

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

Sandia National Laboratories
Craig Ulmer (PI), Ron Oldfield (PM)
Todd Kordenbrock, Scott Levy, Jay Lofstead, Shyamali Mukherjee, Greg Sjaardema, Gary Templet, Patrick Widener

ATDM Data Warehouse WBS 1.3.4.05 (Scalable I/O Components)
WBS 1.3.4.06 (Data Warehouse)

Overview

Problem: ATDM’s Asynchronous Many-Task (AMT) applications need an efficient way to exchange data with
both storage resources and external applications.

Approach: ATDM’s Data Warehouse project is developing a collection of flexible data management services
that can facilitate a variety of data flows on ATS platforms. These data management services use
a collection of compute nodes to cache an application’s data objects in a distributed, in-memory
key/blob store. Application developers connect to the Data Warehouse through application-
specific Data Interface Modules (DIMs). DIMs provide users with familiar APIs (e.g., IOSS for mesh
data) and are responsible for converting application-specific data structures into key/blob items
the Data Warehouse can manage. I/O Modules (IOMs) implement platform-specific mechanisms
for exchanging key/blob items with storage resources such as burst buffers or the parallel file
system. All communication in the Data Warehouse takes place through an asynchronous
communication engine built on top of RDMA primitives. This approach ensures data
management services will not interfere with an application’s normal MPI operations, and
provides a communication opportunity for job-to-job coupling.

Use Cases: Saving/Reloading datasets, in-memory handoff of application data to analysis tools, workflows,

internal communication mechanism for an AMT runtime.

Non-ATDM Use: While intended for AMT use, the Data Warehouse services are also applicable for traditional HPC.

Two Projects:

• WBS 1.3.4.05: Develop low-level components for use in Data Warehouse and traditional HPC.
• WBS 1.3.4.06: Integrate components into Data Warehouse and customize for AMT use.

DARMA

Kokkos

Visualization &
Analytics

Non-AMT
Applications

A

C

D

B
E

F K

J

L

G

I

H

Software Components for Data Management Services

RDMA Portability Layer

Kelpie

Distributed, In-memory

 Key/Blob Service

Data Warehouse

NNTI 3.0 libfabric

Nessie 3.0

Asynchronous

Communication Engine

Lunasa

Network

Memory

Management

I/O Modules

(IOMs)

Data Interface

Modules (DIMs)

Data management services typically require a network
layer that is independent of MPI in order to (1) avoid
conflicts with the core application’s communications and
(2) allow an application to connect with external data
management resources. The Data Warehouse currently
supports two RDMA libraries: libfabric and the Nessie
Network Transport Interface (NNTI). NNTI 3.0 has support
for Aries, Gemini, and InfiniBand, and features event-
based processing capabilities that can be exploited by
Nessie. Initial experiments on Mutrino confirm that the
overhead of this functionality does not impede general
communication performance.

RDMA Portability

Data Management services such as Kelpie often
need to execute a complex sequence of network
operations in order to orchestrate high-level data
transfers. Nessie 3.0 is a communication library that
enables service developers to describe their
operations as event-driven state machines. State
machines allow progress to take place as events
happen and without user intervention.

Nessie 3.0: Asynchronous Communication Engine

The Data Warehouse is responsible for migrating data between in-memory resources
and storage devices such as burst buffers and the parallel file system. I/O Modules
(IOMs) implement platform-specific storage operations. We are currently developing an
IOM for Trinity that uses LANL’s Hierarchical I/O (HIO) library to exchange data with
both the burst buffers and the PFS. This IOM maps Data Warehouse key/blob items into
HIO objects that are persistent.

I/O Modules (IOMs)

Data management services typically manage memory in an explicit manner for both
performance reasons (e.g., NIC memory registration overheads) and practicality (e.g.,
allocation tracking). The Lunasa component provides a flexible registered memory
management unit that is used throughout the Data Warehouse. Lunasa allocates large

Lunasa: Network Memory Management
xyz

Kelpie: Distributed, In-Memory Key/Blob Service

The Data Warehouse uses DIMs to implement different user dataset APIs on top of the Data Warehouse.
There are multiple DIMs currently in development:

Data Interface Modules (DIMs)

DIM Description Schedule

IOSS IOSS is the standard interface to mesh datasets at Sandia. The IOSS DIM plugs into
the IOSS library as an alternate backend for reading and writing data, and requires
minimal changes to end applications.

Q1

PIC The particle-in-cell codes being ported to DARMA track a large number of particles
as they move through a meshed space. The particle DIM will export bundles of
particles into the Data Warehouse for downstream inspection by Visualization tools.

Q2

SPARC SPARC requires a way to save and reload state data. This implementation will be
based on a prior prototype that snapshotted all data. This DIM will focus on
interacting with SPARC to obtain the minimum dataset required.

Q2

Tempus This DIM will provide a way to store and retrieve time integration data. Q3

Initial small-scale experiments
with HIO on Trinitite confirm
that HIO is sufficient for the
multi-node Data Warehouse
environment, and that the
number of Data Warehouse
nodes should be scaled to
match burst buffer resources.

blocks of memory and then suballocates the
memory to users via tcmalloc. Users may
request their allocations be registered with the
NIC in either an eager or a lazy manner.
Experiments conducted on Mutrino confirm
that Lunasa’s memory management improves
service performance in situations where
applications frequently transmit data objects.

Client Meta Server Publisher

Kelpie provides a way for data management services to coordinate how a dataset’s
individual objects are distributed across a collection of nodes. Users typically construct
one or more distributed hash tables on top of the nodes to spread the dataset and use
asynchronous publish/get operations to manipulate individual data components.
Kelpie’s bookkeeping allows communicators to stage operations to perform when a
missing data object becomes available. This triggering can serve as a mechanism for
implementing the dataflows found in AMT applications.

Workflow Description Schedule

App-to-Analysis Demonstrate routing data from DARMA AMT application to an Analysis
application using the Data Warehouse as intermediate memory.

Q3

App-to-Storage-
to-Analysis

Demonstrate storing data results from DARMA AMT application to burst
buffer for retrieval by an Analysis application.

Q4

FY17 Data Warehouse Workflow Demonstrations:

Data Warehouse

Burst Buffers

Parallel File System

Distributed Memory

Unclassified Unlimited Release - SAND2017-0997 C

