
J. Parallel Distrib. Comput. 71 (2011) 225–235
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Massively parallel acceleration of a document-similarity classifier to detect
web attacks✩

Craig Ulmer b, Maya Gokhale a,∗, Brian Gallagher a, Philip Top a, Tina Eliassi-Rad a

a Lawrence Livermore National Laboratory, United States
b Sandia National Laboratories, CA, United States

a r t i c l e i n f o

Article history:
Received 23 January 2010
Received in revised form
26 June 2010
Accepted 20 July 2010
Available online 25 July 2010

Keywords:
Cybersecurity
Document classification
Machine learning
Multi-core
Reconfigurable computing

a b s t r a c t

This paper describes our approach to adapting a text document similarity classifier based on the Term
Frequency Inverse Document Frequency (TFIDF) metric to twomassively multi-core hardware platforms.
The TFIDF classifier is used to detect web attacks in HTTP data. In our parallel hardware approaches,
we design streaming, real time classifiers by simplifying the sequential algorithm and manipulating the
classifier’s model to allow decision information to be represented compactly. Parallel implementations
on the Tilera 64-core System on Chip and the Xilinx Virtex 5-LX FPGA are presented. For the Tilera, we
employ a reduced state machine to recognize dictionary terms without requiring explicit tokenization,
and achieve throughput of 37 MB/s at a slightly reduced accuracy. For the FPGA, we have developed a set
of software tools to help automate the process of converting training data to synthesizable hardware
and to provide a means of trading off between accuracy and resource utilization. The Xilinx Virtex
5-LX implementation requires 0.2% of the memory used by the original algorithm. At 166 MB/s (80X
the software) the hardware implementation is able to achieve Gigabit network throughput at the same
accuracy as the original algorithm.

© 2010 Elsevier Inc. All rights reserved.
1. Introduction

As the world becomes more reliant on Web applications for
commercial, financial, and medical transactions, cyber attacks on
theWorldWideWeb are increasing in frequency and severity.Web
applications provide an attractive alternative to traditional desk-
top applications due to their accessibility and ease of deployment.
However, the accessibility of Web applications also makes them
extremely vulnerable to attack. This inherent vulnerability is inten-
sified by the distributed nature of Web applications and the com-
plexity of configuring application servers. These factors have led
to a proliferation of Web-based attacks, in which attackers surrep-
titiously inject code into HTTP requests, allowing them to execute
arbitrary commands on remote systems and performmalicious ac-
tivities such as reading, altering, or destroying sensitive data (e.g.,
credit card numbers, trade secrets, medical history). Fig. 1 shows a
sample HTTP request containing a ‘‘SQL Injection’’ attack, in which
an entire data table is deleted by a malicious SQL command.

In order to prevent such attacks, we need to identify malicious
code in incoming HTTP requests and eliminate bad requests be-
fore they are processed. Using machine learning techniques, we

✩ This work was performed under the auspices of the US Department of Energy
by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
∗ Corresponding author.

E-mail address:maya@llnl.gov (M. Gokhale).

0743-7315/$ – see front matter© 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2010.07.005
can build a classifier to automatically label requests as ‘‘Valid’’ or
‘‘Attack’’. For this study, we develop a simple, but effective HTTP
attack classifier, based on the vector space model [15] used com-
monly for Information Retrieval. Our classifier not only separates
attacks from valid requests, but can also identify specific attack
types (e.g., ‘‘SQL Injection’’ or ‘‘Path Traversal’’).

The classification performance of our sequential algorithm [7]
compares favorably to previously published work on the ECML/
PKDD 2007 Discovery Challenge data set, achieving an F1 score
of 0.93, compared to 0.80 and 0.48 for previous approaches. Our
approach demonstrates an accuracy of 94%.

Building on this approach, we have devised two massively
parallel, streaming algorithms to classify HTTP requests as they
arrive in a text stream transmitted over a high-speed internetwork.
Using our methods, real time classification of HTTP requests into
attack vs. normal categories serves as an advanced intrusion
preventionmethod capable of detecting and thwartingweb attacks
as they occur.

We present a parallel implementation optimized for the
TileraTM 64-core System on Chip. The two level data parallel ap-
proach organizes the cores into multiple units of nine tiles (cores).
This nine-tile processing unit is then replicated to the capacity
of the chip, allowing the units to process independent document
streams. By compacting the term dictionary to fit into the L2 cache
of each core, we can classify web request documents at 37 MB/s
(18.5X speedup over the sequential algorithm).

http://dx.doi.org/10.1016/j.jpdc.2010.07.005
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:maya@llnl.gov
http://dx.doi.org/10.1016/j.jpdc.2010.07.005

226 C. Ulmer et al. / J. Parallel Distrib. Comput. 71 (2011) 225–235
Fig. 1. Sample HTTP request with malicious database activity.
Our FPGA algorithm has been optimized for streaming compu-
tation in a hardware pipeline that exploits on-chip distributedRAM
(known as Block RAM or BRAM on Xilinx FPGAs) for high perfor-
mance. The hardware building blocks are highly configurable, and
their configuration parameters are generated semi-automatically
through analysis of the training data set. The classifier demon-
strates throughput of 166 MB/s (80X speedup over the sequential
algorithm) at the same accuracy as the sequential algorithm.

2. Sequential algorithm

A novel HTTP attack classification algorithm was proposed by
Gallagher and Eliassi-Rad [7], and a sequential Java implementa-
tion was devised. This algorithm is based on a classic vector space
model from Information Retrieval. Vector spacemodels (a.k.a. term
vector models) were first used in an information retrieval system
called SMART [14]. These models are commonly used to retrieve
information relevant to an input query from a text/document cor-
pus. The first Web search engines (i.e. before Google) were pre-
dominately based on vector space models. Over the years, several
vector space classificationmethods have been invented, two of the
most popular being Rocchio and kNN classification (see Sections
14.2 and 14.3 of [9]).

2.1. Document similarity

The HTTP attack classification algorithm depends on the con-
cept of document similarity. Document similarity using term
weights is awell-understood Information Retrieval technique [15].
The goal is to: (1) weight terms in each document such that the
most representative terms receive the highest weight, (2) repre-
sent each document by a vector of term weights, and (3) com-
pare documents to one another using a similaritymeasure over the
space of term vectors.

An effective andwell-knownweighting scheme for this purpose
is tfidf [15]. The tfidf weight consists of two components: tf and
idf . Term frequency (tf) measures how often a specific term t
occurs within a given document d, relative to all terms v in d:

tf (t, d) =
count(t, d)∑

v∈d
count(v, d)

. (1)

Inverse document frequency (idf) measures the proportion of
documents d in the collection D in which term t occurs

idf (t) =
log |D|

|{d ∈ D : t ∈ d}|
. (2)

The tfidf assigns the highest weight to terms t that occur fre-
quently in document d, but occur in few other documents

tfidf (t, d) = tf (t, d) · idf (t). (3)

In the vector space model, document d is characterized by tfidf
vector Vd. Each component i of Vd holds the tfidf score of the i’th
term in the document collection. Similarity between documents d
and a is calculated using the cosine of the angle θ between the tfidf
vectors Vd and Va:
sim(d, a) = cos(θVd,Va) (4)

i.e.

sim(d, a) =
Vd · Va

‖Vd‖ ‖Va‖
(5)

or equivalently

sim(d, a) =

∑
t∈d∩a

tfidf (t, d) · tfidf (t, a)∑
t∈d

tfidf (t, d)2
∑

t∈a
tfidf (t, a)2

. (6)

2.2. Data set

Our experiments primarily use a data set released by the
European Conference on Machine Learning (ECML) and the 11th
European Conference on the Principles and Practice of Knowledge
Discovery in Databases (PKDD) in 2007 as part of the 2007 Discov-
ery Challenge [5]. The data set contains more than 120,000 labeled
HTTP requests, of which 50,000 are for training, and 70,000 consti-
tute the testing data. 70% of the training requests are normal, valid
requests, and 30% contain cybersecurity attacks. In the testing data,
60% are normal and 40% are attack.

There are seven different sorts of attacks: cross site scripting
(XSS), SQL injection, LDAP injection, XPATH injection, directory
path traversal, command execution, and Server Side Include (SSI)
attacks. The 2007 challenge was to detect and characterize the
attacks.

Each training and test instance in the data set contained the full
text of the http request, divided into the following components:
method, protocol, uri, query, headers, and body. In addition, each
HTTP request included the following contextual attributes:

• Operating system running on the Web Server (UNIX, WIN-
DOWS, UNKNOWN).

• HTTP Server targeted by the request (APACHE, MIIS, UN-
KNOWN).

• Is the XPATH technology understood by the server? (TRUE,
FALSE, UNKNOWN).

• LDAP database on the Web Server? (TRUE, FALSE, UNKNOWN).
• SQL database on the Web Server? (TRUE, FALSE, UNKNOWN).

In addition to the ECML/PKDD data set, we have applied our al-
gorithm to the 2009 Inter-Service AcademyCyber Defense Exercise
data, the ‘‘West Point’’ data set [17]. This data was generated by an
experiment to have the National Security Agency attack a network
atWest Point Academy. This data set was used to analyze through-
put performance of our algorithms. Since it was not labeled, we
could not derive accuracy measures from the West Point data set.

2.3. Related work

Discovery challenge. Over 25 groups registered for the ECML/
PKDD Discovery Challenge, but only two submitted final results.
According to Rassi et al. [13], most researchers failed to submit

C. Ulmer et al. / J. Parallel Distrib. Comput. 71 (2011) 225–235 227
results because they found that traditional datamining approaches
were unsuccessful and felt that a specialized knowledge of attack
detection was required to adequately address the problem. The
two groups that submitted results took very different approaches
to the problem. Pachopoulos et al. [11] tried two different app-
roaches:

Approach 1: Extract binary features from the HTTP request
data, perform feature selection, and then apply C4, a standard
supervised-learning decision-tree algorithm, to build a classifier.

Approach 2: Use the string representations of the various HTTP
fields directly as features for input to a Support Vector Machine
using a String Kernel. The authors abandoned the SVM approach
in favor of the C4 approach after the former failed to deliver satis-
factory performance.1 The binary features used as input to C4 are
based on the presence or absence of a number of attack indicators,
derived manually by the authors.

The approach of Exbrayant [6] is based on constructing a
language model that is used to define HTTP attack patterns. The
author notes that attack patterns consist of sequences of keywords,
variables, and symbols. Thus, the approach derives rules based on
such sequences that can be used to identify the beginning and
end of attack strings in HTTP requests. The core of this approach
involves extracting and evaluating potential rules. Once this is
done, it is straightforward to classify a candidate request based
on whether it matches a given rule. While the Exbrayant classifier
shows better results than Pachopoulos, it does not achieve the
accuracy of our TFIDF approach.
TFIDF in hardware. Chen et al. [3] report on an FPGA design combin-
ing on-chip general purpose processorwith an array of term count-
ing IP blocks. In contrast to our designwhich uses Bloom filters, the
implementation uses fixed length comparators to compare chunks
of the term in successive cycles. Simulation results are presented
that show a 3–7 times speedup over software. The work performs
term frequency counting only.
Network intrusion detection. There is a large body of literature re-
porting hardware andmulti-core acceleration of network intrusion
detection. Themost common approach is to compile signatures ex-
pressed as regular expressions into FPGA hardware, e.g. TCAM [16]
or logic [1]. Network intrusion detection using Principal Compo-
nents Analysis is reported by Das et al. [4]. In contrast, our work
classifies based on term frequency rather than fixed regular ex-
pression patterns.

2.4. TFIDF method

Our approach applies the TFIDF method to train and run a
classifier to detect attacks. To train the classifier, all requests of a
specific attack type in the training set are combined into a single
document, resulting in eight reference attack documents. tfidf
vectors are computed for each reference document.

In the testing phase, each HTTP request in the testing data set is
considered to be a single document, and the cosine similarity be-
tween the incoming request and each reference attack document
is computed. Once all similarity scores are computed, a threshold
operation is applied to remove terms whose similarity scores are
lower than a threshold. This operation improves the quality of the
results when comparing the attack scores to the valid score, most
notably when the dictionary has a large number of terms. This pa-
rameter is typically set during training to balance precision and
recall [10] statistics. A lower value implies a more hostile envi-
ronment, where it is important to filter anything that appears ma-
licious, even if it means mistakenly filtering harmless traffic. The
document is classified as belonging to the class of the most similar
reference document. The process is shown in Fig. 2.

1 Pachopoulos et al. [11] used WEKA’s implementation of C4 and SVM [18].
Fig. 2. Training and testing the classifier.

On the ECML/PKDD 2007 Discovery Challenge data set, our se-
quential algorithm gave an accuracy of 94% in distinguishing attack
vs. normal and 91% in correctly distinguishing the type of attack.
The single-threaded Java software implementation of the algo-
rithm runs at about 2 MB/s on a standard PC workstation (2.2 GHz,
quad core, 8 GB memory). A Hadoop MapReduce implementation
of this algorithm, including the original Java source code, is publicly
available [8].

We note that although the TFIDF approach compares favorably
to other state-of-the-art approaches for Web attack classification,
it does have some limitations, which we address here. The single
data characteristic that most impacts the approach is how reli-
ably specific terms map to concepts of interest. It may be possi-
ble to evade detection by carrying out an attack using an unusual
set of terms. However, the regularity of programming language
syntax works in our favor here. For instance, there are a small
number of SQL commands that result in the deletion of a database
table. Of course, if commands are obfuscated (e.g., via convoluted
JavaScript), thiswill create problems for any of the proposed detec-
tion techniques. Another limitation of the TFIDF-based approach
is that the discovery of new attacks potentially requires expand-
ing the vocabulary and relearning attackmodels. Limiting assump-
tions of the approach include term independence and irrelevance
of term order. Ideally we would model meaning at a higher-level
than term frequency. However, as we sawwith the language mod-
eling approach in Section 2.3, a more sophisticatedmodel does not
necessarily lead to better results in practice.

3. Parallel implementations

The TFIDF method offers a novel approach to detecting mali-
cious web HTTP requests. However, the sequential algorithm im-
plementing Eq. (6) requires access to the entire document col-
lection a priori. Further, at 2 MB/s the sequential algorithm can-
not process a real-time data stream. Since our goal is a stream-
ing, real-time approach, we study the equation and data set for
optimization opportunities. We seek to optimize the classifica-
tion phase of the TFIDF algorithm, and perform the training phase
off-line.
Streaming. In a streaming environment, the datamust be processed
in a single pass with very limited buffering. We observe that
according to Eq. (6) a term’s idf scores can’t be computed until
the entire document collection has been scanned. In a streaming
environment, the document collection is never complete, and
therefore the idf we used is based on the training document
collection, which is pre-computed and can simply be looked up in
the dictionary. Both parallel implementations use an idf value pre-
computed from the training data set.
Memory reduction. To maintain high throughput, the classifier
model (called dictionary in this context) must be stored on-chip.

228 C. Ulmer et al. / J. Parallel Distrib. Comput. 71 (2011) 225–235
Fig. 3. Impact of number of terms on accuracy.

In this application, the limited memory presents a formidable
challenge, as the full dictionary for the ECLM training data set uses
47 MB. While this is fairly modest in a workstation environment,
it is not feasible when on-chipmemory is distributed amongmany
parallel processing cores.

The classifier model or dictionary holds the tfidf score for each
term encountered in the training data set. The number of terms in
the dictionary ultimately dictates how much information is avail-
able during classification. A reasonable accuracy can be achieved
with only a small number (e.g., 32) of high-value keywords. Sup-
plementing these terms with a large number (e.g., hundreds to
thousands) of less important but still relevant terms typically im-
proves the accuracy until the classifier becomes overtrained. After
this point the accuracy may stay constant or degrade. Increasing
the number of dictionary terms increases the amount of data a clas-
sifier must maintain.

A test program was constructed to evaluate the impact of
changes to the original algorithm and observe the impact of
reducing the number of terms in the dictionary. A dictionary was
constructed based on the training data set. We varied the number
of terms in the dictionary and then measured the accuracy when
the original and streaming versions of the algorithm were used to
classify the training and testing data sets. The results are presented
in Fig. 3. As expected, the classifier performed exceptionally well
on the training data set, with the accuracy improving as more
terms are included. The testing results level off after two to eight
thousand unique terms. This plateau is expected and indicates the
point at which the classifier becomes overtrained. Both parallel
implementations truncate the number of terms to reduce the size
of the dictionary.

4. Tilera mapping

4.1. Tilera architecture

The Tilera processor is a low power, many-core System on
Chip. The Tilera 64 used in this application consists of an 8 ×

8 array of 700 MHz custom 32-bit integer processors running
Linux. The processors communicate with each other, memory,
and external devices through a unique two-dimensional switched
mesh interconnect with five communication networks. The chip
includes a 10 Gb/s Ethernet port, PCI Express ports, and a DDR2
memory controller. Like conventional multi-core processors, the
Tilera cores (or ‘‘tiles’’) have a shared address space with hardware
maintained cache coherence. Unlike conventional multi-core
processors, the tiles include switches to route communication. The
Fig. 4. Layout of processes on Tilera cores.

processors communicate over a dynamic on-chip interconnection
network or a user-managed static interconnection network. The
switches also transparently route cache, memory and I/O accesses.
Each tile has two 8 kB L1 caches for program and data, and a 64 kB
L2 cache for local scratchpad operations. The tile has a 3-way VLIW
instruction set for concurrent memory, I/O, and ALU operations,
DSP-like instructions, a 2-stage instruction pipeline, and sixty-four
32-bit registers.

The tiles are programmed in C or assembly language. The Tilera
runs Linux and supports pthreads and sockets as well as a propri-
etary high performance concurrency and communication library.

4.2. Tilera algorithm

The Tilera algorithm is shaped by the limited cache available
to each tile. Although hardware memory management gives a
unified address space across the tiles, a variable latency ofmemory
accesses can dramatically reduce streaming throughput. Thus, the
principal design decision is to reduce the model size to fit the
dictionary into the 64 kB L2 cache of each tile.

Using accuracy results described above, we truncate the term
frequency vector to 255 elements, for an accuracy of 92%. This
allows a complete dictionary to be stored on each tile, and
eliminates inter-tile communication to access dictionary elements.
The eight dictionaries (seven attack types and ‘‘normal’’) are stored
in eight tiles, with a ninth tile dedicated to data ingest. The unit
of nine tiles is replicated six times, using 54 of the 64 tiles plus
an aggregator tile. Further replication is not possible as several
tiles are reserved for the OS. The algorithm’s spatial layout is
shown in Fig. 4. The architecture demonstrates two levels of data
parallel processing. First, eight different attack classifiers analyze
the same data in parallel. Second, six different processing units
classify different data streams.

A second optimization is to eliminate the overhead of tokeniza-
tion. Rather than separate the input stream into tokens and then
look up each token (term) via hashing into a table, a state tran-
sition matrix is used. This matrix is the Tilera algorithm’s repre-
sentation of the dictionary. Each incoming character in the data
stream indexes into the state machine transition matrix, yielding
the next state. Most state transitions require a table lookup and a

C. Ulmer et al. / J. Parallel Distrib. Comput. 71 (2011) 225–235 229
Fig. 5. Dictionary traversal using state machine.
conditional. If a delimiter token occurs, the count for the appro-
priate term is incremented. When an end-of-document marker is
detected, the similarity measure is computed and returned to the
host.

Fig. 5 shows an example of a state transition matrix for the
dictionary {Select, Drop, Odbc, Statement}. Each row represents an
input character, and each column represents a state. If the word
‘‘drop’’ were given, the state sequence would be (1, 2, 4, 10). If
a delimiter were encountered after the ‘‘p’’, the token would be
recognized, the term frequency count for the word ‘‘drop’’ would
be incremented, and the state machine would return to state 1.

The state machine has a small probability of a false positive in
the matching of tokens. Since the number of matches is expected
to be small, even a small number of false positives could alter the
detection probabilities. To reduce the possibility of false positives,
the length of each term is stored on each tile, and a further check
performed to make sure the length matches when a matching
token is encountered. With this further step the probability of a
false positive is greatly reduced. It is not eliminated entirely but no
examples of false positives have been observed in the data set.

In our experimental system, the Tilera card is installed in a
quad socket, dual core workstation, for a total of eight cores.
The host processor and Tilera communicate over a PCI Express
bus. The multi-threaded host program send data blocks to the six
ingest tiles on the Tilera. The data is sent using the optimized
zero copy mechanism in the Tilera. The data ingest tiles then
broadcast the data stream to the processing tiles using the iLib
messaging interface in the Tilera. To maintain coherence between
data packets sent to the Tilera and the results returned, the
messaging blocks are annotated with id codes generated by the
host, allowing the host CPU tomatch a documentwith the resulting
TFIDF similarity score. The host compares scores from the eight
classifiers in each processing unit, and uses threshold parameters
to determine the document’s final classification.
State machine representation. The state machine is implemented as
a 2D array of 16 bit integers. The lower 8 bits are used as the next
state transition index. The upper 8 bits are used as the token id. The
reserved token id of 0 is used as the ‘‘no match’’ token. Thus the 16
bit array allows 255 different tokens to be matched.

Each input character in the data stream is truncated to 7 bits
for ASCII text packets (though the approach could be expanded
to 8 bits if necessary). There are 228 possible states with 128
potential different state transitions to be stored on each tile. The
state machine has 2 special states. State 0 is a waiting state that
the system enters when there is no possibility of a match and the
system is waiting for a new token to start. State 1 is the starting
state. Upon receipt of a delimiter token such as space or tab, the
system increments the term’s count if a term was matched, and
then goes to the starting state.
Generating the state machines. The state machines are generated
off-line, using the top 255 TFIDF scores of each attack type. The
algorithm indexes into an array for each character in a term
to detect whether a state transition has been defined for the
character. If existing paths are in place, the paths are followed
until the point at which the state transitions are unspecified. The
transitions for the termbeing encoded are then randomly assigned.
Additional checks are performed in the encoding to ensure the
term’s state transition sequence does not fold on itself or interfere
with other terms. At the end of the character sequence, a flag is set
to trigger an output with the appropriate term id if the following

230 C. Ulmer et al. / J. Parallel Distrib. Comput. 71 (2011) 225–235
Table 1
Throughput results for 1–8 attack types with 1–25 processing units.

Num units Num. attacks
1 2 4 8

1 6.42 6.42 6.42 6.42
2 12.79 12.79 12.77 12.70
3 19.09 19.09 19.09 18.99
4 25.34 25.34 25.34 25.22
5 31.58 31.58 31.58 31.39
6 37.70 37.70 37.58 37.4
8 49.84 49.84 49.84

10 61.87 61.87 61.87
12 73.55 73.55
15 90.67 90.67
20 118.17
25 136.57

character is a delimiter (space, tab, . . .). The state machine is set
up to allow any number of different delimiters to be used with
no decrease in performance. With simple modifications to the
appropriate generator, the state machine could allow wildcard
characters, character classes (e.g. numbers, lowercase letters only)
and combinations of these patterns.

Beyond the first two states, all states are randomly assigned
during the array creation process. For example, suppose the word
‘‘Select’’ must be placed in the array. Starting from state 1, we
look up the location corresponding to upper or lower case ‘‘s’’.
If it is occupied we follow it to the next state already assigned
from a previous word. If it is not occupied, we randomly assign
the next state to the ‘‘s’’ location and move to that state. The same
process is followed in the new state for the ‘‘e’’ and so on. The
next state assignment is placed in the lower byte of the array
element, the upper byte being used to flag token match with the
appropriate term id (from 1 to 255). Once a term is completely
assigned, the array is checked for conflicting matches, or patterns
that loop on themselves. If either of these conditions occur, the
process is re-started with new random state assignments. Finally
the entire set is checked for correctness and to ensure no match
conflicts. The random assignment ensures an even distribution of
the patterns across the entire array, and reduces the probability of
false positives.

4.3. Tilera results

The Tilera algorithm has been devised to allowmaximum flexi-
bility to trade off between the number of attack types and through-
put. Table 1 shows throughput results for various numbers of
attack types ranging from 1 to 8 (columns) versus the number
of processing units (1–25). The maximum throughput to detect
one attack type using 25 tiles is 136.57 MB/s. The standard con-
figuration of eight attack types using six processing units delivers
throughput of 37.4 MB/s. For dictionaries with more than eight at-
tack types, the size of each processing unit would increase, and the
number of processing units would commensurately decrease.

5. FPGA hardware algorithm

The hardware algorithm seeks to minimize the number of
multiply and divide operators and to minimize memory usage.
Minimize calculation. In our application we generate the eight
attack type scores for an input document and label the document
based on the largest score. There is an opportunity to simplify
Eq. (6) and reduce the number of arithmetic operations required
to compute the similarity score. There are two places where
normalization is applied to allow the scores of one document to
be compared to another’s scores:
• the tf component of the numerator’s tfidf contains a normaliza-

tion by the number of terms in the input document (expressed
as

∑
v∈d count(v, d) in Eq. (1)).
• the denominator’s
∑

t∈d tfidf (t, d)2 normalizes the tfidf score
across the document collection.

The normalization factors enable comparison between documents.
Since these factors are constant across all attack types for a single
document, they can be omittedwithout affecting the classification.

With these simplifications it is possible to translate Eq. (6) into
a form that can be facilitated through table lookups

sim(d, a) =

∑
t∈d∩a

count(t, d) · C1 · C2

C3
(7)

where

C1 = idf (t)
C2 = tfidf (t, a)

C3 =

−
t∈a

tfidf (t, a)2.
(8)

Given that all three constants are relative to a particular attack
type, information can be combined to reduce table lookup size. In
our approach we combine C2 and C3 and refer to the value as a
categoryWeight . Thus the classifier model requires nine statistics
for every term: a single C1 value to indicate the term’s idf and eight
categoryWeight values to indicate how relevant the term is to a
particular attack type.
Minimize memory. As stated in Section 3 the full dictionary for the
ECML training data set uses 47 MB. We seek to encode the dic-
tionary in a combination of logic and memory of approximately
128 kB, a compression factor of more than 367. Three different
optimizations are employed to help reduce the dictionary mem-
ory footprint to 0.2% the size of the original. First, as discussed
above, we truncate the dictionary so that only the N most signifi-
cant termsper attack type are utilized.N is a parameter to the hard-
ware algorithm, and in the experiments discussed in Section 5.5
is around 1900 terms. Adaptations to the hardware algorithm re-
sulted in a comparable accuracy to the sequential one. Differences
between the original and streaming runs can be partially attributed
to the fine tuning of the threshold operation (see Section 5.3 for a
description of thresholding).

The second optimization is to quantize the categoryWeight and
idf data values in the dictionary in order to simplify the numerical
diversity and allow better information compression. Finally, we
utilize a hashing technique that employs an array of Bloom filters
to represent the dictionary data. Each of these two optimizations
is discussed in detail.

5.1. Quantize term scores

TFIDF training generates a large amount of statistical data that
is encoded in a dictionary and utilized at runtime to determine the
relevance of a document’s terms to particular attack. This training
typically exposes a small number of keywords that are assigned
a high categoryWeight while the majority of data values receive
much lower values. The log histogram for one attack document’s
categoryWeights in the ECML data set is illustrated in Fig. 6 (upper).
This histogram, representative of all the attack types, shows a great
deal of numerical diversity (e.g., a few thousand unique data values
for one vector in the dictionary). However, is this diversity truly
necessary for accurate classification? Our hypothesis is that it is
not, given that our application may only need a gross estimate of a
term’s relevance (i.e., ‘‘high, medium, or low’’).

Based on this hypothesis,we constructed a program that resam-
ples or quantizes a dictionary’s tfidf scores across all attack types
to a smaller number of unique data values. This approach employs
a simple weighted clustering algorithm that is weighted towards
preserving larger data values. As illustrated in Fig. 6 (lower), the

C. Ulmer et al. / J. Parallel Distrib. Comput. 71 (2011) 225–235 231
Fig. 6. Log histogram of tfidf score values.
Fig. 7. Impact of quantization vs. term size on accuracy.

number of unique data values is reduced to eight while maintain-
ing a fair representation of the spectrum. Each of the nine vectors
(idf and eight categoryWeights) in the dictionary are quantized in-
dividually. These data values are also transformed from a floating
point representation to fixed point in order to simplify the hard-
ware implementation.

In order to test our hypothesis we generated a wide range of
truncated, quantized dictionaries from the training data set and
evaluated accuracy when the classifier was applied to the testing
data set. As illustrated Fig. 7, a reasonable accuracy can be achieved
even when the dictionary is heavily quantized to contain just a
few unique data values per vector. Over quantizing does result in
instability and losses in accuracy.

5.2. Hash methods

Terms in the original ECML training data set were on average
24 bytes long and in total were 19 MB. Even with a reduced
dictionary with only a few thousand terms, it is infeasible to
store the original text in the dictionary. In addition to capacity
issues, it is challenging to look up an entry in the dictionary of
this size with minimal memory accesses, necessitating hashing.
A plain hash table for dictionaries of this size will still not likely
fit entirely in an FPGA’s internal Block RAM. It is necessary to
consider more probabilistic hash functions that estimate whether
an input belongs to a set. Bloom filters [2] are a common technique
for compactly implementing a set membership test. A Bloom
filter consists of several hash functions and a bit vector. All hash
functions are applied to an input term and the resulting hash
values index into the bit vector at multiple locations. The term is
considered amember of the set if all selected bits are set. TheBloom
filter is a probabilistic technique as collisions may result in false
positives, although there will be no false negatives. The number
of hash functions and size of the bit vector may be configured to
optimize between the memory constraints and desired accuracy.
Reducing the false positive rate requires more memory for the
filter.

Our approach to implementing a quantized dictionary is to
employ a large array of Bloom filters, with each filter representing
a particular data value in the dictionary. At runtime an incoming
term is hashed according to the needs of the Bloom filters. The
hashes are dispatched globally and each Bloom filter tests whether
the input is a member of its set. If a Bloom filter identifies a
hit, the data value associated with the filter is presented to the
corresponding scoring unit. While this approach does not scale
when there are a large number of quantization levels or attack
types, it does provide a compact means of housing a dictionary
with a large number of terms.

In our initial implementation, we focused on combining C1, C2,
and C3 to minimize the amount of data required by the dictionary.
While this approach worked, it suffered in accuracy because of
both false positive rates and the lack of numerical diversity.
Instead, implementing two statistics, idf and categoryWeight , in
the dictionary provides a larger numerical range (i.e., multiply two
8-value numbers) and can cause better Bloom filter accuracy (i.e., a
false positivemust occur in both the idf and categoryWeight lookup
to propagate).

5.3. Hardware layout

The layout of the top-level hardware design is illustrated in
Fig. 8. This architecture has five components.
Input stream tokenizer. The first unit in the data flowparses an input
message from a queue and extracts a byte stream of lowercase
tokens. This unit is the most complicated part of the design as
tokens vary in length and are delimited by several character
sequences. Tokenization is a serial operation that operates on byte-
sized data values and is therefore the bottleneck in the design.

232 C. Ulmer et al. / J. Parallel Distrib. Comput. 71 (2011) 225–235
Fig. 8. Top level hardware design.

Hash generators. The second unit examines the incoming token
byte stream and generates H different hashes for each token.
A variety of hash functions were considered for this work. We
ultimately selected a Pearson [12] hashing approach that employs
4 × H randomly-generated 256-entry lookup tables to hash each
token. To avoid hash collisions between small tokens, we inserted
a unit to append a token’s bytestream with a 2-byte length. This
unit adds two stall cycles per token to the byte stream, but greatly
improves the quality of the hash functions.
IDF lookup. A single set of Bloom filters is used to perform a
dictionary lookup of the input term’s idf value. If the term is not
found in any of the Bloom filters, an output of zero is produced.
The design only requires a single IDF Lookup Unit, as the idf value
for an input token is the same for all categories.
Category analysis units. The bulk of the work in the design is per-
formed by an array of category analysis units. Similar to the IDF
Lookup unit, a category analysis unit employs an array of Bloom
filters to look up an input token’s categoryWeight for a particular
attack type. This value is then multiplied by the idf value to com-
pute the term’s relevance, which is added to a cumulative score
for the input message. When all tokens are processed, a threshold
operation is applied to remove scores that do not meet a specified
value. This threshold operation allows users to tune how sensitive
the classifier is to malicious behavior.
Majority vote. The last unit in the dataflowexamines the final scores
of the different categories when all tokens are processed and se-
lects the category with the largest value as the winner. The mes-
sage is labeled as ‘‘ok’’ or ‘‘not ok’’ based on whether the winning
classifier is the ‘‘valid’’ category or an attack category.

5.4. Generating the hardware classifier

An important aspect of this work is being able to rapidly gen-
erate custom hardware designs based on different input training
data sets and user-selected parameters. This feature is essential in
network security applications where new attack vectors and cate-
gories are added on a regular basis. Our approach to making a cus-
tomizable hardware implementation is based on two components.
First, a general-purpose hardware designwas developed that is pa-
rameterized and can be adapted to different classification work
based on updates to the Bloom filter data. Second, we developed
Fig. 9. Tool flow for building hardware.

a tool chain for automatically building hardware. As illustrated in
Fig. 9, the tool flow is based on several components.
• Training: A user can supply labeled training data to a TFIDF

program to generate the full dictionary of TFIDF weights for the
classifier. This data is exported to a SQLite database for data
queries.

• Truncate: For each attack category, the top T terms and their
statistics are extracted. The user selects the parameter T .

• Quantize: Each vector in the dictionary is run through a quan-
tizer to reduce the number of unique data values in the dic-
tionary. The number of quantization levels is a user-selected
parameter chosen to trade between accuracy andmemory foot-
print.

• Build Hashes: Data from the modified dictionary is then con-
verted into a series of Bloom filters. The user may tune a Bloom
filter error rate parameter to scale the memory footprint of the
filters and the number of hash functions that are utilized.

• Build software: The tool chain can export hashdata to a Cheader
file. This file is utilized by validation tools (e.g., verify all dictio-
nary tokens hash properly) and a stand-alone evaluation pro-
gram (e.g., classify all inputs in a file).

• Build hardware: Finally, the tool chain constructs a VHDL pack-
age file that includes all the data necessary to instantiate the
Bloom filters.

While the current approach requires the hardware design be
recompiled when a new model is applied, it would be straight-
forward to allow updates to be completed through writes to the
Bloom Filter Block RAMs.

5.5. Implementation experiments

A number of experiments were conducted to validate both the
hardware design and the tool chain. In all of the experiments
we targeted a Xilinx Virtex 5-LX 50 part (XS5VLX50T-FG1136C-
1) found on the Xilinx ML555 reference board. This part features
sixty 36 kb Block RAMs, allowing 240 kB of 32 b data values
to be stored internally. We employed the ISE 11.1 tools and the
built-in synthesis tool XST. For verification, a special design was
constructed that supplied a number of input documents to the
classifier. ChipScope was utilized to verify the output results were
correct.

C. Ulmer et al. / J. Parallel Distrib. Comput. 71 (2011) 225–235 233
Fig. 10. Memory footprint for different build parameters.

Fig. 11. Slice utilization for different build parameters.

5.5.1. Utilization characteristics
In order to observe how different parameters affect the

hardware implementation, we constructed a reference design that
simply instantiates an input FIFO, the classification core, and routes
all of the I/Os to the FPGA’s pins. This design does not serve
as a functional system, but provides a means by which realistic
implementations can be observed. We supplied a large number of
configurations and measured the amount of resources required by
each implementation.

Resource utilization numbers are presented in Figs. 10 and 11.
As expected, more quantization levels translates to more Block
RAM utilization in the smaller designs. However, these memory
requirements become less distinct as more terms are included in
the dictionary. This trait can be attributed to the fact that Block
RAMs are allocated in large capacities (2 kB), and that the lower-
term dictionaries do not fully utilize their Block RAM allocations
(e.g., a 128 B Bloom filter is implemented with a 2 kB BRAM). In
terms of slice utilization, the different designs remain relatively
constant until Block RAM resources are fully consumed. While
the ISE tools are sophisticated enough to switch to using slices as
memory when Block RAM is exhausted, doing so rapidly fills the
FPGA.

5.5.2. Performance measurements
Performance of the hardware implementation depends on two

factors: the average length of tokens in the input stream and the
maximum rate at which the hardware can be clocked. For the
former, each input contains a variable number of variable-length
tokens. Our design processes data in a byte-stream manner and
incurs two pipeline stalls at the end of each token encountered.
For an input with C characters and T tokens, this delay results in a
streaming efficiency of C

C+2·T . The design therefore has streaming
efficiencies ranging from 0.5 in the worst case (when the input is a
series of one character tokens) to nearly one in the best case (when
the input is a single token). Inputs in both the ECML testing data
set and the West Point data set were found to provide an average
streaming efficiency of 0.85.

For clocking measurements, we generated a design that em-
ployed eight quantization levels and a dictionary with 3919 terms
of statistics. We found that the maximum clock rate for this design
was 196 MHz. Multiplying the streaming efficiency of the ECML
testing data set by this clock rate results in a streaming rate of
166 MB/s. This data rate is sufficient for Gigabit network speeds
and greatly outpaces software implementations without impact-
ing accuracy.

6. Discussion

We have developed two very different streaming, parallel im-
plementations of the HTTP attack classification algorithm on mas-
sivelymulti-core and FPGA processors. Our experience is discussed
along several dimensions.

Algorithm development. In terms of development effort, the
Tilera algorithm took approximately three months for an engineer
experienced in algorithm development for massively multi-core
processors, but notwith Tilera. The Linux/C programming environ-
ment made it possible to start with the base sequential program
and gradually improve parallelism and performance. We found
that the proprietary intrinsics for concurrency and communication
were necessary to obtain high performance, but we did not have to
write the assembly code. The relatively mature development tools
and fast compile/debug process made it possible to code, test and
analyze many different mapping and communications strategies.

The FPGA effort took six months, of which less than a month
was spent in writing hardware description language code. The
FPGA implementation was also undertaken by an experienced
engineer with extensive hardware, software, and algorithm design
and implementation experience. The most time consuming part
of the FPGA version was in devising methods to reduce the
model sizewithout compromising accuracy, and inwriting tools to
help automate data analysis to arrive at appropriate quantization
levels to encode the CategoryWeights. Standard, mature FPGA
development tools fromXilinxwere used to compile, simulate, and
test the design.

Platform characteristics. In addition to development time, the
Tilera and FPGA co-processors can be compared according to cost
and energy efficiency. In the form of PCIe co-processor boards, the
two systems are roughly comparable in cost at roughly 2X the
cost of a standard workstation. They would be significantly less
expensive than a workstation in quantity and in embedded form
factor. In terms of power, both platforms are low power compared
to a workstation. The Tilera draws around 20 W. The FPGA power
draw depends on the design. Our design on the Virtex 5-LX uses
about 1 W.

Data set. The characteristics of the dictionary and the streaming
algorithms’ throughput dependon thedata set.Most of the analysis
and experimental verification used the fully labeled ECML/PKDD
data set, fromwhich we analytically derived quantitative accuracy
metrics. While we were not able to find another labeled data set,
we also worked with data from the 2009 Inter-Service Academy
Cyber Defense Exercise [17], also called the West Point data
set. This data set consists of packet traces from network attack

234 C. Ulmer et al. / J. Parallel Distrib. Comput. 71 (2011) 225–235
Table 2
Throughput comparison.

Classifier Throughput (MB/s) Accuracy (%)

Original Java 2 94
Streaming Tilera (ST) 37 92
Streaming HW (SHW) 166 94
ST—workstation 10.2 92
SHW—workstation 0.901 94

exercises by the National Security Agency on a network hosted by
West Point Academy. Our algorithms detected HTTP attacks in this
data set.2 We ran a security module from the open source Apache
web server over the West Point data set, and verified that this tool
also flagged as attack the request packets flagged by our algorithm.
Since the data set is not labeled, we could not generate a dictionary
from the West Point data set, nor could we compute accuracy. As
discussed in 5.5.2, the input term size can affect FPGA throughput.
The input terms of theWest Point data set had the same streaming
efficiency as the ECML/PKDD, and therefore throughput was the
same for both data sets.

Performance. The streaming implementations were designed to
optimize throughput with as little impact as possible on accuracy.
Speed and accuracy for various implementations are summarized
in Table 2.

The Java implementation of [7] focused on accuracy with a
complete TFIDF dictionary and did not consider performance. On
the Tilera, we reduced the size of the dictionary by retaining the
top 255 high value terms so that an attack dictionary could fit
completely in the L2 cache of each Tile64 core, which reduced the
accuracy by 2%. The combination of approximate state machine
and reduced dictionary gave a throughput of 37MB/s. On the FPGA,
we transformed the representation of scores in the dictionary from
floating point to small fixed point values and used Bloom Filters
to store those values, reducing the dictionary size to 0.2% of the
original. Throughput on the ECML/PKDD and West Point data sets
was 166 MB/s.

To consider the effects of the Tilera and FPGA optimizations on
conventional CPUs, we also developed sequential C language im-
plementations of the Tilera and FPGA algorithms. These versions
were run on the Tilera host, a 2.2 GHz x86 processor with 4 GB
memory. The results show that the Tilera optimizations also bene-
fit standard workstation platforms. Although our workstation im-
plementation is single threaded, we expect the algorithm to scale
nearly linearly with additional cores. In contrast, the sequential
performance of the FPGA algorithm on the workstation is very
poor. In this algorithm, each token is run through 32 byte-oriented
hash functions. Each token requires 4 lookups into about 9 × 8
Bloom filters. These operations are friendly to logic gates, but inef-
ficient for a 64-bit CPU.

7. Conclusions

In this work, we have described a novel algorithm to detect
malicious web HTTP requests. We have shown two implementa-
tions of streaming classifiers capable of processing a text stream
at 37 MB/s and 166 MB/s respectively. The classifiers detect seven
different attack types and differentiate between attack and nor-
mal HTTP web page requests with an accuracy of 92% (Tilera) and
94% (FPGA). Optimizations were employed to enable streaming,
reduce computation, and minimize memory usage. The Tilera al-
gorithm, implemented entirely in C and utilizing 55 processing
cores, demonstrated throughput of 18.5X sequential software on

2 We tried several other data sets, but they did not contain HTTP request attacks
of this form.
a workstation. Even with a dictionary compressed to 0.2% the orig-
inal, the FPGA hardware algorithm shows the same accuracy as the
original software implementation, with 80X the throughput of the
sequential algorithm. The performance and accuracy of our stre-
aming classifiers allows them to be used as real time analysis com-
ponents of an advanced intrusion prevention pipeline in network
security applications.

Acknowledgments

The ECML/PKDD data set was obtained from the ECML/PKDD
2007 Workshop and is administered by Dr. Mathieu Roche.
John May of LLNL designed and implemented an initial software
streaming architecture and studied the impact of term frequency
vector length on classification accuracy.

References

[1] Z.K. Baker, V.K. Prasanna, Time and area efficient pattern matching on
FPGAs, in: FPGA’04: Proceedings of the 2004 ACM/SIGDA 12th International
Symposium on Field Programmable Gate Arrays, ACM, New York, NY, USA,
2004, pp. 223–232. doi: http://doi.acm.org/10.1145/968280.968312.

[2] B.H. Bloom, Space/time trade-offs in hash coding with allowable errors,
Communications of the ACM 13 (7) (1970) 422–426.

[3] T. Chen, Z. Zheng, N. Zhang, J. Chen, Heterogeneous multi-core design for
information retrieval efficiency on the vector space model, in: Fuzzy Systems
andKnowledgeDiscovery, Fourth International Conference on, vol. 5, 2008, pp.
353–357. doi: http://doi.ieeecomputersociety.org/10.1109/FSKD.2008.229.

[4] A. Das, S. Misra, S. Joshi, J. Zambreno, G.Memik, A. Choudhary, An efficient fpga
implementation of principle component analysis based network intrusion
detection system, in: Design, Automation and Test in Europe Conference and
Exhibition 0, 2008, pp. 1160–1165. doi: http://doi.ieeecomputersociety.org/
10.1109/DATE.2008.4484835.

[5] Ludovic Denoyer, Hung Son Nguyen, ECML/PKDD 2007 discovery challenge,
2007. Available: http://www.ecmlpkdd.org/.

[6] M. Exbrayat, Analyzing web traffic: a boundaries signature approach, in:
Proceedings of the ECML/PKDD 2007 Discovery Challenge, 2007, pp. 53–64.

[7] B. Gallagher, T. Eliassi-Rad, Classification of http attacks: a study on the
ECML/PKDD 2007 discovery challenge, TR-414570.

[8] LLNL, Data-centric computing architectures, 2009. https://computation.llnl.
gov/casc/dcca-pub/dcca/Downloads.html.

[9] C. Manning, P. Raghavan, H. Schutze, Introduction to Information Retrieval,
Cambridge University Press, 2008.

[10] D.L. Olson, D. Delen, Advanced Data Mining Techniques, Springer, 2008.
[11] K. Pachopoulos, D. Valsamou, D. Mavroeidis, M. Vazirgiannis, Feature

extraction from web traffic data for the application of data mining algorithms
in attack identification, in: Proceedings of the ECML/PKDD 2007 Discovery
Challenge, 2007, pp. 65–70.

[12] P.K. Pearson, Fast hashing of variable-length text strings, Communications
of the ACM 33 (6) (1990) 677–680. doi: http://doi.acm.org/10.1145/78973.
78978.

[13] C. Rassi, J. Brissaud, G. Dray, P. Poncelet, M. Roche, M. Teisseire, Web analyzing
traffic challenge: description and results, in: Proceedings of the ECML/PKDD
2007 Discovery Challenge, 2007, pp. 47–52.

[14] G. Salton, C. Buckley, Term-weighting approaches in automatic text retrieval,
Information Processing & Management (1988) 513–523.

[15] G. Salton, A. Wong, C.S. Yang, A vector space model for automatic indexing,
Communications of the ACM 11 (1975) 613–620.

[16] H. Song, J.W. Lockwood, Efficient packet classification for network intrusion
detection using FPGA, in: FPGA’05: Proceedings of the 2005 ACM/SIGDA 13th
International Symposium on Field-Programmable Gate Arrays, ACM, New
York, NY, USA, 2005, pp. 238–245. doi: http://doi.acm.org/10.1145/1046192.
1046223.

[17] ITOC, West point data set, 2009. http://www.itoc.usma.edu/research/dataset.
[18] I. Witten, E. Frank, Data Mining: Practical Machine Learning Tools and

Techniques, Morgan Kaufmann, 2005.

Craig Ulmer is a computer engineer and a principal
member of technical staff at Sandia National Laboratories
in Livermore, California. He earned his Ph.D. in Computer
Engineering at the Georgia Institute of Technology in
2002 for his work with low-latency message layers
for multimedia clusters. His research interests include
novel hardware architectures for processing large data
problems, adapting threaded applications to leverage
solid-state storage devices, and utilizing custom hardware
accelerators to solve real-time processing requirements in
embedded systems.

http://doi.acm.org/10.1145/968280.968312
http://doi.ieeecomputersociety.org/10.1109/FSKD.2008.229
http://doi.ieeecomputersociety.org/10.1109/DATE.2008.4484835
http://doi.ieeecomputersociety.org/10.1109/DATE.2008.4484835
http://doi.ieeecomputersociety.org/10.1109/DATE.2008.4484835
http://doi.ieeecomputersociety.org/10.1109/DATE.2008.4484835
http://doi.ieeecomputersociety.org/10.1109/DATE.2008.4484835
http://doi.ieeecomputersociety.org/10.1109/DATE.2008.4484835
http://doi.ieeecomputersociety.org/10.1109/DATE.2008.4484835
http://doi.ieeecomputersociety.org/10.1109/DATE.2008.4484835
http://doi.ieeecomputersociety.org/10.1109/DATE.2008.4484835
http://www.ecmlpkdd.org/
https://computation.llnl.gov/casc/dcca-pub/dcca/Downloads.html
https://computation.llnl.gov/casc/dcca-pub/dcca/Downloads.html
https://computation.llnl.gov/casc/dcca-pub/dcca/Downloads.html
https://computation.llnl.gov/casc/dcca-pub/dcca/Downloads.html
https://computation.llnl.gov/casc/dcca-pub/dcca/Downloads.html
https://computation.llnl.gov/casc/dcca-pub/dcca/Downloads.html
https://computation.llnl.gov/casc/dcca-pub/dcca/Downloads.html
https://computation.llnl.gov/casc/dcca-pub/dcca/Downloads.html
https://computation.llnl.gov/casc/dcca-pub/dcca/Downloads.html
http://doi.acm.org/10.1145/78973.78978
http://doi.acm.org/10.1145/78973.78978
http://doi.acm.org/10.1145/78973.78978
http://doi.acm.org/10.1145/78973.78978
http://doi.acm.org/10.1145/78973.78978
http://doi.acm.org/10.1145/78973.78978
http://doi.acm.org/10.1145/78973.78978
http://doi.acm.org/10.1145/78973.78978
http://doi.acm.org/10.1145/1046192.1046223
http://doi.acm.org/10.1145/1046192.1046223
http://doi.acm.org/10.1145/1046192.1046223
http://doi.acm.org/10.1145/1046192.1046223
http://doi.acm.org/10.1145/1046192.1046223
http://doi.acm.org/10.1145/1046192.1046223
http://doi.acm.org/10.1145/1046192.1046223
http://doi.acm.org/10.1145/1046192.1046223
http://www.itoc.usma.edu/research/dataset

C. Ulmer et al. / J. Parallel Distrib. Comput. 71 (2011) 225–235 235
Maya Gokhale is a computer scientist and principal
investigator in the Center for Applied Scientific Computing
(CASC) at Lawrence Livermore National Laboratory. Her
research interests include high performance embedded
computing and reconfigurable computing. She received
a Ph.D. in Computer and Information Sciences from the
University of Pennsylvania in 1983. Maya is Associate
Editor of the IEEE Transactions on Computers and the ACM
Transactions on Reconfigurable Technology and Systems,
co-author of the first book on Reconfigurable Computing,
a member of Phi Beta Kappa and a Fellow of the IEEE.

Brian Gallagher is a computer scientist at the Center for
Applied Scientific Computing at Lawrence Livermore Na-
tional Laboratory. He received a B.A. in computer science
from Carleton College in 1998 and an M.S. in computer
science from the University of Massachusetts Amherst in
2004. His research interests include artificial intelligence,
machine learning, and knowledge discovery and datamin-
ing. His current research focuses on classification and anal-
ysis in network-structured data.
Philip Top is an Electrical Engineer in the systems group at
Lawrence LivermoreNational Laboratory. Hewas awarded
a Ph.D. in Electrical Engineering from Purdue University
in 2007. His current research interests include embedded
systems, high performance computing systems, and
ultrawideband systems and signal processing. Philip is a
member of the IEEE.

Tina Eliassi-Rad is a computer scientist and principal in-
vestigator at the Center for Applied Scientific Computing at
Lawrence Livermore National Laboratory. She earned her
Ph.D. in Computer Sciences (with aminor inMathematical
Statistics) at theUniversity ofWisconsin–Madison in 2001.
Her research interests include datamining,machine learn-
ing, and artificial intelligence. Her work has been applied
to theWorld-WideWeb, text corpora, large-scale scientific
simulation data, and complex networks.

	Massively parallel acceleration of a document-similarity classifier to detect web attacks
	Introduction
	Sequential algorithm
	Document similarity
	Data set
	Related work
	TFIDF method

	Parallel implementations
	Tilera mapping
	Tilera architecture
	Tilera algorithm
	Tilera results

	FPGA hardware algorithm
	Quantize term scores
	Hash methods
	Hardware layout
	Generating the hardware classifier
	Implementation experiments
	Utilization characteristics
	Performance measurements

	Discussion
	Conclusions
	Acknowledgments
	References

