
April 20, 2010

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Craig Ulmer Sandia National Laboratories, California
Maya Gokhale Lawrence Livermore National Laboratory

A Configurable-Hardware
Document-Similarity Classifier to
Detect Web Attacks

Craig Ulmer
cdulmer@sandia.gov

Overview

• Network security is challenging, especially at link speed
– FPGAs offer convenient means of brute-force pattern matching

– Attackers game network intrusion detection systems

• Network researchers: machine learning for better classification
– Document Similarity via TFIDF and Cosine Similarity
– Found >94% accuracy in HTTP attack classification

– But, slow and utilized 46MB of dictionary data

• Adapt document similarity to an embedded form
– Simplifications, dictionary reductions, parallel Bloom filters

– Tools to automatically generate FPGA hardware

– Achieve 94% accuracy with 128KB dictionary at GigE rates

Outline

• Introduction
– Discovery challenge and LLNL approach

• Adapting to embedded hardware
– Algorithm modifications

– Data modifications

• Implementation details
– Core design

– Tool flow
– Performance and resource utilization

• Future work

ECML/PKDD 2007 Discovery Challenge

• HTTP Traffic Classification
– Apply machine learning to identify malicious activity in HTTP

• Hand-labeled datasets of HTTP flows
– Training: 50K inputs, 30% attacks

– Testing: 70K inputs, 40% attacks
– 7 Attack Types XSS, SQL/LDAP/XPATH injection,

path traversal, command execution, and SSI

GET /eH/first_str/2hFnull6/oixsotcwrseamgit2/38PrR_Lkmmzo.htm
Host: www.a215Een.st:15
Connection: close
Accept: */*
Accept-Charset: *;q=0.4
Accept-Encoding: *
Accept-Language: boHEor-sen0, gte-htmse4 oS, 3TeoUsHn-asrao;q=0.2, paly-wreihi, 78iiqths-ar;q=0.3
Cache-Control: no-store
Client-ip: 200.91.18.159
Cookie: uciy2kleicl=%3C%21--+%23odbc++++++++++++++connect%3D%226at8h%2CHcteil%2CeHnNa%22+++++statement%3D%22drop+table+elkbO…

odbc
connect

statement
drop table

Flow Example

Prior LLNL Work

• Brian Gallagher and Tina Eliassi-Rad

• Document similarity: vector approach
– Tokenize input

– Assign weights to tokens via TFIDF

– Cosine similarity for vector comparison

• Relies on a data dictionary
– Generate term statistics during training

– Reference statistics at runtime
– Each term: IDF value and C weights

HTTP
Traces
(50K)

HTTP
Traces
(70K)

HTTP
Classifier

TF-IDF
Dictionary

TF-IDF
Training

Attack
Label

Training

Testing

0

0.0013

0.0002

CValid

0

0

0

CA1

0.011

0

0

CA2

0.0126

0.0134

0.0134

CA3

0

0

0

CA4

0

0

0

CA5

0

0

0

CA6

00.988--

02.079statement

02.079odbc

CA7IDFTerm

Original Accuracy

90

92

94

96

98

100

1 10 100 1,000 10,000 100,000 1,000,000

Total Dictionary Terms

A
cc

u
ra

cy
 (

P
er

ce
n

t)

Training Dataset

Testing Dataset

Outline

• Introduction
– Discovery challenge and LLNL approach

• Adapting to embedded hardware
– Algorithm modifications

– Data modifications

• Implementation details
– Core design

– Tool flow
– Performance and resource utilization

• Future work

Hardware Adaptation Challenges

• Computation
– Blocking form

– Floating point math
– Divide and square root operations

• Dictionary: 46MB, 1.8M terms
– Large storage

– Lookup overhead

• Path for converting to hardware
– Build the hardware design once

– Automatically update with configuration data

Modification 1: Computation Adjustments

Modification 1: Computation Adjustments

Count each term in Input

Modification 1: Computation Adjustments

Count each term in Input

Lookup IDF for term
in dictionary

Modification 1: Computation Adjustments

Count each term in Input

Lookup IDF for term
in dictionary

Lookup weight for term
in dictionary

Modification 1: Computation Adjustments

Count each term in Input

Lookup IDF for term
in dictionary

Lookup weight for term
in dictionary

Adjust based on weight
of classifier

Modification 1: Computation Adjustments

Count each term in Input

Lookup IDF for term
in dictionary

Lookup weight for term
in dictionary

Adjust based on weight
of classifierScale based on TF-IDFs found

by ALL classifiers

Modification 1: Computation Adjustments

Count each term in Input

Lookup IDF for term
in dictionary

Lookup weight for term
in dictionary

Adjust based on weight
of classifierScale based on TF-IDFs found

by ALL classifiers

Modification 1: Impact on Accuracy

90

92

94

96

98

100

1 10 100 1,000 10,000 100,000 1,000,000

Total Dictionary Terms

A
cc

ur
ac

y
(P

er
ce

n
t)

Training - Original
Training - Streaming
Testing - Original
Testing - Streaming

Dictionary Observations

• Many terms in the dictionary
– 1.8M terms (46MB text, 128MB data)

– Many terms are junk (“rv:0.7.8”), but they also get very low weight

• Data values are not very diverse
– Total unique values is < 2% of population
– Eg: OSC Classifier has 102K terms, but only 415 unique weights

..
dir

/c

Log Histogram for OS Commanding Classifiers Term Weights

Modification 2: Truncate Dictionary

90

92

94

96

98

100

1 10 100 1,000 10,000 100,000 1,000,000

Total Dictionary Terms

A
cc

ur
ac

y
(P

er
ce

n
t)

Training - Original
Training - Streaming
Testing - Original
Testing - Streaming

Modification 3: Re-Quantize Data Values

Data Values

Log-Histogram

Modification 4: Map to Q Bloom Filters

Bloom
Filters

0.001

0.11 0.21 0.47

End Impact on Accuracy

90

92

94

96

98

100

10 100 1,000 10,000 100,000 1,000,000

Total Dictionary Terms

A
cc

u
ra

cy
 (

P
er

ce
n

t)

16 Quantization Levels

8 Quantization Levels

4 Quantization Levels

Our Choice:
• 8 quantization levels/classifier
• 4K total terms

Outline

• Introduction
– Discovery challenge and LLNL approach

• Adapting to embedded hardware
– Algorithm modifications

– Data modifications

• Implementation details
– Core design

– Tool flow
– Performance and resource utilization

• Future work

Core Architecture

H Hash Functions

HTTP Input Byte Stream

Input Stream Tokenizer

IDF Lookup

Largest Score at End Wins

OK Not
OK

Bloom
Filters

Running
Sum

Score

Category N:
Attack N

+
Score

Clip

+

Category 1:
Attack 1

Score

Clip

+

Category 0:
Valid

Score

Clip

Build Flow

• Desire tools for automatic generation
– Infrequently rebuild and deploy

– Utilize in other applications

• User provides
– Labeled training data
– Number of dictionary terms

– Number of hash functions

– Quantization levels

– Bloom filter error rate

• Tool chain generates header files
– C header or VHDL package
– Static classifier software/hardware

– Requires a rebuild of design

data.h

Software
Classifier

(C)

pkg.vhdl

Hardware
Classifier
(VHDL)

Modified
Dictionary

Full Dictionary

TF-IDF
Training

Training
Data

Truncate

Quantize

Build Hashes

Build Headers

Performance Measurements

• Built and tested on Xilinx ML555 board
– Xilinx Virtex5 LX50T -1 FPGA

– Target GigE speeds (125MB/s)
– Maximum clock rate: 196MHz

• Bottleneck: Input tokenizing/hashing
– Byte stream interface

– Append each token with 2-byte length during hashing

– Results in extra stall cycle between tokens

0.85

0.99

0.50

Efficiency

166 MB/sAverage for actual data

194 MB/sBest case

98 MB/sWorst case

Rate @ 196MHzSituation

Resource Utilization

Block RAM Utilization Slice Utilization

Slices as
RAM

Future Directions

• Architecture improvements
– Hybrid hashing: employ efficient hash structure for housing one-offs

– Transition from compile-time data to run-time data

• Additional platforms
– Tilera: Assign Bloom filters to different processor cores
– GPU: Possible, but less attractive due to lack of network options

• Application
– Apply to other data classification applications
– Continued work in applying data classification techniques

Examining the Algorithm

• Term-Frequency, Inverse Document Frequency
– TF: How often does each term appear in an attack?

– IDF: How specific is the term to an attack?

• Cosine Similarity
– Vector dot product: estimate angle between input and each attack category

