challenge and LLNL approach
- Adapting to embedded hardware
 - Algorithm modifications
 - Data modifications
- Implementation details
 - Core design
 - Tool flow
 - Performance and resource utilization
- Future work

Core Architecture



Build Flow

- Desire tools for automatic generation
 - Infrequently rebuild and deploy
 - Utilize in other applications
- User provides
 - Labeled training data
 - Number of dictionary terms
 - Number of hash functions
 - Quantization levels
 - Bloom filter error rate
- Tool chain generates header files
 - C header or VHDL package
 - Static classifier software/hardware
 - Requires a rebuild of design

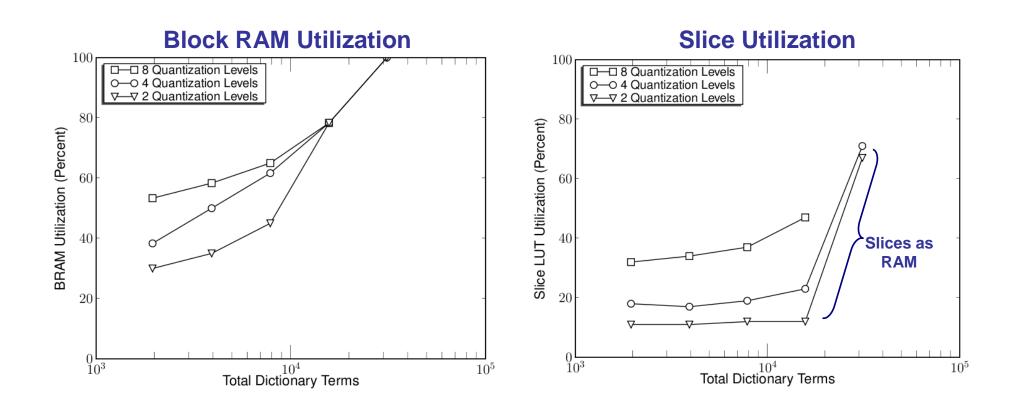


- Built and tested on Xilinx ML555 board
 - Xilinx Virtex5 LX50T -1 FPGA
 - Target GigE speeds (125MB/s)
 - Maximum clock rate: 196MHz
- Bottleneck: Input tokenizing/hashing
 - Byte stream interface

- Append each token with 2-byte length during hashing
- Results in extra stall cycle between tokens

Situation	Efficiency	Rate @ 196MHz
Worst case	0.50	98 MB/s
Best case	0.99	194 MB/s
Average for actual data	0.85	166 MB/s

Resource Utilization



Future Directions

- Architecture improvements
 - Hybrid hashing: employ efficient hash structure for housing one-offs
 - Transition from compile-time data to run-time data
- Additional platforms
 - Tilera: Assign Bloom filters to different processor cores
 - GPU: Possible, but less attractive due to lack of network options
- Application
 - Apply to other data classification applications
 - Continued work in applying data classification techniques

Examining the Algorithm

- Term-Frequency, Inverse Document Frequency
 - TF: How often does each term appear in an attack?
 - IDF: How specific is the term to an attack?

$$tfidf(t,d) = \underbrace{\frac{count(t,d)}{\sum_{v \in d} count(v,d)}}_{Term \, Frequency} \cdot \underbrace{\log \frac{|D|}{|[d_j:t \in d_j]|}}_{Inverse \, Document \, Frequency}$$

- Cosine Similarity
 - Vector dot product: estimate angle between input and each attack category

$$\operatorname{sim}_{\cos}(a,R) = \frac{\vec{a} \cdot \vec{R}}{\|\vec{a}\| \cdot \|\vec{R}\|} = \frac{\sum_{t \in a \cap R} t f i df(t,a) \cdot t f i df(t,R)}{\sqrt{\sum_{t \in a} t f i df(t,a)^2} \cdot \sqrt{\sum_{t \in R} t f i df(t,R)^2}}$$

