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ABSTRACT
Significant challenges exist in the efficient retrieval of data from

extreme-scale simulations. An important and evolving method of

addressing these challenges is application-level metadata manage-

ment. Historically, HDF5 and NetCDF have eased data retrieval

by offering rudimentary attribute capabilities that provide basic

metadata. ADIOS simplified data retrieval by utilizing metadata for

each process’ data. EMPRESS provides a simple example of the next

step in this evolution by integrating per-process metadata with the

storage system itself, making it more broadly useful than single file

or application formats. Additionally, it allows for more robust and

customizable metadata.
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1 INTRODUCTION
Aided by petascale computing, scientific simulations are generating

increasingly large data quantities. For example, production fusion

reactor simulations like XGC1 [3] can generate 256 MiB/process

at O(1M) processes with an output frequency of at least every 15

minutes over a 24 hour run, if not faster. Other data collectors, such

as the Square Kilometer Array Radio Telescope (SKA), will gener-

ate as much as 20 TB/sec when operating at full functionality [1].

With flash-based solid state storage and other technologies either
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in production use or close on the horizon, IO bandwidth limitations

are becoming less critical and the problems are shifting to finding

the right data in the vast seas stored. It is increasingly important

to improve techniques to quickly locate interesting data subsets

without having to search data after it is stored. For example, one of

the features of interest for plasma in a fusion reactor is technically

called a ‘blob’. These are areas of turbulence that may be one of

the sources of instability that prevent a production level fusion

reactor from being stable. Identifying these areas and being able

to find them quickly after the simulation run is complete will ac-

celerate the time to understanding. For the SKA, labeling different

astronomical phenomena that have been discovered in a composite

image will aid astronomers in selecting which images to view or

analyze rather than requiring them to do the analysis after the fact

delaying their work. Some solutions to this problem exist, but none

work well enough to be a general solution employed at large scale

by computational scientists.

The ASCR SIRIUS project is addressing this gap through sev-

eral efforts. The project provides predictable storage performance

thereby giving scientists the ability to adjust their work based on

the time an operation will likely take. The project also includes ex-

tensible, custom metadata (provided by EMPRESS) that accelerates

data selection by eliminating the need to read and scan all data and

offers the potential to migrate to different storage locations based

on a utility metric. Also, prior to an analysis session, SIRIUS uses

data placement services to spread data across multiple storage tiers

based on data utility and the desired operation. And finally, SIR-

IUS incorporates data reduction techniques with varying, generally

minimal, information loss to aid the utility decisions.

Existing solutions to data discovery, such as HDF5 and NetCDF,

eased data retrieval by offering rudimentary attribute capabilities

that provide basic metadata. ADIOS [6] included a first attempt

at EMPRESS-like data tagging, but suffered due to scalability lim-

itations and overly compact storage. Other recent efforts include

(FastBit) [12], Indexing [13], (AMR querying) [14], and Kilmatic [9],

but these suffered from similar issues.

Empress offers two primary contributions. First, it offers fully

custom, user created metadata that can be added to either a data

chunk (i.e., the part a single process produced/owns) or a variable in

its entirety. Second, rather than just offering a standard POSIX-style

interface to read a variable or dataset, EMPRESS has described a
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new data query interface focused on data contents rather than the

highest-level metadata (i.e., dataset number and variable name +

a hyperslab). This first EMPRESS prototype extends the scalable

storage system with a SQLite [8] in-memory relational database to

ease data searching. Future work will investigate other data storage

strategies in addition to many other unanswered questions.

The rest of the paper is organized as follows. Section 2 contains

an overview of the design elements and decisions. Section 3 contains

the testing and evaluation information for this first iteration of

EMPRESS. Next, Section 4 is a discussion of how this met our goals.

Finally, Section 5 contains remarks about the next steps for the

development of EMPRESS.

2 DESIGN
Empress is built using the Faodail [10] infrastructure. Faodail offers

data management services initially conceived to support Asynchro-

nous Many-Tasks (AMT) applications, but has since been general-

ized to support broader independent service and workflow integra-

tion tasks. For this project, the data management services are being

augmented with rich metadata functionality. The base Faodail meta-

data is based on key-value stores driving everything through keys.

Faodail is built upon the long stable and performant NNTI RDMA

communication layer from the Nessie [7] RPC library from Sandia.

All of the layers above the communication management have been

replaced offering better C++ integration and richer functionality.

The initial design point being explored is a series of fully inde-

pendent metadata servers that each store a portion of the metadata

generated during a particular output operation. Later reading re-

quires that an interface layer like ADIOS queries some number

of these servers to find all of the relevant data pieces. To man-

age consistency, EMPRESS employs the D
2
T [4] system to manage

the metadata and thereby ensure consistency and availability. One

might consider a key-value store like MDHIM [2] for this storage,

but it is unlikely efficient enough. Consider searching for all chunks

within a bounding box that does not fall on the same boundaries

encoded in the key. Converting text to numbers and comparing is

radically slower than using an indexed relational table column.

The process of writing to or reading from the metadata servers is

broken down into two parts: the client side, which makes requests,

and the server side, which stores in the local database and executes

the requests. Clients and servers are both run in parallel, and are

run on separate nodes representing a shared service on an HPC

platform. For each broad category of interaction (e.g., creating a

variable or custom metadata class, inserting a chunk or custom

metadata instance, or reading all the custom metadata for a chunk)

there is a client-side function. Each function sends a message with

all the needed information to the selected server.

The back-end data storage layer being targeted is the RADOS

layer of Ceph [11].We link the object IDs and locations fromRADOS

in the metadata to reveal the exact data that should be read based

on a particular metadata operation.

2.1 Data Storage Technique
For this initial effort, eachmetadata server maintains a SQLite [8] in-

memory database and provides basic capabilities for adding custom,

arbitrary metadata tags and retrieving data based on these tags. The

Figure 1: Targeted Workflow for Writing

Figure 2: Targeted Workflow for Reading

proper dividing line for a metadata system for exascale computing is

not clear. We expect O(10 Trillion) objects in a production exascale

system EMPRESS is intended to support. Not only is this too large

for a single database, but it is very large for any existing key-value

system. The first step will likely use the metadata servers to host

in-memory databases for currently open data sets.

2.2 Tracked Metadata
This first version of EMPRESS tracks four different broad categories

of metadata: variable information, variable chunk information (i.e.,

the portion of a variable from a single process), custom metadata

classes, and custom metadata instances.

2.2.1 Variable Information. A category of data measured for

a simulation, e.g., temperature or speed. Each variable entry can

store an id, a name, a path (similar to the path group hierarchy in

HDF5), a version (in case the simulation recurses on an area using

different granularity), whether the variable is active (for transac-

tion purposes), dataset id, number of dimensions, and the global

dimensions of the simulation space. Variables serve as a catalog for

the types of data stored in the database.

2.2.2 Variable Chunk Information. A subdivision of the simu-

lation associated with a particular variable. Each chunk stores an

id, its associated variable id, the storage location of its associated

data, the size of the data in bytes, and the offset of the subdivision.

For example, one part of the global temperature variable covering

x:(0-199), y:(1000-1199), z:(400-599).

2.2.3 Custom Metadata Class. A category of metadata that the

user adds for a particular dataset. Each class entry stores an id, name,

version, whether the class is active (for transaction purposes), and
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its associated dataset number. Class entries serve as a catalog for

the types of custom metadata instances found in the database. For

example, a new metadata class might be a flag, bounding box for a

region, max value for the chunk or variable, or min value for the

chunk or variable.

2.2.4 Custom Metadata Instance (attribute). A piece of metadata

that is associated with a custom metadata class and a specific chunk

and therefore a particular variable. For each instance, the following

are stored: instance id, associated chunk id, associated type id, and

the metadata value. For example, max = 10 for a chunk that stores

temperature data and represents a chunk in the global space with

dims x:(0-199), y:(1000-1199), z:(400-599) or flag = true for a chunk

that stores the x component of a velocity and has dims x:(200-399),

y:(400-599), z:(1400-1599).

2.3 Interaction Examples
The proposed interaction approach is more database-like rather

than POSIX API. Below, both the writing and reading API are pre-

sented.

2.3.1 Writing Example. Algorithm 1 demonstrates the basic

write process. Each client writes a different portion of all vari-

ables and custom metadata classes, ensuring that in the end each

server has a copy of all of them. Each client then inserts a var chunk

per variable and the desired custom metadata instances for that var

chunk, and through this process there are chunks written for the

entire simulation space for each variable. One obvious optimization

that could be made is to offer a way to insert a list of chunks and a

list of custom metadata type instances for these chunks. Missing

from this example is the actual data storage portion itself. Sirius

currently is using Ceph’s RADOS object store and data storage

would use the RADOS API. The current API is most similar to

ADIOS. Since this is intended to live behind an IO API like ADIOS

or HDF5, separate calls for the metadata and the data storage is

deemed acceptable—particularly for this early investigation.

Algorithm 1 Writing algorithm

1: procedure WriteTimestep ▷ Each process does this

2: for all variables assigned do
3: md_create_var (...)

4: end for ▷Write portion of all vars

5: for all custom metadata classes assigned do
6: md_create_type (...)

7: end for ▷Write portion of all custom md types

8: for all variables do
9: md_insert_chunk (...) ▷ Add a var chunk; get the ID

10: for all custom metadata desired do
11: md_insert_attribute (...) ▷ Add custom md instance

12: end for
13: end for
14: end procedure

2.3.2 Reading Example. The basic reading example is presented

in Algorithm 2. The initial implementation assumes that searching

multiple metadata server sources for the complete list of chunks of

interest is lower server overhead than having the servers coordi-

nate. While this may impose more load at large scale, intelligently

splitting queries by clients and then having clients coordinate can

greatly reduce the load for both the clients and the servers.

Algorithm 2 Reading algorithm

1: procedure ReadData ▷ Each Process Does this

2: md_catalog_vars (...) ▷ Get list of vars from any server

3: for all metadata servers needed do
4: md_get_chunk(...) ▷ get all chunks in area of interest

5: for all chunks returned do
6: md_get_attribute (...) ▷ get the custom md instances

7: end for
8: end for
9: end procedure

3 EVALUATION
Testing is performed on the Serrano capacity cluster at Sandia.

Serrano has 1122 nodes with 36 cores/node (2 sockets each with 18

cores running 2.1 Ghz Intel Broadwell processors). It has an Omni-

path interconnect and has 3.5 GB RAM per node. The software

environment is the RHEL7 using the GNU C++ compiler version

4.9.2 and OpenMPI 1.10. Additional tests are also run on the Chama

and Sky Bridge capacity clusters at Sandia. Those show similar

results and are omitted for space considerations.

We perform 5 tests for each combination of the clients and

servers that have a client to server ratio of at least 32:1. We use

1024 or 2048 client processes; 16, 32, or 64 server processes; and

either 0 or 10 custom metadata classes per dataset.

3.1 Goals
The evaluation offers a proof of concept that examines the effect of

client to server ratios on writing and reading metadata, offers some

raw performance numbers to determine if the approach may be

scalable for exascale-sized workloads, and demonstrates the data

query interface is capable of supporting common analysis reading

operations. Finally, it seeks to quantify the overhead of including

large numbers of custom metadata items that can accelerate later

data searching.

Each test uses two datasets with 10 globally distributed 3-D

arrays per dataset. A dataset is the entirety of a single, parallel

output operation, such as an analysis or checkpoint output. For

this initial test, this is sufficient to show that the approach can

support more than a single dataset. Scalability performance testing

depends on many more variables than just the number of datasets

per metadata instance and is beyond the scope of this paper.

All testing configurations that include custom metadata classes

have the same 10 classes per dataset in terms of datatype for each

class, name, and % of chunks containing a metadata instance of that

type. Data types for these are double (max and min), blob bounding

box (made up of 2 points, each made up of 3 doubles), a Boolean

(flag), and two integers (a range of values). The frequencies for

these range from 100% for max and min while the rest range from

.1% to 25% of chunks.
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The categories and frequencies of custom metadata classes, for

the combinations that include custom metadata classes, are shown

in Figure 3. Note: on average there are 2.641 custom metadata

instances per chunk. These metadata classes and frequencies were

chosen to estimate normal use. More classes and higher frequencies

can easily be supported.

Figure 3: Various custom metadata items used
A minimum of 5 runs of each configuration are performed. At

the end of the testing, a client gathers all of the timing information

and outputs it to a file. A server does the same, also outputting

information about the storage sizes of the SQLite3 databases. Each

time point is recorded using a high resolution clock that outputs

the current time to the nanosecond. The distribution of custom

metadata instances and their data values were randomized using a

random seed generator with the seed being the client’s rank.

3.2 Process
Each subsequent subsection describes how a different phase of the

testing is performed.

3.2.1 Writing Phase. Each client is assigned to a server based

on its rank, thereby ensuring as close to an even number of clients

per server as possible. Then, all of the clients assigned to a given

server evenly split the task of inserting the variables and custom

metadata classes, thus ensuring that each server has a copy of each

variable and custom metadata class. Each client is then assigned a

unique subdivision of the simulation space based on its rank, and

inserts all chunks for this space (one chunk per variable per dataset)

and its associated custom metadata instances (2.641 attributes per

chunk on average).

3.2.2 Reading Phase . Only 10% of the write-clients are used to

read. Each read-client starts by connecting to each server since data

is left distributed across the servers. Because each server has a copy

of the variables and custom metadata classes for each dataset, all

queries related solely to these are performed by querying only one

server. For example, retrieving a catalog of the variables or custom

metadata classes stored for a given dataset. All queries related to

chunks or attributes must be sent to all servers since any chunk

and its associated attributes could be on any one of the servers.

In the reading phase, metadata is read in six different patterns

that scientists are likely to use frequently as identified in the Six

Degrees of Scientific Data [5] paper. The six patterns are: retrieving

all chunks for the given dataset, retrieving all chunks for one vari-

able for the given dataset, retrieving all chunks for three variables

for the given dataset, retrieving all chunks intersecting a plane

(performed in each dimension) for the given dataset, retrieving all

chunks in a subspace of the simulation space for the given dataset,

and retrieving all chunks intersecting a partial plane (performed in

each dimension) for the given dataset. Additionally, if the testing

configuration includes custommetadata classes, the clients perform

the six read patterns again on the same datasets, but after retrieving

the chunks they also retrieve all of the custom metadata instances

associated with these chunks.

3.3 Results
Figure 4 demonstrates the breakdown of the average operation

time for retrieving all of the chunks in a given area (e.g., a plane

or a subspace of the simulation space) for the 2048 client and 32

server tests with 10 custom metadata classes on Serrano. This is

representative of the breakdowns for the other ops. The graph

demonstrates that, at this stage, almost all function time (82%)

is spent waiting for the server to begin processing the client’s

message. The small percentage of time spent reading from the

database (11% spent on the server’s interaction with the database)

indicates that EMPRESS’ database system and querying style are

relatively efficient. Future steps will include exploring ways to

reduce the server response latency and thereby greatly increase

the speed of operations. These results are presented abstractly as

percentages rather than actual timings to afford applying these

percentages to extrapolate using other techniques for different

portions of the operation execution process.

Figure 4: Breakdown of chunk retrieval time

Figure 5 demonstrates how average read and write time varies

across the different configurations run on Serrano, which is repre-

sentative of the clusters. This graphs provides important insight

about the scalability of EMPRESS in its current form and about

the impact of adding custom metadata instances to read and write

queries. As indicated in the graphs, when the ratio of clients to

servers is held constant, there is generally either no penalty to

having more clients and servers, or there is in fact an increase

in performance. This provides promising evidence that EMPRESS

will be able to maintain similar performance with larger quantities

and clients and servers. As expected, the ratio of clients to servers

greatly affects performance. As indicated in Figure 4, almost all

operation time is spent waiting for the server to act on the client’s

message. Thus, with fewer servers to respond to client’s messages,

performance is reduced. Finally, the graph demonstrates that adding

custom metadata classes and instances performs as expected by

the increase in data written and queried. On the write side, adding

custom metadata means that in addition to having 20 variables (10

per dataset, 2 datasets) and (number of clients * 20) chunks (one
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chunk per client per variable), there are 20 custom metadata classes

(10 per dataset, 2 datasets) and around (2.64 * number of clients)

custom metadata instances. This is thus around 2.5 times as much

data to write and insert, and around 2.5 times as many client-server

operations. Thus, EMPRESS performs remarkably well with the

addition of custom metadata, particularly on the read side.

Figure 5: Time spent in reading and writing operations

Figure 6 demonstrates the client-server operation times for the 7

operations used in the write and read phase for the tests with 2048

clients, 32 servers, and 10 custom metadata classes performed on

Serrano. These runs are relatively representative of the other config-

urations and clusters, excepting that average operation time varies

with the ratio of clients to servers as discussed above. The four op-

erations used in the write phase are writing variables (“Create Var”),

chunks (“Insert Chunk”), custom metadata classes (“Create CMC”),

and custom metadata instances (“Insert CMI”). The 3 operations

used in the reading phase are retrieving the catalog of variables

(“Catalog Var”), retrieving the chunks found in a given area (“Get

Chunks”), and retrieving the custom metadata instances for a given

chunk (“Get CMI”). These times show that EMPRESS can efficiently

support a wide range of queries and custom metadata. In particular,

custom metadata instances are retrieved and inserted in around

the same amount of time as chunks, and custom metadata classes

are inserted into the database even more quickly than variables.

Unsurprisingly, the longest operations are retrieving the entire

variables catalog, retrieving all of the chunks for a given area, and

retrieving all of the custom metadata instances for a given chunk.

All of these require the server to read through its database for all

variable, chunk, and custom metadata instance entries respectively.

Even so, with two datasets each of these operations only takes a

couple of milliseconds.

4 DISCUSSION
Testing shows that EMPRESS reliably and efficiently supports a

wide variety of operations including custom metadata operations.

This demonstrates that a metadata service like EMPRESS can be

used to provide tools for more efficient data discovery with the use

of rich fully customizable metadata and database-like queries. In

particular, testing proves that EMPRESS can efficiently support fully

custommetadata, with custommetadata operations taking the same

amount of time or less than their counterparts. Testing shows that

Figure 6: Operation duration distributions

the total impact of writing and reading custom metadata is equal to

or less than what is expected based on the number of client-server

operations and data size. In addition, there is significant room for

improvement. Currently, only 10% of the total time for reading and

writing operations is spent performing the database operations on

average. The largest portion of an operation’s time (around 80% on

average) is accounted for by latency of server response. There are

many options for reducing this latency time that will be explored

in the future.

5 CONCLUSION AND FUTUREWORK
EMPRESS is in its nascent stages. Focus for future development

includes having servers write to a storage system after each output

iteration thereby handling larger datasets and a larger quantity of

datasets. This will make EMPRESS more flexible in the number

and variety of servers it uses for writing vs reading. We will also

explore different methods of distributing the metadata across the

servers. We plan to make the data values stored in custom metadata

instances queryable. We will also look at further expanding custom

metadata capabilities and the variety of database queries supported.

This future work will be focused on increasing EMPRESS’ flexibility,

efficiency, and scalability. Short term plans for future testing include

using strong scaling, comparing this metadata system to fixed-file

metadata storage, testing custom metadata classes and instances

scalability limits, and increasing the number of clients and servers.
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