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Overview

• Network security is challenging, especially at link speed
– FPGAs offer convenient means of brute-force pattern matching

– Attackers game network intrusion detection systems

• Network researchers: machine learning for better classification
– Document Similarity via TFIDF and Cosine Similarity
– Found >94% accuracy in HTTP attack classification

– But, slow and utilized 46MB of dictionary data

• Adapt document similarity to an embedded form
– Simplifications, dictionary reductions, parallel Bloom filters

– Tools to automatically generate FPGA hardware

– Achieve 94% accuracy with 128KB dictionary at GigE rates
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ECML/PKDD 2007 Discovery Challenge

• HTTP Traffic Classification
– Apply machine learning to identify malicious activity in HTTP

• Hand-labeled datasets of HTTP flows
– Training: 50K inputs, 30% attacks

– Testing: 70K inputs, 40% attacks
– 7 Attack Types XSS, SQL/LDAP/XPATH injection, 

path traversal, command execution, and SSI

GET /eH/first_str/2hFnull6/oixsotcwrseamgit2/38PrR_Lkmmzo.htm
Host: www.a215Een.st:15
Connection: close
Accept: */*
Accept-Charset: *;q=0.4
Accept-Encoding: *
Accept-Language: boHEor-sen0, gte-htmse4      oS, 3TeoUsHn-asrao;q=0.2, paly-wreihi, 78iiqths-ar;q=0.3
Cache-Control: no-store
Client-ip: 200.91.18.159
Cookie: uciy2kleicl=%3C%21--+%23odbc++++++++++++++connect%3D%226at8h%2CHcteil%2CeHnNa%22+++++statement%3D%22drop+table+elkbO…

odbc
connect

statement
drop table

Flow Example



Prior LLNL Work

• Brian Gallagher and Tina Eliassi-Rad

• Document similarity: vector approach
– Tokenize input

– Assign weights to tokens via TFIDF

– Cosine similarity for vector comparison

• Relies on a data dictionary
– Generate term statistics during training

– Reference statistics at runtime
– Each term: IDF value and C weights
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Hardware Adaptation Challenges

• Computation
– Blocking form

– Floating point math
– Divide and square root operations

• Dictionary: 46MB, 1.8M terms
– Large storage

– Lookup overhead

• Path for converting to hardware
– Build the hardware design once

– Automatically update with configuration data



Modification 1: Computation Adjustments
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Modification 1: Impact on Accuracy
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Dictionary Observations

• Many terms in the dictionary
– 1.8M terms (46MB text, 128MB data)

– Many terms are junk (“rv:0.7.8”), but they also get very low weight

• Data values are not very diverse
– Total unique values is < 2% of population
– Eg: OSC Classifier has 102K terms, but only 415 unique weights
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Modification 2: Truncate Dictionary
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Modification 3: Re-Quantize Data Values

Data Values

Log-Histogram



Modification 4: Map to Q Bloom Filters

Bloom
Filters
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End Impact on Accuracy
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Core Architecture
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Build Flow

• Desire tools for automatic generation
– Infrequently rebuild and deploy

– Utilize in other applications

• User provides
– Labeled training data
– Number of dictionary terms

– Number of hash functions

– Quantization levels

– Bloom filter error rate

• Tool chain generates header files
– C header or VHDL package
– Static classifier software/hardware

– Requires a rebuild of design
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Performance Measurements

• Built and tested on Xilinx ML555 board
– Xilinx Virtex5 LX50T -1 FPGA

– Target GigE speeds (125MB/s)
– Maximum clock rate: 196MHz

• Bottleneck: Input tokenizing/hashing
– Byte stream interface

– Append each token with 2-byte length during hashing

– Results in extra stall cycle between tokens
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Resource Utilization
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Future Directions

• Architecture improvements
– Hybrid hashing: employ efficient hash structure for housing one-offs

– Transition from compile-time data to run-time data

• Additional platforms
– Tilera: Assign Bloom filters to different processor cores
– GPU: Possible, but less attractive due to lack of network options

• Application
– Apply to other data classification applications
– Continued work in applying data classification techniques



Examining the Algorithm

• Term-Frequency, Inverse Document Frequency
– TF: How often does each term appear in an attack?

– IDF: How specific is the term to an attack?

• Cosine Similarity
– Vector dot product: estimate angle between input and each attack category


