
SANDIA REPORT

SAND2018-10100
Unlimited Release
Printed September 10, 2018

ASC ATDM Level 2 Milestone #6358:
Assess Status of Next Generation
Components and Physics Models
in EMPIRE

Matthew T. Bettencourt, Richard M. J. Kramer, Keith L. Cartwright, Edward G. Phillips,

Curtis C. Ober, Roger R Pawlowski, M. Scot Swan, Irina Tezaur, Eric Phipps,

Sidafa Conde, Eric Cyr, Craig D. Ulmer, Todd H. Kordenbrock, Scott L. Levy,
Gary J. Templet, Jonathan J. Hu, Paul T. Lin, Christian A. Glusa, Christopher M. Siefert,
Micheal W. Glass

Prepared by

Sandia National Laboratories

Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology

and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc.,

for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone:
Facsimile:
E-Mail:
Online ordering:

(865) 576-8401
(865) 576-5728
reports@adonis.osti.gov
http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone:
Facsimile:
E-Mail:
Online ordering:

(800) 553-6847
(703) 605-6900
orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

2

SAND2018-10100
Unlimited Release

Printed September 10, 2018

ASC ATDM Level 2 Milestone #6358:
Assess Status of Next Generation
Components and Physics Models

in EMPIRE

3

Matthew T. Bettencourt, Richard M. J. Kramer, Keith L. Cartwright, Edward G. Phillips
Electromagnetic Theory, 1352

Curtis C. Ober, Roger P. Pawlowski, M. Scot Swan
Multiphysics Applications, 1446

Scott L. Levy
Scalable System Software, 1423

Irina Tezaur
Quantitative Modeling and Analysis, 8754

Eric Phipps

Optimiztation and UQ, 1441

Sidafa Conde, Eric Cyr

Computational Mathematics, 1442

Todd H. Kordenbrock
Scalable Analysis and Viz, 1461

Gary J. Templet, Craig D. Ulmer
Scalable Modeling and Analysis Systems, 8753

Jonathan J. Hu, Paul T. Lin, Christian A. Glusa
Scalable Algorithms, 1426

Christopher M. Siefert
Computational Multiphysics, 1443

Micheal W. Glass
Computational Simulation Infrastructure, 1545

Sandia National Laboratories
P.O. Box 5800, MS-1196

Albuquerque, NM 87185-1196
mbetten@sandia.gov

4

Abstract

This report documents the outcome from the ASC ATDM Level 2 Milestone 6358: Assess Status of
Next Generation Components and Physics Models in EMPIRE. This Milestone is an assessment of
the EMPIRE (ElectroMagnetic Plasma In Realistic Environments) application and three software
components. The assessment focuses on the electromagnetic and electrostatic particle-in-cell solu-
tions for EMPIRE and its associated solver, time integration, and checkpoint-restart components.
This information provides a clear understanding of the current status of the EMPIRE application
and will help to guide future work in FY19 in order to ready the application for the ASC ATDM
L 1 Milestone in FY20. It is clear from this assessment that performance of the linear solver will
have to be a focus in FY19.

5

Acknowledgment

Sandia National Laboratories is a multimission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell
International Inc. for the U.S. Department of Energy's National Nuclear Security Administration
under contract DE-NA0003525. Portions of this research used resources of the National Energy
Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science
User Facility operated under Contract No. DE-ACO2-05CH11231.

6

Contents

1 Introduction

1.1 Milestone description

1.2 EMPIRE Particle-in-Cell Algorithm

13

13

14

1.2.1 Description 14

1.2.2 Weighting Algorithms 15

1.2.3 Particle Dynamics 17

2 Performance 19

2.1 PIC Performance 21

2.2 Linear Solvers 24

2.2.1 ES Problem 24

2.2.1.1 Initial ES Results 25

2.2.1.2 Current ES Results 26

2.2.2 EM Problem 28

2.2.2.1 Initial EM Results 28

2.2.3 Current EM Results 29

2.2.4 Path Forward 30

3 Time Integration 33

3.1 Background 34

3.2 Tempus Tests 35

3.2.1 SinCos Test 35

3.2.2 Partitioned van der Pol model 35

7

3.2.3 Damped Harmonic Oscillator Test 36

3.3 Results 38

3.3.1 Tempus Results 38

3.3.1.1 Leapfrog Stepper 38

3.3.1.2 Partitioned IMEX Stepper 38

3.3.1.3 HHT- a Stepper 40

3.3.1.4 Newmark Stepper 41

3.3.1.5 Operator-Split Stepper 42

3.3.2 EMPIRE Results 43

3.3.2.1 OscillatingEFieldlD Test 43

3.4 Tempus Features Available for EMPIRE 44

3.4.1 Explicit Runge-Kutta Embedded Pairs 44

3.4.1.1 Time-Step Control Strategies 45

3.4.2 Transient Adjoint Sensitivity Capabilities 46

3.5 Discussion 47

4 Verification 49

4.1 Verification Testing Methodologies 49

4.2 Case Study: TEM Wave in Plasma 50

4.2.1 Analytical Solution 50

4.2.2 Computational Description 51

4.2.3 Discussion of Results 51

4.2.4 Convergence 52

4.3 Case Study: Langmuir waves and Landau Damping 54

4.3.1 Analytical Solution 54

4.3.2 Convergence 57

8

4.4 Verification Conclusion 63

5 I/0 65

5.1 EMPIRE I/0 Environment 65

5.2 FAODEL 66

5.3 1/0 Performance 67

5.3.1 Particle Data 67

5.3.2 Mesh Field Data 69

5.3.3 Load Balance Challenges 69

5.3.4 Serialization Challenges 71

5.4 Discussion 71

5.5 Current Limitations and Next Steps for I/0 73

References 74

9

List of Figures

1.1 Time Integration Loop 15

2.1 Coarsest "blob" mesh for performance studies 20

2.2 Total timing results for EMPIRE on HSW (left) and KNL (right) running the ES
solver (top) and the EM solver (bottom) 21

2.3 Total timing results for EMPIRE on KNL with 1 hyper-threads (left) and 4 hyper-
threads (right) running the ES solver (top) and the EM solver (bottom) 22

2.4 Particle timing results for EMPIRE on HSW (left) and KNL (right) running the ES
solver (top) and the EM solver (bottom) 23

2.5 Particle timing results for EMPIRE on KNL, 1 hyper-thread (left) and 4 hyper-
threads (right) running the ES solver (top) and the EM solver (bottom) 24

2.6 ES linear solver results (triangle symbols) on Trinity from 14-May-2018 25

2.7 Observed and modelled matrix-vector multiply strong-scaling performance on mutrino's
Haswell partition, 503 row Poisson matrix, 1 MPI rank/node, no threading. 26

2.8 ES blob simulation, Trinity, 22-August-2018 27

2.9 Linear solver results (triangle symbols) for EM blob simulation on Trinity from
11-June-2018. 28

2.10 EM blob simulation, Trinity/Haswell, 22-August-2018 29

2.11 GMRES iterations per time step for EM blob L and XL, Trinity/Haswell, 22-
August-2018. 30

2.12 Timing and iteration comparison of current (left) and proposed block (right) solver
in mini-EM for blob meshes S, M, L, and XL on NERSC's Cori Haswell partition. 31

3.1 Tempus time integration of Van der Pols strange attractor and limit cycle. All initial
conditions reach the limit cycle (green), either from small initial values (blue) or
large initial values (red). 37

3.2 a) Exact solution for the SinCos test, and b) the order of convergence for the
Leapfrog stepper. 39

10

3.3 Order of convergence for the partitioned IMEX-RK stepper with the partitioned
van der Pol test. 40

3.4 Order of convergence for the HHT-a stepper with the SinCos test. 41

3.5 Order of convergence for the Newmark stepper with the Harmonic Oscillator test. 42

3.6 a) Solution to OscillatingEFieldlD test, and b) the order of accuracy for various
steppers 44

3.7 Solution to the Van der Pol problem (top) with error-controlled time-step size se-
lection (bottom) . 46

3.8 Work-Precision Diagram. Accuracy of the solution as a function of tolerance (top
figure), and the number of time-steps as a function of accuracy (bottom). Both
trends are indications of a working time-step controller 47

3.9 Forward and adjoint convergence for transient sensitivity. 48

4.1 Convergence of the Ey field after one full oscillation upon spatial and temporal
refinement. These simulations were run with 320 particles per cell. This demon-
strates visually that the simulation is converging to the correct solution. 52

4.2 A plot showing the PDFs for the magnitude of the electron velocity for each veloc-
ity component. It demonstrates that the assumption that the electrons move very
little out of the E-field plane is valid 53

4.3 A convergence plot for the TEM wave in plasma test depicting the Linf norm of the
E-field error versus the refinement level (analytic values for Ey vary up to 100V/m).
The gray lines represent the expected slope of the error for second-order space and
first-order time. Several curves are presented, each with a unique constant number
of particles per cell. Note how the convergence behavior approaches the theoretical
rate as the number of particles per cell is increased. 53

4.4 Real and imaginary parts of the dispersion relationship. The approximation is more
accurate for small k values. The convergence analysis is done for two values of k:
one near k = 0.13, where the damping of the wave is small (negligible), and the
other near k = 0.3, where the damping of the wave is large 56

4.5 Convergence of the real part of the frequency of the Langmuir wave as a function
of At, number of cells, and number of particles per cell. 57

4.6 Convergence of the imaginary part of the frequency (growth or decay) of the Lang-
muir wave as a function of At, number of cells, and number of particles per cell.
The imaginary part should be near zero. For these plots a positive number is a
decay in the wave amplitude 58

11

4.7 Convergence of the Langmuir wave frequency in the Landau damping case as a
function of At, number of cells, and number of particles per cell 60

4.8 Convergence of the Langmuir wave damping frequency in the Landau damping
case as a function of At, number of cells, and number of particles per cell. For
these plots a positive number is a decay in the wave amplitude 61

4.9 Refinement plots for a Langmuir wave and and Landau damping. 62

5.1 Particle Checkpoint Overheads for 64 Nodes on Haswell (left) and KNL (right) . . . 68

5.2 Impact of Node Scaling for Particle Checkpoints on Haswell (left) and KNL (right) 68

5.3 Mesh Checkpoint Overhead for 64 Nodes on Haswell (left) and KNL (right) 69

5.4 Impact of Node Scaling for Field Data Output on Haswell (left) and KNL (right) . 70

5.5 Particle Checkpoint Data Distribution for Initial Steps with 4, 16, and 64 Nodes . . 70

5.6 FAODEL Serialization and I/0 Write Times for Particle (left) and Mesh (right)
Checkpoints 71

5.7 Impact of Burst Buffer (left), Haswell (center), and FAODEL (right) on Particle
Checkpoint Performance 72

12

Chapter 1

Introduction

The EMPIRE (ElectroMagnetic Plasma In Realistic Environments) code was the focus of an
ATDM Level 2 Milestone in FY18. EMPIRE is a code designed to simulate plasma environments
under various different temperatures, pressures and magnetic fields. This milestone is focused
on the low-density regime and employs the particle-in-cell formulation. This report documents the
current status of the EMPIRE code, performance, verification status and features. The remainder of
this section gives an overview of the milestone and of the EMPIRE code and core algorithm, with
following sections on performance status, verification status, time integration and output status.

1.1 Milestone description

The milestone is intended to assess the status of the EMPIRE application. The description of
the milestone is as follows:

Assess the status of a subset of the Next Generation Components and physics capa-
bilities to be used for the FY20 L 1 Milestone for the ionizing electromagnetic pulse
(SREMP/SGEMP) ATDM application code (EMPIRE). The assessment will focus on
the electromagnetic and electrostatic particle-in-cell solutions for EMPIRE and its as-
sociated solver, time integration, and checkpoint-restart components. A representative
problem will be used to assess current status. The assessment will include code verifi-
cation, performance, and portability across available ATS and CTS architectures.

The completion criteria of the milestone is as follows:

Documentation of the status of code verification, performance, and portability on avail-
able CTS and ATS architectures for the described assessment.

This report, and accompanying PowerPoint file, are the documentation of the milestone and
represent the status at the end of FY18 for the particle-in-cell portion of the code. In addition the
EMPIRE and FAODEL repos have been tagged with a version tag FY18Milestone and a corre-
spondin gTrilinos SHA of 8d652ca.

13

1.2 EMPIRE Particle-in-Cell Algorithm

1.2.1 Description

Particle-in-Cell (PIC) algorithms are designed to solve numerically the Klimontovich equation
for plasma dynamics. The plasma is represented as a collection of discrete particles, each with
its own mass, momentum, and charge, which approximate a probability distribution function as a
series of delta functions across all particles i.

Np Ni,
f = = 3(x - xj)3(v - vi). (1.1)

i=1 i=1

The distribution fi for each particle is updated using Newton's law and the Lorentz force equation:

 = vi, d - qi (xi) + vi x h(xj)) , (1.2)
dt at mi

where Ë and B are the electric and magnetic fields, respectively. Assembling these equations yields
the Klimontovich equation for each particle's dynamics, which resembles the Boltzmann equation:

d
fi ± -"/-

i
• V fi+

mi
(t (xi) + vi x

d
= O. (1.3)

dt m

With known electric and magnetic fields, this fully described the particle evolution. Maxwell's
equations provide the coupling between the movement of the charged particles and the electric and
magnetic fields. They consist of Gauss' Law,

the magnetic divergence constraint,

Faraday's law,

and Ampere's law,

v = Eo,

v =o,

dh
=-VxZ,

dt

.3E' 1
V x B

-
- -

1
J =

dt 12E E

where p and f are the charge and current densities, and E and µ are the permittivity and perme-
ability of the background medium (typically vacuum). The particles couple back to Maxwell's
equations through the charge and current densities, given by

Np Np

P E qifi, and J = E (1.8)
i=1 i=1

Note that the coupling can be simplified in the electrostatic approximation, which reduces Maxwell's
equations to only Gauss' Law (1.4).

Traditional PIC methods as shown in [1] and [2] make the following assumptions:

14

1. Particles are grouped into super particles that represent a large number of particles

2. Electric and magnetic fields are solved on a mesh

3. Leap-frog time integration with linear fields

4. Debye length and plasma period are resolved.

EMPIRE uses the traditional operator-split time integration method for particles and fields,
where the fields are solved staggered by a half step from the particles with one way coupling
between the two, as shown in Figure 1.1.

Weight Particles

to Grid

Update Particle
Positions

Solve for Electric
Potential and Field

on Grid

Update Forces
and Velocity
of Particles

Figure 1.1: Time Integration Loop

EMPIRE uses the finite-element method (FEM) [3] for solving Maxwell's equations, with a
compatible edge/face discretization for the electric and magnetic fields to enforce the magnetic
divergence constraint (1.5) by construction [4]. A more complete description of the 1-EM can be
found in the EMPIRE theory manual and is not repeated here; however, the unique components
of EMPIRE will be highlighted below. EMPIRE utilizes the Trilinos package Panzer [5] for the
infrastructure required to implement the FEM in software.

1.2.2 Weighting Algorithms

As shown in Figure 1.1, there are four main stages in the time integration step. Much of the
accuracy of a PIC method comes from appropriate choice of the weighting algorithm for transfer-
ring the fields to and from the mesh. The current and charge of the particles needs to weight into
the residual of the weak form of Maxwell's equations. Particles are represented as delta functions
in both space and time, and therefore, the weak form involves integration of these delta functions
against a test function.

15

Weighting of the charge density involves weighting each particle i on element j against test
function k,

Np Np

PV~kdV = E f — 54)110V = L (kVA)-, flj i=1 i=1

(1.9)

This replaces the integration of the charge over the volume with a single evaluation of the test
function at the point of the particle, and requires that the evaluation of the basis functions at arbi-
trary points needs to be efficient and performant. Weighting the current follows a similar approach,
except that the basis and test functions are the edge basis, e, rather than the nodal basis:

Np r(n+1)At
fekdv = E qiVi • ekdv.s2; inAt (1.10)

The time integration is done numerically, which for second order integration on simplices reduces
to the midpoint rule. Therefore, the current weighting results in

Np

,n+fekdv = E Atqi-Vi(xi) • ekVi ± 2

Once again, this reduces to a simple evaluation of the test function at the particle location, now at
the midpoint of the trajectory. The trajectory must be split up so every individual element visited
by a particle in a time step and each line segment of current is accrued to that element. Because
of the nature of the compatible discretization, this current weighting maintains the charge density
weighting and (1.4) to solver tolerance. Once the charge and current density are weighted to the
mesh, Maxwell's equations can be solved.

With the solution to the linear system, we either have nodal values for the potential 0 in the
electrostatic approximation, or edge E and face B values that must be weighted back to the nodal
basis values according to

(te — En) INdV = 0, (1.12)

where fe is the edge representation of the field, Zn is the nodal basis and vk is the test function,
ti

which may be different from the basis function for En. EMPIRE has two different weighting meth-
ods available that differ in the test function against which the projection is integrated: a consistent
mass formulation and a lumped mass formulation. The consistent mass formulation has the effect
of steepening the solution, whereas the lumped mass formulation has a smoothing effect. Note that
the lumped approach is analogous to what is done in traditional PIC methods. From the nodal field
representation, the field value at the particle location is calculated simply be applying the nodal
basis:

Nb

E(xi) = E eklVai),
k=1

where ek is the solution value from the projection equation (1.12).

16

(1.13)

1.2.3 Particle Dynamics

The electric and magnetic field values weighted to the particles define the forces acting upon
them. The particles can then be accelerated and moved using (1.2). The acceleration is calculated
simply from F =ma, but since the force is a function of the particle velocity from (1.2), the velocity
cannot be updated using the old force. In 1970, Boris described an elegant alternative, which is
now commonly known as the Boris Method. Boris method is the de facto standard for particle
pushing in plasma simulation codes. Specifically, we are solving

V12+1/2 — Vn-1/2
= +

-n

2

+112 +11n-112

At

v
 x LI" (1.14)

where Boris noticed that the electric field can be eliminated by defining
ti_k_ qgn At

v — —
m 2

vn-1 /2 =

fr+1/2 = v +
(7E. At

Substituting these definitions into (1.14), we obtain the pure rotational motion

V — V-
 = 19± (7+ +V—) X En.

At 2m

(1.15)

(1.16)

Boris next utilized some basic geometry (see Figure 4-4a in Birdsall, p. 62) to derive the
expression for performing the rotation. The first step is to find the vector bisecting the angle formed
by the pre- and the (yet computed) post-rotation velocity. The angle through which the velocity
will rotate in the given time step is, from geometry, tan(/2) = —(q131m)At 12. The vector form
of this is t —b tan /2 = (qB/m)At /2. The bisector vector (v prime) is then

vr = v- +v x t. (1.17)

This v' vector is perpendicular to both the magnetic field (the vector t) and the vector from v+
to v+, the post-rotation velocity we are seeking. This connecting vector is again obtained from
geometry as the cross product of v and a new vector s. This vector s is just a version of the
rotation vector t scaled to satisfy the requirement that magnitude of velocity remains constant in
the rotation. Mathematically,

where

/
V =V

- -FIT Xs

2t
s 1 + t2

(1.18)

(1.19)

To implement the Boris method, first obtain v- by adding half acceleration to the initial veloc-
ity, per (1.15). Then perform the full rotation according to (1.18) and (1.19). Finally, add another
half acceleration, as given by (1.15). From the new velocity at time n+ 2, the updated particle
position is simply

r+1 = + AtVn± .

17

(1.20)

18

Chapter 2

Performance

Mission requirements for running production problems effectively at scale impose a perfor-
mance threshold for the EMPIRE application to average throughput of 10 time-steps per second,
and ideally 30 time-steps per second. This chapter describes progress towards that goal, focusing
on the PIC algorithm, linear solver, and input/output performance.

The goal of 10 time-steps per second is based on two criteria. First to reproduce the perfor-
mance that we already have in Aleph (electrostatically) and EMPHASIS (electromagnetically) both
MPI only codes. For Aleph there were timings using a mesh similar to the EMPIRE performance
simulations and run on Serrano1, (EMPIRE small) 467k elements, 128 cores, 50 time-steps per
second; (EMPIRE medium) 1.8M elements, 512 cores, 33 time-steps per second, and (EMPIRE
large) 7.6M elements, 2048 cores, 20 time-steps. For EMPHASIS, also run on Serrano, with nearly
identical meshes with a CFL=1 and 64 particles per cell. The timings for, small, medium, and large
shows performance going from 35 time-steps per second for the small problem with 128 cores (4
nodes which is not using the full number of cores on each node), 30 times-steps per second for the
medium problem with 1024 cores (32 nodes), 10 time-steps per second for the large problem with
4096 cores (128 nodes, half the number or cores for weak scaling because of waiting time in the
queue). A better understanding for our current code scaling would be useful, but this is what we
have at this time and will be improved for next years milestone. Since the hardware and software
environment are different than trinity detailed comparison should not be done. However, it does
show through a couple thousand cores 1 Os of time-steps per second are possibility. The other half
of this rational is based on our target simulation for the L 1 milestone in FY20. For this simulation,
it would be nice to finish the million time-step simulations in one day (11.6 time-steps per second).
The target simulation can be changed to have 2 million or 1/2 million time-step by just having
better resolution or questionable resolution. The wall clock time could also increased to 2 days,
so maybe we could get by with 3 time-step per second but with all the other uncertainty and risk
aiming for the bare minimum with questionable resolution is not a good idea.

The performance of the EMPIRE application was tested using a realistic geometry in both elec-
trostatic and electromagnetic regimes. This geometry is affectionately known as the blob problem
and is shown in Figure 2.1. This geometry was created for this project to represent a realistically
sized domain, similar to the Aleph benchmarking problem using in their strong/weak scaling stud-
ies. This domain is filled with a quasi-neutral plasma (electrons and hydrogen ions) of density 1016
M-3 and a temperature of —10 eV.

1 1,122 nodes, 40,392 cores, 2.1 GHz Intel Broadwell E5-2695 v4, 128 GB per node

19

Figure 2.1: Coarsest "blob" mesh for performance studies

Size # of Elements # of Nodes # of Edges # of Faces # of Particles Particles/element
S 337k 60k 406k 683k 16M 47.5
M 2.68M 462k 3.18M 5.40M 128M 47.8
L 20.7M 3.51M 24.4M 41.6M 1B 49.5
XL 166M 27.9M 195M 333M 8.2B 49.4
XXL 1.332B 223M 1.56B 2.67B 65.6B 49.2

Table 2.1: Performance test sizes for scaling study.

This problem was used for both a weak and strong scaling studies. The size of the problems
considered for these studies are shown in Table 2.1. As can be seen, each refinement level is
roughly a factor of 8 times larger in mesh and particle count.

We do a combination of weak and strong scaling tests. Each size problem (S, M, ...) is run over
four doublings on Trinity nodes, starting at 1 node for the smallest problem and at 8 times as many
nodes for each successively larger problem. For example, the medium problem is run on 8, 16,
32 and 64 nodes, etc. This is done for both the Knights Landing (KNL) and the Haswell (HSW)
partitions of the machine. These meshes are run for only 100 time-steps.

The first analysis breaks down the total runtime into two major components, the linear solver
time, and the particle push time. Figure 2.2 shows total, linear solve, and particle push times for
both EM and ES solutions on both HSW and KNL.

20

EMPIRE-PIC blob ES Trinity HSW EMPIRE-PIC blob ES Trinity KNL-1HT

4096

1024

S
-

—M—
Ni _._

L —M—

- XL-M-

XXEM-

, ,
Squares - time Loop

Triangles - Linear Solve
Circles - Particle Updates

4096

1024

S
-

—M—
/,./ _._

L —M—

- XL-M-

)0(•EN-

' Squares -611e Loop '
Triangles - Linear Solve
Circles - Particle Updates

13 256

`g
I. 64

16

-

•

7 256

''
I= 64

16

 2

 •

4 -
c ,

4, A. A
,

1 4 16 64 256 1024 4096

HSW nodes (32 cores/node)

1 4 16 64 256 1024 4096

KNL-1HT nodes (64 cores/node)

EMPIRE-PIC blob EM Trinity HSW EMPIRE-PIC blob EM Trinity KNL-1HT

4096

1024

S —M—
- NI —E-

L —M—

- XL-M-

' Squares :time
Triangles -
Circles - Particle

Loop
Linear Solve

Updates

.............„./a

4096

1024

S -M-
- M —.—

L —M—

- XL-M-

Squares -61e
Triangles - Linear
Circles - Pa

Loop ' Rood.
Solve

icle Updates

7 256

E
I= 64

16

4

3 1=na

411...............

13 256

cu
E
I= 64

16

4

Ilin....

1 4 16 64 256 1024 4096

KNL-1HT nodes (64 cores/node)

1 4 16 64 256 1024 4096

HSW nodes (32 cores/node)

Figure 2.2: Total timing results for EMPIRE on HSW (left) and KNL (right) running the ES solver
(top) and the EM solver (bottom)

The use of hyper-threads was explored for the KNL architectures. Hyper-threads are a hard-
ware abstraction where one oversubscribes a physical core to hide memory latency. The core can
swap between hyper-threads in a few cycles, switching to a thread which is ready to perform a
computation. Figure2.3 shows the effects of hyper-threads. As can be seen, the additional threads
speed up the particle work while hurting the solver work. This is somewhat expected and PIC,
especially on unstructured meshes, has irregular memory access patterns. The overall effect is up
to a 40% savings in the particle updates, while costing a factor of two on the solver side.

It can be seen that we are within the mission requirement threshold for run time on the very
small problems, but as much as a factor of 400x away from that threshold for problems at scale.
Unlike a traditional PIC code, which is particle dominated, here the linear solver time dominates
the solution for all but the smallest core counts. The details for the linear solver will be provided in
section 2.2 with the particle update times being demonstrated in section 2.1, with I/0 details will
be provided in section 5.

2.1 PIC Performance

This section details the performance of the sections of the code specific to the PIC algorithm,
in particular the particle move (including current weighting), particle sorting, charge weighting,
and field weighting algorithms Figure 2.4 shows the scaling results.

21

EMPIRE-PIC blob ES Trinity KNL-1HT EMPIRE-PIC blob ES Trinity KNL-4HT

4096

1024

S
-

—M—
M —M—
L —M—

- XL—M—

MEM—

,
' Squares - time Loop

Triangles - Linear Solve
Circles - Particle Updates

4096

1024

S
-

—M—
/,./ _._

L —M—

- XL—M—

XX•EN—

' Squares -61e Loop '
Triangles - Linear Solve
Circles - Particle Updates

7 256

E.'
I. 64

16

-

_

 •

7 256

c'
I= 64

16

44

1 4 16 64 256 1024 4096

KNL-1HT nodes (64 cores/node)

1 4 16 64 256 1024 4096

KNL-4HT nodes (64 cores/node)

EMPIRE-PIC blob EM Trinity KNL-1HT EMPIRE-PIC blob EM Trinity KNL-4HT

4096

1024

S —M—
- NI —.—

L —M—

- XL—M—

' Squares :time Loop
Trianles - Linear Solve R.0"."g
Circles - Particle Updates

I

4096

1024

S —M—
- IA —.—

L —M—

- XL—M—

Squares -61e Loop
Triangles - Linear Solve
Circles - Pa icle Updates

' ..---11

13 256

cu

Ig 64

16

4

 Il

=W"*.A

 s'111,......

7 256.

CO

I g 64.

16

4

. is •. s el IL. ss • ilik"...., a4:j....., ...I: " *--. .•

1 4 16 64 256 1024 4096

KNL-4HT nodes (64 cores/node)

1 4 16 64 256 1024 4096

KNL-1HT nodes (64 cores/node)

Figure 2.3: Total timing results for EMPIRE on KNL with 1 hyper-threads (left) and 4 hyper-
threads (right) running the ES solver (top) and the EM solver (bottom)

The effect of hyper-threads can be seen in Figure 2.5.

From the top level results some general conclusions can be drawn:

1. The particle update weak scales with near ideal weak-scaling efficiency.

2. The particle update strong scales over 3 doublings with near-ideal scaling efficiency.

3. There is no evidence that it will not continue to strong and weak scale.

4. The move is the most expensive part of the code.

5. The particle update benefits from hyper-threads.

Breaking down the results, it is clear that the particle move is the dominant feature of the total
PIC algorithm time. Each particle is associated with a region of physical space, which EMPIRE
decomposes amongst MPI partitions. When a particle reached the end of a partition boundary, this
particle needs to be migrated to a neighboring processor. The particle move timer consists of both
the actual move step combined with the cost of this particle migration.

The actual move step consists of advancing each particle's position from time n n+ 1, and for
electromagnetics, weighting currents to the mesh along the way. The algorithm requires moving
each particle segment-by-segment, stopping at every element boundary and accruing current to the

22

EMPIRE-PIC blob ES Trinity HSW EMPIRE-PIC blob ES Trinity KNL-1HT

1024
S —M—
M —M—

cruares - Particle Time triangles - Particle Sort
Circles - Particle Move X - Weight Fields

1024
S —M—
M —M—

' Squares - Particle Time triangles - Particle Sort
Circles - Particle Move X - Weight Fields

256

64

L —M—
XL—M—

XX.e.—

256

64.................„....s.XX+-

L —M—
XL—M-

-

. 16
E
I=

4

1

as....%....ii,..%....*.Nb...::;:.....:1

171
,o, 16

g

4

1

e..........x.........s....,x

,

4

0.25
1 4 16 64 256 1024 4096

HSW nodes (32 cores/node)

0.25
1 4 16 64 256 1024 4096

KNL-1HT nodes (64 cores/node)

EMPIRE-PIC blob EM Trinity HSW EMPIRE-PIC blob EM Trinity KNL-1HT

1024
S —M—
M —M— Circles

tquares - Par4icle Time triangles - Particle Sort
- Particle Move X - Weight Fields

1024
S —M—
M —M—

§quares - Particle Time triangles - Particle Sort
Circles - Particle Move X - Weight Fields

256

64

- L —M—
XL—M—

256

64.s.........sviks.se

- L —M—
XL—M—

r 3 16)4....,%....,,,,,,:',./.........s......:',..4.,......x..........x.X .x.......x

I=

4

1

., 16
E
I=

4

1

0.25
1 4 16 64 256 1024 4096

KNL-1HT nodes (64 cores/node)

0.25
1 4 16 64 256 1024 4096

HSW nodes (32 cores/node)

Figure 2.4: Particle timing results for EMPIRE on HSW (left) and KNL (right) running the ES
solver (top) and the EM solver (bottom)

mesh element-by-element. This is a costly operation, as determining the time at which a particle
departs an element involves evaluation of several dot products of the particle velocity with the
element face normals, evaluation of conditionals, and division operations. None of this readily
vectorizes or takes advantage of streaming instruction sets. Future work will be conducted towards
exploring alterations to the move algorithm that could take advantage of these specialized hardware
routines.

As can also be seen in the plots, the move for the electrostatic case is cheaper than the move
for the electromagnetic cases. This is because in the electrostatic case current is not weighted to
the mesh, which can be an expensive step, on par with the cost of moving the particle.

Particle sorting at one time was the most expensive part of the PIC algorithm. This was espe-
cially true on GPU systems where the sorting operation occupied 91% of the particle update time.
This has been drastically improved (12x on P100) by adopting the parallel merge sort from the
CUDA Thrust library. This also reduced the sort cost on CPU systems where it now one of the
smaller contributions to the total time.

Overall, the particle update, which dominates the runtime of PIC codes at Sandia and else-
where, shows that the EMPIRE implementation both strong and weak scales to 4096 nodes (256k
cores). It is believed that it will not be the bottleneck in achieving the target of 10 time steps per
second for the 2020 L 1 Milestone.

23

EMPIRE-PIC blob ES Trinity KNL-1HT EMPIRE-PIC blob ES Trinity KNL-4HT

1024
S —M—
M —M—

cluares - Particle Time triangles - Particle Sort
Circles - Particle Move X - Weight Fields

1024
S —M—
M —M—

' Squares - Particle Time triangles - Particle Sort
Circles - Particle Move X - Weight Fields

256

64

- L —M—
XL—M-

- XX.E.—

-256

64

L —M—
XL—M—
XX.E.—

I: I 16

ig

4

1

_ ,.........

_''..... a..--"s.s.........,.....r........ (.........x........xc i

'

ig

'3 16 '.\.......,.......",a,....i...............,

4

1

(........y......,x<

0.25
4 16 64 256 1024 4096

KNL-1HT nodes (64 cores/node)

0.25
1 4 16 64 256 1024 4096

KNL-4HT nodes (64 cores/node)

EMPIRE-PIC blob EM Trinity KNL-1HT EMPIRE-PIC blob EM Trinity KNL-4HT

1024
S —M—
M —M—

quares - Particle Time triangles - Particle Sort
Circles - Particle Move X - Weight Fields

1024
S —M—
M —M—

Squares
Circles

- Particle Time triangles - Particle Sort
- Particle Move X - Weight Fields

256

64

- L —M—
XL—M—

256

64

- L —M—
XL—M—

al
‘)3 16
E
I=

4

1

kltas....S......sa''\Ei xa-....1lLs...........
16

I=

4

1

X.....",,,........4„......x

0.25
1 4 16 64 256 1024 4096

KNL-4HT nodes (64 cores/node)

0.25
1 4 16 64 256 1024 4096

KNL-1HT nodes (64 cores/node)

Figure 2.5: Particle timing results for EMPIRE on KNL, 1 hyper-thread (left) and 4 hyper-threads
(right) running the ES solver (top) and the EM solver (bottom)

2.2 Linear Solvers

In this section we first describe the linear systems that are solved in the finite element phase of
the blob simulations. We then outline the overall solution method and specific underpinning linear
solver algorithms Results are given over a range of processor core counts, as well as descriptions
of improvements throughout the milestone. Finally, we describe ongoing and future work to further
improve linear solver performance.

There are two main system types in EMPIRE that depend on linear solvers in Trilinos, an
electrostatics(ES) problem and an electromagnetic (EM) problem.

2.2.1 ES Problem

For the electrostatics problem, the linear system is the following four-by-four blocked linear
system:

/ A 0 0 0 \
G,
G,

Q
0

0 0
0

Ex
Ey = f, (2.1)

G, 0
Q
0 Q E,

24

where A is a Poisson matrix; Gx, Gy, and Gz are gradient components; Q is a (possibly lumped)
mass matrix; EX, Ey, and Ez are electric field components; and the right-hand side f is the charge
from the prior particle solve.

2.2.1.1 Initial ES Results

Initially, the four-by-four ES blocked system was explicitly assembled and solved at each time
step. The global Krylov solver is GMRES, preconditioned by a block Gauss-Seidel (GS) iteration.
The Q blocks in 2.1 are point-diagonal and can be trivially inverted. The A block is inverted using
a single V-cycle of smoothed aggregation algebraic multigrid (SA-AMG). Thus, the dominant cost
of each ES GMRES iteration, apart from the matrix-vector multiply, should be the solution of a
Poisson matrix.

ES solver results from 14-May-2018 are given in Figure 2.6. Each color denotes the strong

4096

1024

17, 256

Ir 64

16

4

EMPIRE-PIC blob ES Trinity HSW

S
M

XL—E—
)(he.—

Squares -time Loop
Triangles - Linear Solve
Circles - Particle Update

4 16 64 256

HSW nodes (32 cores/node)

1024 4096

4096

1024

256

I. 64

EMPIRE-PIC blob ES Trinity KNL-1HT

S
M —E—
L —E—
XL—E—

Squares -time Loop
Triangles - Linear Solve
Circles - Particle Updates

e'NE e

4

1 4 16 64 256 1024 4096

KNL-1HT nodes (64 cores/node)

Figure 2.6: ES linear solver results (triangle symbols) on Trinity from 14-May-2018.

scaling of various EMPIRE solve components for a particular resolution of the blob problem on
Trinity. (See Table 2.1 for mesh statistics.) For the Haswell results, there are 2 MPI processes per
node and 16 threads per MPI process. For the KNL results, there are 4 MPI processes per node and
16 threads per MPI process. Weak scaling performance can be seen by comparing the first dot in
each curve (respectively, second or third). Of interest for the current discussion are the fine dashed
lines, which are the timings for the linear solve.

We note that there is at best very modest benefit in strong scaling for all meshes. For the L and
XL meshes, however, we see the scaling curve turning up for anything past two times the original
number of compute nodes. This can be explained by considering the results of a standalone matrix-
vector strong-scaling study on mutrino's Haswell partition, given in Figure 2.7. In this experiment,
matrix-vector performance was measured for a 503 Poisson matrix. The experiment uses one
MPI rank per node, with no threading, which should be the case with the largest computation to
communication ratio. The blue line represents measured performance, the green line represents a
simple three parameter model2, and the red line represents the model's latency. At 7800 DOFs per
MPI rank (16 nodes), the efficiency is at 64%, i.e., latency is dominating. Adding threads per MPI

2latency, bandwidth, and local work

25

E

140

120 —

100 —

80 — It

60 —

4

20 —

—.—Actual Time
Llodel Latency

—4 -Model All

10 20 30 40 50 60 70
Number of Nodes (1 rank / node)

Figure 2.7: Observed and modelled matrix-vector multiply strong-scaling performance on
mutrino's Haswell partition, 503 row Poisson matrix, 1 MPI rank/node, no threading.

rank will only cause the latency to dominate at lower node counts. As seen in Table 2.2, for the ES
blob studies, the work per thread starts at approximately 1800 DOF per thread. This is well below
the point measured on mutrino where latency begins to dominate.

Refinement Level
blob mesh

S M L XL XXL
base 1886 1805 1712 1700 1701
2x threads 943 903 856 850 851
4x threads 472 451 428 425 425

Table 2.2: DOFs per thread in EMPIRE ES Poisson linear solve for various meshes.

2.2.1.2 Current ES Results

Two major changes were made in the ES linear solve. First, profiling revealed nonoptimal
storage choices for the blocked systems and inversion of the diagonal blocks. This meant that
multiplying by a zero or diagonal block required the same time as multiplication with the A block
in (2.1). Second, (2.1) was refactored to separate the projection steps from the Poisson solve, as
well as simplify them. Thus, only the Poisson system now needs to be solved iteratively. Prior
to this refactor, the linear system was nonsymmetric and thus required a GMRES Krylov method.
After the refactor, Conjugate Gradients (CG) can be used, as the Poisson system is symmetric.

Table 2.3 compares linear solver times between May and August on Trinity/Haswell. For the
largest XXL mesh, there is an approximately 50% improvement in solver time. Figure 2.8 shows

26

mesh May Current Speedup
S 11.1 3.3 2.1
M 15.6 5.3 2.9
L 28.8 9.6 3.0
XL 46.7 40.4 1.2
XXL 88.5 59.1 1.5

Table 2.3: Comparison of ES Trinity/Haswell total linear solver times from May to August.

the effects of these changes for the total simulation from 22-August-2018. The Trinity/KNL HT= 1

EMPIRE-PIC blob ES Trinity HSW

4096

1024

13 256

41
E
i= 64

16

40

—N—
M —E—
L —E—
XL—E—
XX•EE-

Squares :time Loop
Triangles - Linear Solve
Circles - Particle Updates

4 16 64 256

HSW nodes (32 cores/node)

1024 4096

EMPIRE-PIC blob ES Trinity KNL-1HT

4096

1024

256

F 64

16a

4

s —M— '
Mf
—E—

XL—E—
XX•EE—

Squares -time Loop
Triangles - Linear Solve
Circles - Particle Updates

4 16 64 256

KNL-1HT nodes (64 cores/node)

1024

•

4096

4096

1024

13 256

F 64

16

4

EMPIRE-PIC blob ES Trinity KNL-4HT

s —M— '
ni —E—
L —E—
XL—E—
XX•EE—

Squares :time Loop
Triangles - Linear Solve
Circles - Pa rticle Updates

4 16 64 256

KNL-4HT nodes (64 cores/node)

1024 4096

Figure 2.8: ES blob simulation, Trinity, 22-August-2018.

results show speedups of 2.3, 2.2, and 1.8 for S,M, and L meshes, respectively. For the XL and
XXL meshes, however, there is no observable speedup.

27

2.2.2 EM Problem

The electromagnetics solve can be formulated as the following 8 x 8 block system

Qn

Q.
Qn

Q.
Qn

Qn

/ Ex \

0 — Ey

13,

—Q1)31 By

Bz
QB K
—KT QE \ E

= g, (2.2)

where QB is a face-based mass matrix; QE is an edge-based mass matrix; the Q, are nodal projec-
tion terms; K is the weak curl; and g is the current density from the prior particle solve.

2.2.2.1 Initial EM Results

Initially, the eight-by-eight EM blocked system was similarly explicitly assembled and solved
at each time step. The global linear solver is GMRES, again preconditioned by a block GS iteration.
The first six diagonal blocks of (2.2) are projection matrices. The last two diagonal blocks of (2.2)
are edge and face mass matrices, respectively. The preconditioner is a Schur complement approach.
In this approach, the diagonal blocks are trivially invertible. The mass matrix is solved iteratively
using a single V-cycle of SA-AMG, and the resulting curl-curl matrix in the Schur complement
approximation is iteratively solved using algebraic multigrid.

Initial results from 11-June-2018 are given in Figure 2.9 for the EM problem.

4096

1024

7 256

4

16

4

EMPIRE-PIC blob EM Tririity HSW

S —M—
M —M—
L —M—
XL—M—
XX•EN—

Squares -time Loop
Triangles - Linear Solve
Circles - Particle Updates

4 16 64 256

HSW nodes (32 cores/node)

1024 4096

4096

1024

7 256

64

16

4

EMPIRE-PIC blob EM Trinity KNL-1HT

S —M— Squares -time Loop
M —M— Triangles - Linear Solve
L —M— Circles - Particle Updates
XL—M—
X)*M—

•

4 16 64 256

KNL-1HT nodes (64 cores/node)

1024 4096

Figure 2.9: Linear solver results (triangle symbols) for EM blob simulation on Trinity from 11-
June-2018.

28

2.2.3 Current EM Results

Subsequent to the 11-June-2018 results, the EM block linear system was reformulated to sepa-
rate the projection steps from the E and B field solves, resulting in the following two-by-two block
system:

(QB K
—KT QE)

which can be rewritten as
(I 0 QB K

—KT QI31 I) 0 SE)

where

(2.3)

(2.4)

SE = QE +KT QilK. (2.5)

The two-by-two block system (2.3) is solved using GMRES preconditioned by the block precon-
ditioner

(06 B 'KE

where QB is an SA-AMG solver and ŠE is a Maxwell-specific algebraic multigrid solver [6] applied
to an approximation of SE.

(2.6)

Figure 2.10 shows weak and strong-scaling Trinity results resulting from the EM reformulation.
We first note that the Schur complement solver is an algebraic multigrid solver, RefMaxwell [6].

EMPIRE-PIC blob EM Trinity HSW

4096

1024

256

E
F 64

16

4

S —M—
M —M—
L —M-

- XL—M—

J./
Squares -tirne Loop

Triangles - Linear Solve
Circles - Particle Updates

4 16 64 256

HSW nodes (32 cores/node)

1024 4096

EMPIRE-PIC blob EM Trinity KNL-1HT

4096

1024

256

F 64

16

S —M— Squares Anne Loop a...A'
M —M— Triangles - Linear Solve
L —E— Circles - Particle Update

- XL—M—

=0*".*.

4

4 16 64 256

KNL-1HT nodes (64 cores/node)

1024 4096

EMPIRE-PIC blob EM Trinity KNL-4HT

4096

1024

256

F 64

16

4

S —M—
M —M—
L —M—
XL—M—

Squares Anne Loop
Triangles - Linear Solve
Circles - Particle Updates

4 16 64 256

KNL-4HT nodes (64 cores/node)

1024 4096

Figure 2.10: EM blob simulation, Trinity/Haswell, 22-August-2018.

29

The strong-scaling on Trinity/Haswell shows some benefit for meshes S, M, and L meshes, and on
Trinity/KNL for S and M meshes. Strong scaling appears to be detrimental for XL and XXL.

However, a more pressing issue is growth in iterations, as seen in Figure 2.11. Iteration counts
are approximately 2.5x higher when moving from L to XL. Additionally, iterations are growing at
time advances.

G
M
R
E
S
 i
te

ra
ti

on
s

140

120

100

80

60

40

20

0

EMPIRE-PIC blobr2 (L) EM Trinity HSW CFL=0.5

42 64 ndde
12 128 node-
R2 256 node• —•
R2 512 ode--

10 20 30 40 50 60 70 80 90 100

Time step

G
M
R
E
S
 I
te
ra
ti
on
s

140

120

100

80

60

40

20

EMPIRE-PIC blobr3(XL) EM Trinity HSW CFL=0.5

43 512 riode
13 1024 noth"
13 2048 node

10 20 30 40 50 60 70 80 90 100

Time step

Figure 2.11: GMRES iterations per time step for EM blob L and XL, Trinity/Haswell, 22-August-
2018.

2.2.4 Path Forward

We propose an approach to solve (2.3) as follows. Instead of solving iteratively with GMRES,
(2.3) can be solved exactly with upper and lower triangular solves based on the factorization (2.4).
This requires inverting the diagonal blocks of the upper triangular factor in (2.4). The inverse of
the (1, 1) block QB can be approximated with preconditioned CG. The (2, 2) diagonal term SE will
be formed exactly, and its inverse approximated with CG preconditioned with Maxwell-specific
AMG. This has two main advantages:

1. Global GMRES is no longer necessary, which avoids long term recurrences and eliminates
associated orthogonalization costs.

2. When a strong form of the curl C is available, assembly of K = QBC and KT = CT QB will no
longer necessary, and the QB system will only need to be inverted once (rather than twice).

The proposed solve has been implemented in Trilinos and preliminary testing done using the Panzer
stand-alone driver mini-EM. Initial comparative results using mini-EM are given in Figure 2.12.
mini-EM was built with OpenMP enabled and run in two configurations: 32 MPI processes per
node, one thread per MPI process; and 2 MPI processes per node, 16 threads per MPI process. The

QB block is solved with diagonally-scaled CG. The smoother used in the SE solve was Chebyshev
smoother, which matches that used in the Trinity runs. Note that the proposed block solve is
approximately 5x faster faster than the current solve for the S, M, and L runs. Future work includes

30

200

175

150

125

100

75

50

25

0

—x— RO 32x1

—0— RO 2x16

—x— R1 32x1

—0— R1 2x16

—x— R2 32x1

—0— R2 2x16

2500

2400

o 2300

2200

2100

2 4 8 16 32

nodes

64 128 256

 • •

—x— R03201

—0— RO 2x16

—x— R1 32x1

—0— R1 2x16

—X— R2 32x1

—0— R2 2x16

 X

2 4 16 32

nodes

64 128 256

200

175

150

125

100

75

50

25

5000

4000

3000

2000

1000

—x— S 32x1

—0— 5 2x16

—x— M 32x1 -

—0— M 2x16

—X— L 32x1 -

—0— L 2x16

—x— XL 32x1

—x— iterations Qs S 32x1

—0— iterations Qs S 2x16

—x— iterations Qs M 32x1

—0— iterations Qs M 2x16

—x— iterations Qs L 32x1

—0— iterations Qs L 2x16

—x— iterations Oa XL 32x1

32

nodes

128

-x- iterations 5, 5 32x1

-•- iterations SE 5 2x16

-X- iterations SE M 32x1

-•- iterations SE M 2x16

-X- iterations SE L 32x1

-0- iterations SE L 2x16

-x- iterations SE XL 32x1

512

• ■ •
• • ■ • • • X

2 8 32

nodes

128 512

Figure 2.12. Timing and iteration comparison of current (left) and proposed block (right) solver in
mini-EM for blob meshes S, M, L, and XL on NERSC's Cori Haswell partition.

31

modifying the EMPIRE solver interfaces appropriately and testing within EMPIRE, as well as
implementing a strong form of the curl operator.

32

Chapter 3

Time Integration

The EMPIRE code will require a suite of time-integration strategies both for the stand-alone
EM-PIC solves and when coupled to EMPIRE-Fluid. Currently for EM-PIC, EMPIRE is using
a Leapfrog scheme for particle advances and a backward Euler implicit stepper for the electro-
magnetic field solves. The expectation is for components to provide a larger selection of routines
including higher-order methods and IMEX capabilities for coupling with the fluids code.

As part of this milestone, the Tempus time-integration package in Trilinos is being integrated
into EMPIRE and run on several problems of interest. The current list of development tasks for
this milestone includes

• Implement Leapfrog stepper as a general capability in Tempus.

• Integrate Tempus into EMPIRE.

• Evaluate accuracy and performance on a simple unit tests.

Additionally, Tempus has current and developing capabilities that will be of use in the future to
EMPIRE.

• Partitioned IMEX scheme stepper (EMPIRE-Hybrid)

• Provide second time-derivative steppers (second-order electromagnetic solves)

• Sensitivity analysis

• Embedded error analysis (variable tirne-stepping)

Tempus has many contributors for the capabilities reported below, and they include

• Integrating Tempus into EMPIRE - Roger Pawlowski, Edward Phillips, Curtis Ober

• Partitioned IMEX scheme stepper - Eric Cyr, Curtis Ober

• Provide second time-derivative steppers - Irina Tezaur

• Sensitivity analysis - Eric Phipps

• Embedded error analysis - Sidafa Conde

33

3.1 Background

Tempus is a software framework that provides a general infrastructure for the time evolution of
ordinary-differential equations (ODEs), and partial-differential equations (PDEs) through a vari-
ety of general integration schemes, which can range from small systems of equations to large-scale
transient simulations requiring exascale computing. Examples of time-integration methods avail-
able are

• Forward Euler

• Backward Euler

• Backward Differentiation Formula (BDF2)

• Leapfrog

• Trapezoidal

• Explicit Runge-Kutta

• Diagonally Implicit Runge-Kutta (DIRK) methods

• Newmark-P

— Explicit A-form

— Implicit A-form

— Implicit D-form

• Hilber-Hughes-Taylor (HHT-a)

• Implicit/Explicit Runge-Kutta (IMEX-RK) methods

• Partitioned IMEX-RK methods

• First-order Operator Split

Forward sensitivity analysis is available for many of these steppers, and the Runge-Kutta meth-
ods have embedded error analysis capabilities to support variable time-step control. More details
are provided in later sections.

The above milestone tasks fall into two categories, (1) developing and testing capabilities with
Tempus for future use, and (2) demonstration of some these capabilities within EMPIRE. In the fol-
lowing sections, we discuss the Tempus and EMPIRE tests used for order of accuracy assessment
and their associated results.

34

3.2 Tempus Tests

The following tests cover a wide range of time-integration needs (linear equations with analytic
solutions to nonlinear equations and second-order ODEs), and are extensively used in Tempus
testing. Here we give a description of each test used in testing the steppers discussed in later
sections.

3.2.1 SinCos Test

This second-order ODE is a canonical Sine-Cosine differential equation

R = —x

with a few enhancements, which can also be used to test a system of first-order ODEs. We start
with the exact solution to the differential equation

xo(t) = a + b* sin((fIL) * t + 0)

xi (t) = b * (f 1 L) * cos((f 1 L) * t + 0)

then the form of the system of first-order ODEs is

dt
—
d
xo(t) = xi (t)

2
d (f
vi(t) = 1) (a — xo(t))

where the default parameter values are a = 0 , f = 1, and L = 1, and the initial conditions

xo(to = 0) = yo[= 0]

xi (to = 0) = yi [= 1]

determine the remaining coefficients

0 = arctan(((f/L)/Yi) * (Yo — a)) — (f/L)*to[= 0]
b = 711 ((f 1 L) * cos((f 1 L) * to + OM= 1]

A typical solution for the SinCon test is shown in Fig. 3.2.

3.2.2 Partitioned van der Pol model

This problem is a canonical equation of a nonlinear oscillator [7, pp. 111-115] [8, pp. 4-5] for
an electrical circuit. In implicit ODE form, g.(X, x, t) = 0, the scaled problem can be written as

4(0 —xi (t) = 0

ici(t) — [(1 —4)xi —xo]ls=0

35

where the initial conditions are

xo(to = 0) = 2

xi (to = 0) = 0

and the initial time derivatives are

jco(to = 0) = xl(to = o) = 0

.ti. (to = 0) = [(1 —4)xi —xo]/E = —2/e

This test can also be used for a partitioned IMEX-RK time stepper. We need to rewrite this in the
following form

M(z,t) t + G(z, t) + F (z,t) = 0,

W(t,z,t) + F (z,t) = 0,

where Wt,z,t) = M(z,t) t + G(z,t), M(z,t) is the mass matrix, F(z,t) is the operator representing
the "slow" physics (and evolved explicitly), and G(z, t) is the operator representing the "fast"
physics. For the van der Pol problem, we can separate the terms as follows

z =
{ y } _ { xo ,

F (z
,
t) —

 FY (x,y,t) 1 = { —xi
x xi } Fx(x,y,t) xo/E

and

}
0

G(z,0 = G4,y,t) 1 { —(1 —x6)xt/E 1

where M(z, t) = I is the identity matrix.

Thus the explicit van der Pol model formulated for the partitioned IMEX-RK is

FY(x,y,t) = 4(0 — xi (t) = 0

Fx (x,y,t) = .ii(t) + xo/ E = 0

and the implicit van der Pol model formulated for the partitioned IMEX-RK is

Gx (x,y,t) = .ii(t) — (1 — x6)xi / E = 0

Noting that GY (x,y,t) = 4(0 = 0 is not needed. In Figure 3.1, a typical solution is shown.

3.2.3 Damped Harmonic Oscillator Test

Consider the ODE:

in1+&+kx= f

36

Figure 3.1: Tempus time integration of Van der Pols strange attractor and limit cycle. All initial
conditions reach the limit cycle (green), either from small initial values (blue) or large initial values
(red).

where k> 0 is a constant, c is a constant damping parameter, f is a constant forcing parameter,
and m> 0 is a constant mass parameter, with initial conditions are:

x(0) = 0

X(0) = 1

It is straight-forward to show that the exact solution to this ODE is:

x(t) = t(1+ 0.5ft), if k=c= 0

(e
2

- f(1 — e-ct) + if k=0,c0

= i sin(Nrict) + (1 — cos(4Tz)) , if k> 0,c = 0

where e c/m, k k/m and f f/m. While it is possible to derive the solution to this ODE for
the case when k> 0 and 0, we do not consider that case here. When c=k= 0, m= 1, and
f= —1, our ODE simplifies to a canonical differential equation model of a ball thrown up in the
air, with a parabolic trajectory solution, namely

x(t) = t(1 — 0.5t)

where tc [0, 2]. When c= f= 0 and m = k=1, this test is equivalent to the SinCos model.

37

3.3 Results

Here we show results for new steppers available for EMPIRE, and have been demonstrated
with Tempus regression and verification testing. We also show that EMPIRE can utilize several
steppers and achieve higher-order time integration.

3.3.1 Tempus Results

3.3.1.1 Leapfrog Stepper

The Leapfrog stepper is used to solve the following governing equation

+Ke+1 = F (tn+1) (3.1)

which is similar to the governing equation for Newmark-f3, except C = O. Solving Eq. (3.1) for
in+1

jin+1 = 1\4_1 [F(tn+1) KX11+1] = f(Xn+l,tn+1)

we can note that this is an explicit update for xn+1- . The familiar steps to solve this can be written

xn+1 = xn Atnin+1/2

j in+ = f (xn+ tn+1)

in+3/2 kn+1/2 +Atne+1

To start up Leapfrog, we need to take a half step for

• n+1/2 • n x = x Xn
2

where kn = f tn), and similarly to finish a time step, we only need to take a final half step for

X
•
= X

n+1 •
+

n+112 -n+1x
2

In Figure 3.2b, the order of accuracy for the Leapfrog stepper is shown over several orders of
magnitude.

3.3.1.2 Partitioned IMEX Stepper

Partitioned IMEX-RK [9, 10] is similar to the IMEX-RK, except a portion of the solution only
requires explicit integration, and should not be part of the implicit solution to reduce computational
costs. Again our ODE can be written as

M(z,t)t G(z,t) + F (z, t) = 0,

W(t,z,t) + F (z, t) = 0,

38

1

0.8

cs 0.6
17,

u) 0 4

0 2

0

a)

Exact x0
Exact x1

0 0 2 0.4 0.6
Time

0.8

b)
103 102
Time-Step Size

10'

Figure 3.2: a) Exact solution for the SinCos test, and b) the order of convergence for the Leapfrog
stepper.

but now

z =
y

, F (z,t) = and G(z,t) = 13
,y,t) 1Fx (x,y,t) Gx (x f

where z is the product vector of y and x, F (z,t) is still the "slow" physics (and evolved explicitly),
and G(z, t) is still the "fast" physics (and evolved implicitly), but a portion of the solution vector, y,
is "explicit-only" and is only evolved by FY (x, y, t), while x is the Implicit/Explicit (IMEX) solution
vector, and is evolved explicitly by Fx(x,y, t) evolved implicitly by Gx (x,y,t). Note we can expand
this to explicitly show all the terms as

M Y (x,y,t)))+ FY(x,y,t) = 0,

Mx (x,y,t).t + Fx (x,y,t) + (x,y,t) = 0,

or

ff, gx° - °
where

fY (x,y,t) = MY (x,y, 0-1 FY (x,y,t)

fx (x,y,t) = Mx (x,y,t)-1 Fx (x,y,t)

gx (x,y,t) = (x,y,t)-1- (x,y,t)

or

f (x,y,t) +g(x,y,t) = 0,

where f (x,y,t) = M(x,y,t)-1 F (x,y,t), and g(x,y,t) = M(x,y,t)-1 G(x,y,t). Using Butcher tableaus
for the explicit terms

c A
bT

and for implicit terms

39

c A
bT

the basic scheme for this partitioned, s-stage, IMEX-RK is

Zi = zn_i- f(zi,Fi)- At aii ai,ti) for i = 1 ... S,

Zrt = Z17-1 At E1-1 f(4,1i)+bi ahti)]

or expanded

Yi Yn-1 - At aii P (Zi,
Xi xn_1 - At L',711 r(zhf;)- Lii_l ajj ec(4,,tj)

Yn Yn-1 - At Ei_1 P Fi)
xn xn_l- AtELi[bi fx(Zi,fi)+ bi gr'' (4,01

where îi = t„_ ot and ti = tn_1 + ciAt.

1o 2

103

105

106

10'

First Order IMEX-Part
o SSP2 IMEX-Part
o IMEX-Part ARS (2,3,3)

Expected Slope

103 10 2
Time-Step Size

for i = 1 . . . s,

for i = 1 . s,

Figure 3.3: Order of convergence for the partitioned IMEX-RK stepper with the partitioned van
der Pol test.

3.3.1.3 HHT- a Stepper

Here, the HHT-Alpha scheme in predictor/corrector form (see equations (10) and (13)-(19) in
[11]) has been implemented in Tempus by Irina Tezaur. There are three parameters in the scheme:
af, and y, all of which must be in the range [0, 1]. When af = 0, the scheme reduces to the
Newmark-13 scheme (see Tempus::StepperNewmark for details). Like the Newmark-13 scheme,
the HHT-Alpha scheme can be either first or second order accurate, and either explicit or implicit.

The Hilber-Hughes-Taylor (HHT-a) a-method evolves the following governing equation

min+i +Cin+l-af KXn+l—af =F (tn+l—af)

40

(3.2)

Note that in the original formulation [12] a = —af . The HHT-a method is second-order accurate
and unconditionally stable if

p = -4 (1 + af)2
1

= —2 + af

If af = 0, the HHT-a method is the trapezoidal rule.

10°

10-1

io-2

L10-4

io 5

lo-6

Explicit CD HHT-u
• First Order HHT-u

!--0> Second Order HHT-u
Expected Slope

lo
i
7
o 4 103 102

Time-Step Size
10'

Figure 3.4: Order of convergence for the HHT-a stepper with the SinCos test.

3.3.1.4 Newmark Stepper

Here, the Newmark scheme in predictor/corrector form (see equations (34)-(35) in [13]) has
been implemented in Tempus by Irina Tezaur. Newmark is second order accurate if 7 = 0.5;
otherwise it is first order accurate. Some additional properties about the Newmark scheme can be
found at http://opensees.berkeley.edu/wiki/index.php/Newmark_Method.

Newmark has two parameters: p and y, both of which need to be in the range [0, 1]. Newmark
can be an explicit or implicit method, depending on the value of the p parameter. If p = 0, the
method is explicit. Regardless of whether the method is implicit or explicit, a linear solve is
required. This linear solve can be optimized, however, for the explicit case by lumping the mass
matrix.

The Newmark-I3 method [14] can be obtained from the HHT- a method by setting at = 0 and
evolves the governing equation

min+1 +C rz+1+Kxn+1 = F (tn+i)

41

(3.3)

The Newmark-P method is second-order accurate and unconditionally stable if

0.5

0

o
17.
m-0.5
O
Ci)

-1

-1.5

a)

R

4
1

7 = 2

x

xDot
xDotDot

0 0.5
Time

1.5 2

10°

10'

102

2
10-3

Ltio 4

105

106

10'
1 0-4

b)

First Order Newmark
Second Order Newmark
Expected Slope

io 3 10 2 10 1
Time-Step Size

Figure 3.5: Order of convergence for the Newmark stepper with the Harmonic Oscillator test.

3.3.1.5 Operator-Split Stepper

10°

This stepper is a stepper of steppers and allows applications to create a sequence steppers and
their associated ModelEvaluators, which will be executed in-order to obtain a first-order splitting.
This can be written as a composition

10= (fogoho...)(e-1) (3.4)

where for the functions f , g, and h, the following sequence of evaluations would be applied

x* = h (e-1)
x.. ,g(x*)
xn = f (x**)

In EMPIRE, there are two PIC steppers (explicit and implicit), an electrostatic stepper, and an
electromagnetic stepper. The PIC steppers and an electrostatic stepper are utilizing their EMPIRE
implementations. The electromagnetic stepper can use any of the Tempus steppers available, and
are demonstrated in the following section.

42

3.3.2 EMPIRE Results

Currently, Tempus reproduces the same results on almost all the EMPIRE tests within the re-
gression tolerances, using Tempus' Backward Euler stepper. Four of these tests have been selected
to maintain coverage for Tempus integration

• LangmuirWave Test - sets up a standing Langmuir wave by perturbing the velocity at t = O.
This problem exercises particles using explicit time stepping with electrostatics.

• ImplicitSlab Test - sets up an expanding slab of plasma integrated in time using an elec-
trostatic finite element extension of the Energy Conserving Semi-Implicit Method from
Lapenta, G. "Exactly Energy Conserving Implicit Moment Particle in Cell Formulation."
JCP 2016. This problem exercises particles using implicit time stepping with electrostatics.

• OscillatingEFieldlD Test - more details below.

• EMWaveInPlasma3D - this test is of a TEM microwave propagating in a plasma. The deriva-
tion of this test was taken from section 4.12 of "Introduction to Plasma Physics and Con-
trolled Fusioe, 3rd edition, by Francis F. Chen. This problem exercises particles with elec-
tromagnetics.

3.3.2.1 OscillatingEFieldlE0 Test

From the test description, this test exercises basic electromagnetic behavior without particles
on a (quasi) 1D domain. It simulates a single cycle of a half wavelength of a sinusoidal wave. The
characteristics of the wave are

• wavelength: 2 meters

• velocity: 299792458.0 meters / second (speed of light, c)

• period: 6.67128190396304e-09 seconds

The general solution for the E-field and B-field is

Eo(x,y,t) = 0.1 x 1010

El(x,y,t) = 1.0 x 1010 sin(trx)cos(cirt)

B(x,y,t) = —1.0 x 1010 cos(gx)sin(ctrt)1 c

The E0 component is set to a non-zero constant to decrease numerical noise for the purposes of the
test.

In Figure 3.6a, the final solution is shown for the OscillatingEField1D Test, which is easily
compared against the initial conditions since the solution is periodic. In Figure 3.6b, the order of
accuracy is shown for a variety of Tempus steppers, ranging from first through fifth order.

43

a)

E_FieldY
1 1E+10

8E+09
6E+09

I 4E+09
2E+09
0
-2E+09
-4E+09
-6E+09
-8E+09
-1E+10

b)

10

105

10

103

105

Tempus Convergence of E-Field

st order

2nd order

3rd order

4th order

— 4th order •

5th order

16="

Reference slopes
ERL,PILEr-d EBEB w r

SM'DPIRl icK'LM-Stb olient2nd o rde r
SDIRK A-Stable 4th order
SDIRK 2 Stage 3rd order
SDIRK 5 Stage ath order
SDIRK 5 Stage 5th order

1C°
dt

Figure 3.6: a) Solution to OscillatingEField1D test, and b) the order of accuracy for various step-
pers.

The Tempus Backward Euler results match the EMPIRE Backward Euler to four digits, includ-
ing the non-asymptotic region at large At. The convergence plateaus for the fifth order method. It
is believed that this is due to numerical precision for this problem.

It should be noted that the higher-order methods are currently only available on a feature
branch. It is expected that this branch will be merged before the end of FY2018. This delay is
primarily due to the rapid development of EMPIRE and the changing interfaces to the time loop
and ModelEvaluators.

3.4 Tempus Features Available for EMPIRE

There are a couple features that are available for future use by EMPIRE: embedded Runge-
Kutta methods for time-step control, and sensitivity analysis.

3.4.1 Explicit Runge-Kutta Embedded Pairs

Explicit Runge-Kutta Embedded Pairs have been developed and implemented in Tempus by
Sidafa Conde. These methods share their stages and typically differ in order. Therefore, let us
assume that the vectors b and b correspond to order p and fi, respectively. In general the assumption
is p < p. However, in practice typically we assume that p = p — 1. The Butcher tableau of an ERK
method and its embedded pair is given in Table 3.1. Some well-known embedded RK methods can
be found in [7].

44

C2 a21
C3 a31 a32

Cs asi as2 as,s-1

bT bT1

bTs-1
T

"s-1

bTs
b5T

Table 3.1: The Butcher tableau of an ERK method and its ernbedded pair.

Embedded RK methods are crucial for automatic step size control, i.e. the method automati-
cally chooses the step size in each step. Let us consider the numerical solutions un+1 and an+1 with
order p and p — 1, respectively. Taking into account ERK methods and their embedded pairs we
have an approximation for the global error vector which is denoted by "en±i. It can be calculated as

en+1 = un+1 an+1 = At E (b1 — F(y1).
J=1

The above formula shows that the Butcher form is efficient from the programming point of view.

The global error of the order p — 1 method can be approximated by the term M(At)P, where
M is an appropriate constant. On the other hand, from the local truncation errors we can conclude
that I M(At)P. Therefore, if the relation Ien+11 ien+11 < E holds in case of a given tolerance E > 0,
then we accept the numerical solution an+1. Otherwise, we have to choose a new step size Atnew.
In this case we have the relation 67-0. M(Atnew)P < E. Since 1-11+1 M(At)P, it implies that

M(At„w)P < E

I

M(At)P en+1•

Hence, it requires the condition

PAtnew := At (
n+1

In Figure 3.7(top), the solution to the van der Pol problem is shown with error-controlled time-
step selection. As the solution varies, the time-step is appropriately changed to maintain an error
tolerance. In Figure 3.7(bottom), the time-step initially increases due to the near steady state of the
solution. As the solution varies, the time-step decreases to maintain the error tolerance, and then
again increases with the near steady state.

3.4.1.1 Time-Step Control Strategies

There exists a variety of error control algorithms. Tempus has the following error control
strategies:

45

2.5 -

0.0 -

-7.5 -

-10.0 -

-12.5 -

-15.0 -

-17.5
0.00 0.25 1.00 1.25 L50 L75 2.00

10-1 -

10 -

0.00 0.25 0.;0 0.75 1.00 1.25 150 2.00

Figure 3.7: Solution to the Van der Pol problem (top) with error-controlled time-step size selection
(bottom).

Proportional-Integral-Derivative Controller (PID)

(At)n+i = (At) n (e n ki /13 ekn22 f e ;_k31

Proportional-Integral Controller (PI)

(At)n+i = (At)„ ekn2_/ 1/3)

Integral Controller (I)

(At)n+1 = (At)n I en kl/nl

(3.5)

(3.6)

(3.7)

In Figure 3.8, the work-precision diagram is shown. Using the PID controller, the accuracy is
very close to the prescribed tolerance (top figure). As the tolerance changes, the number of time
steps (and the work) also changes (bottom figure), and thus the controller is behaving as expected.

3.4.2 Transient Adjoint Sensitivity Capabilities

Transient adjoint sensitivity capabilities have been developed in Tempus by Eric Phipps for
embedded optimization and uncertainty quanification (UQ), and provides analytic, transient ad-
joint sensitivity capabilities to all Trilinos users through the Tempus time integration package.

46

10,

10-2

10-3

10 4

w 10 -5

lo -6

10 -7

10'

irP

10-8 10-. 10-5

tolerance

10-a 10-3 10-1

lf-6 10-5

accuracy

Figure 3.8: Work-Precision Diagram. Accuracy of the solution as a function of tolerance (top fig-
ure), and the number of time-steps as a function of accuracy (bottom). Both trends are indications
of a working time-step controller.

Both forward and adjoint sensitivities are available. For large-scale optimization problems, adjoint
sensitivities enable efficient large-scale optimization, UQ, and derivative computation.

Forward, adjoint, and pseudo-transient (forward/adjoint) sensitivities are supported in Tempus
for most time integrators. Additionally, ROL reduced-space interface leveraging these sensitivities
is available, which enables transient embedded optimization. Lastly, a ROL full-space interface
nearly complete.

In Figure 3.9, forward and adjoint convergence is shown BDF2 forward transient solution and
adjoint sensitivity applied to an analytic test problem. The expected second-order convergence is
demonstrated. Coverage for these capabilities is supported through multiple regression tests.

3.5 Discussion

Incorporating Tempus into EMPIRE provides access to a variety of time-integration capabil-
ities, ranging from standard time integrators (e.g., Backward Euler) to high-order Runge-Kutta
methods to operator-split and IMEX methods. Additionally, Tempus is able to integrate second-
order PDEs with several methods. For Explicit Runge-Kutta methods, Tempus has embedded
algorithms for error control, which include several time-step control strategies. Tempus can also
calculate forward, adjoint and pseudo-transient senstivities.

During the 2018 fiscal year, Tempus was incorporated into EMPIRE, and was able to reproduce

47

Forward and Adjoint Convergence
le

o

---Adjoird Error
--Forward Error

1 0
-2

A t
10

-1

Figure 3.9: Forward and adjoint convergence for transient sensitivity.

EMPIRE's Backward Euler capabilities. Only a few tests are not currently passing and require
investigation to determine the cause. Four of EMPIRE's tests that span the PIC and E-field solves
are currently providing coverage for Tempus capabilities.

Higher-order time integration has also been demonstrated in EMPIRE with Tempus, but still
requires merging into the head of the repository. It is expected that this will occur before the end
of the fiscal year.

Follow on work will include integrating Tempus into the EMPIRE-Fluids and EMPIRE-Hybrid
codes. As mentioned earlier the partitioned IMEX schemes are targeting the EMPIRE-Fluids
to evolve the hydrodynamics explicitly while the second time derivative steppers (HHT-a and
Newmark-13) are targeting research on alternate formulations in the EMPIRE-PIC code. We note
that the second time derivative stepper development is already being leveraged by a separate ASC
funded code (Albany/LCM), used for solid mechanics research.

48

Chapter 4

Verification

The overall verification effort for EMPIRE is an integral part of maturing the codebase with
regards to code verification (finding bugs) and solution verification (building confidence in the
implementation). Throughout this chapter, when we discuss verification we are referring to solu-
tion verification. Oberkampf and Roy [15] state: "Solution verification addresses the question of
whether a given simulation (i.e., numerical approximation) of a mathematical model is sufficiently
accurate for its intended use." This chapter does not discuss the efforts of developers to develop
unit tests that cover the whole codebase, although that is a crucial part of the verification process.

4.1 Verification Testing Methodologies

In the EMPIRE test suite, we have three general classes of verification tests:

Regression test A test with an accepted 'gold' solution that is used to detect when code behavior
changes. These often have very tight tolerances (generally to less than one part per million)
to detect minute changes in behavior.

Analytic test A test with a known analytic solution that ensures that the code is reproducing
known physical behavior to acceptable levels of accuracy. These tests often have looser
tolerances than regression tests to allow them to run in a reasonable amount of time.

Convergence test A set of tests that incrementally refine the simulation in space and/or time to
determine the actual convergence rate to an analytic solution for a given set of physics.

Some verification tests are able to span all three categories by having one criteria that detects
if the behavior has changed compared to a known solution within the acceptable level of accuracy
(a regression and analytic test), and then for a longer test, the simulation can be run two or three
times and a convergence rate calculated and compared with the theoretical value.

The regression tests are generally run using the ct est utility and are curated to be run quickly
and in a development environment. The longer analytic and convergence tests are generally run
using the vvt e s t utility, which was developed specifically for verification and validation of sci-
entific computing codes. By using vvtest, the analysis of the simulation can be more in-depth

49

and nuanced than is typically done with regression tests and the metrics can be more concrete.
Some examples of more concrete metrics include: deviations from particle paths, particle velocity
distributions, and the frequency or amplitude profile of EM waves.

4.2 Case Study: TEM Wave in Plasma

As a case study of one of the verification tests currently in the EMPIRE test suite, we will
look at an infinite, planar TEM wave traveling through an infinite neutral plasma. This problem
was chosen because it is an electromagnetic example problem that has the electromagnetic field
interacting with the plasma and, with a few assumptions, has an analytic solution.

4.2.1 Analytical Solution

The following equations of the analytic solution come from Chen [16], where the differences
between a TEM wave in a vacuum and in a plasma, holding the wave vector constant, are derived.

For this problem, the controlling parameters are the number density of the plasma no = 1015m-3,
the maximum magnitude of the electric field Emag = 100 V/m (typical airport radar at — 3 m), and
the vacuum frequency of the EM wave fv ,'=2, 1.420 GHz with co, = 27rf, (the microwave hydrogen
line).

For this problem, two assumptions were made: first, that the EM wave is of such high frequency
that the ions are assumed stationary, and second, that the J x B forces on particles are negligible.
This means that the electrons are assumed to only oscillate linearly in the plane of the electric field
(in reality, they trace elongated ovals in that plane).

The plasma frequency is

=

2noq
 1.784 x 109 rad/sec
meEo

(4.1)

with q being the elementary charge, me is the electron mass, and 41 the vacuum permittivity. This
result can be used to find the actual frequency of the wave in the plasma

1
f = =

±
(0v(0p

2 2 1 448 GHz

which equates to a 1.9% frequency shift from the wave in a vacuum.

(4.2)

Because the wave is an infinite, steady wave, we can calculate the constant phase velocity

vp = fc~1.02c>c

50

(4.3)

which is always greater the speed of light in a vacuum and corresponds nicely to the 2% frequency
shift from above.

The maximum initial electron velocity is

ve =
qEn,
 ag ,c-..,- 1, 932.5 m/s
mew

and is initialized in phase with the electric field.

(4.4)

The maximum magnitude of the magnetic field is defined to be congruous with the magnitude
of the electric field

X Ernag (no q2
+ CO '-,-', 3.53 x 10-7 T. (4.5)

Binag 27r c2 me EO 0)

4.2.2 Computational Description

Based on the analytic derivation above, the computational description is straightforward. The
problem is set up on a 3D domain with periodic boundary conditions in each direction, essentially
giving an infinite spatial extent for the planar wave. The EM wave is traveling aligned to the Z-axis
of the computational mesh, with most of the computational elements spanning the Z-direction. The
lateral directions (X- and Y-directions) each have a constant 4 elements, regardless of refinement
level. The elements are defined to be cubes, which implies that the computational domain con-
tracts with refinement. The time step is fixed throughout a simulation (i.e., there is no time step
adaptation), but it does decrease with increasing refinement levels.

The CFL number of the simulation decreases as the simulation is refined because the algorithms
presently implemented in EMPIRE are theoretically second-order accurate in space and first-order
accurate in time. The CFL number can be calculated for a given refinement level r by

cAt cTNe0 A/1,r 0.49
CFL = = (4.6)

Ax A'NtO 2r A5

where c is the speed of light, T is the period of the wave, Nei) is the unrefined number of elements
in the longitudinal direction, Nto is the unrefined number of time steps for a single period, and X
is the wavelength of the wave in the plasma. If the spatial and temporal convergence orders are
equal, the CFL number would then be constant upon refinement.

Because the ions are assumed stationary, they are forced to be immovable in the simulation
as a way to speed up the computations. The initial electron velocity is confined to the transverse
direction in the plane of the electric field.

4.2.3 Discussion of Results

The primary system response quantity (SRQ) for this simulation is the Lint- norm of the E-field
error after one full oscillation. The error is primarily due to discrepancies in the Ey component (the

51

u

100

75

50

25

-25

-50

-75

-100

Solution

refine=0

refine=1

refine=2

refine=3

refine=4

refine=5

refine=6

-0.10 -0.05 0.00

Z-Position [m]
0.05 0.10

Figure 4.1: Convergence of the Ey field after one full oscillation upon spatial and temporal refine-
ment. These simulations were run with 320 particles per cell. This demonstrates visually that the
simulation is converging to the correct solution.

Ex and Ez components are zero by comparison). Figure 4.1 shows the convergence of the final Ey
fields for several simulations.

To address the assumption about electron motion, the particle velocities at the final time step
were analyzed (see Figure 4.2) for induced motion perpendicular to the E-field direction. The max-
imum velocity in the E-field direction was found to be 1, 946 m/s, while the maximum velocities
in the other directions were 20.3 m/s and 13.6 m/s, a difference of about 1%.

To address the assumption about immobile ions, another simulation was run where the ions
were allowed to move. No detectible velocity was present at the final time step.

4.2.4 Convergence

The convergence analysis was performed according to the refinement schedule found in Oberkampf
and Roy [15] for analyzing spatial and temporal order verification using only two numerical so-
lutions. The benefit of their refinement schedule is that it allows analysis of both space and time
convergence simultaneously against a theoretical convergence rate.

The TEM wave in a neutral plasma problem has been run seven times at different refinement
levels with the Li, f norm of the E-field error being the SRQ of interest. As the convergence
methodology does not consider the number of computational particles used in PIC codes, this
convergence process was repeated five times a different number of particles per cell in each run.
The results of this analysis can be found in Figure 4.3. The most refined simulation took about half
an hour on 16 cores.

As the number of particles per cell increases, the convergence rate approaches the theoretical

52

1.0

VX
0.5 —

0.0

0.0050 —

0.0025 —

0.0000 —

1.0

- vY

0.5 —

0.0

— VZ

0 250 500 750 1000 1250 1500 1750 2000

Electron Velocity Magnitude (m/s)

Figure 4.2: A plot showing the PDFs for the magnitude of the electron velocity for each velocity
component. It demonstrates that the assumption that the electrons move very little out of the E-field
plane is valid.

— particles/cell=20

— particles/cell=40

— particles/cell=80

— particles/cell=160

— particles/cell=320 1

0 2 3 4

Refinement Level
5 6

Figure 4.3: A convergence plot for the TEM wave in plasma test depicting the Linf norm of the
E-field error versus the refinement level (analytic values for Ey vary up to 100V/m). The gray lines
represent the expected slope of the error for second-order space and first-order time. Several curves
are presented, each with a unique constant number of particles per cell. Note how the convergence
behavior approaches the theoretical rate as the number of particles per cell is increased.

53

values of second order in space and first order in time that we would expect from EMPIRE. It is
interesting to see how the convergence rate levels off for the simulation series with lower particle
per cell values. This effect demonstrates the accuracy limits for this simulation as a function of
discretization error in the particle field.

4.3 Case Study: Langmuir waves and Landau Damping

Langmuir waves are longitudinal waves that can be simulated both electrostatically and electro-
magnetically. For the example in the report the waves are simulated electrostatically. The damping
behavior of the waves depends on wavenumber• small wavenumbers (large wavelengths) are not
damped, but large wavenumbers (short wavelengths) are collsionalessly damped. The convergence
of both will be shown in this report. Landau damping is a kinetic effect that depends on the shape
of the distribution, especially at the phase velocity, vp = co/k, of the longitudinal wave. Landau
damping occurs when there are more particles just below the phase velocity than just above the
phase velocity. As the wave speeds-up more particles than it slows-down, the wave transfers en-
ergy to the particles. The theory that EMPIRE is compared to is based on small amplitude waves;
for a wave with a larger amplitude, the volume in phase space is increased, which includes more
particles. It will be shown that as the amplitude is decreased EMPIRE does converge to the small
amplitude theoretical limit, but the convergence is less expensive numerically to run in a larger
amplitude regime. Nonlinear Landau damping is still an open research question, see Mouhot and
Villani [17] or Herr [18].

4.3.1 Analytical Solution

The details of the calculation of the longitudinal dispersion relation is in textbooks such as
Chen [16], Nicholson [19], and Bittencourt [20], so will not be reproduced here. The dispersion
relation can be written as:

k2 + 1+ WTrCe—C2 (1 + erf(iC)) = 0, (4.7)

where k is the wavenumber normalized to the Debye length, la,d, C is the normalized phase ve-
locity, C = co/(k0.), erf is the error function, and w is the frequency normalized to the plasma
frequency, co/cop. When C is small the dispersion relation can be approximation as:

w2
=

1 + 3k2 (4.8)

wi =
Or/8 1 3

2)
(4.9)exp

(

k3 2k2

The dispersion relation is shown in Fig. 4.4. It should be noted that (4.9) is accurate enough for
the Langmuir wave, but not accurate enough for the Landau damping example that is at a larger
wavenumber.

54

Table 4.1: Simulation parameters for the Langmuir wave and Landau damping cases.

Parameters Langmuir Wave Case Landau Damping Case

Electron Density 1 x 1014 m-3
Wavelength/Length of the system 5 cm

Plasma Frequency (fp) 89.786628 MHz
Plasma Period 11.13751591 ns

Electron Temperature 2 eV 10 eV
Debye Length 0.1051315096 cm 0.2350784418 cm

Table 4.2: Wave parameters for the Langmuir wave and Landau damping cases.

Parameters Langmuir Wave Case Landau Damping Case

law 0.1321121513 0.2954082823
Re(co/cop) 1.0268090997 1.154502855
Iing(0)/cop) —2.06944 x 10-11 —0.01119157

Re (C) 0.0959218 0.241159
Wave Kinetic Energy vperturbat ion 11)t

0.1 eV 0.316229 0.141423
0.01 eV 0.1 0.044722
0.001 eV 0.0316229 0.0141423

55

u.

1 4

10

- Exact Solution

— Approximate Solution, o?=1,31e

0.1 0.2 0.3
Normalized Wavenumber (0.0)

0.4 0 5

- Exact Solution
— Approximate Solution

~-0.05 —

-a,L

1
Z 0 15 —

0.1 0.2 0.3
Normalized Wavenumber (kid

0.4 0.5

(a) Real part of the dispersion relation showing the ex- (b) The imaginary part of the dispersion rela-
act solution and an approximation, co2 = 1 3k2 . tion showing the exact solution using the Daw-

son integral and a cominon approximation, coi =
Or/8/k3 exp(— 1 / (2k2) — 3/2). Since the imaginary
term is negative in 0.) it leads to temporal decay of the
wave amplitude.

Figure 4.4: Real and imaginary parts of the dispersion relationship. The approximation is more
accurate for small k values. The convergence analysis is done for two values of k: one near
k = 0.13, where the damping of the wave is small (negligible), and the other near k = 0.3, where
the damping of the wave is large.

56

4.3.2 Convergence

For the undamped Langmuir wave, shown in Figures 4.5 and 4.6, the real frequency converges
(Fig. 4.5) at second order as the mesh is refined, at first order as the number of particles is increased,
and at second order as the time-step is decreased, as is expected in standard PIC [1]. In each case,
since the other two quantities are fixed, convergences is not to the exact result, but is limited by
the discretization error in the other two numerical quantities. Also shown in these plots is the
convergence rate as the size of the wave perturbation is decreased. As the perturbation decreases
it becomes harder to resolve the simulations, specifically in Fig. 4.5(b), where the number of
particles needed for the simulation to be in the basin of convergence is increased as the perturbation
magnitude is decreased. As for the imaginary part of the the frequency, shown in Fig. 4.6, the plot
still show convergence to the theoretical value, in this case near zero. In this case, the error is
dominated by the number of particles used. The damping term converges at first order in time and
with number of particles, and at second order in space.

1.033

1.032

1.031

1.03

1.029

1.028

1.027

1.026

Wave Perturbation 0.001eV
Wave Perturbation 0.01eV
Wave Perturbation 0.1eV

exact result -
2nd order

1.0272

1.0271

1.027

1.0269

1.0268

1.0267

1.0266

1.0265

1.0264

1.0263

1.0262

Wave Perturbation 0.001eV
Wave Perturbation 0.01eV —X— -
Wave Perturbation 0.1eV —X—

exact result —
1st order

16 32 64 128 256 512 1024 2048 8 10 12 14 16

Number of Tirnesteps per Period Log base 2 of the number of panicles per cell

(a) Convergence of the wave frequency as a function of (b) Convergence of the wave frequency as a function

18 20

At while keeping 212 particles per cell and the number of number of particles per cell while keeping At =
of cells at 128 per wavelength. 1/ (256fp) and the number of cells at 128 per wave-

length

1.028

1.026

1.024

1.022

1.02

1.018

1.016

1.014

1.012

1.01

1.008

1.006

Wnra Parimieltinn 111111,1V

'Wave Perlaation 0.0-MV —X— -
Wave Perturbation 0.1eV

exact result
2nd order

16 32 64 128 256 512

Number of Elements per Wavelength

1024 2048

(c) Convergence of the wave frequency as a function
of number of cells per wavelength while keeping 212
particles per cell and At = 1/ (256fp)

Figure 4.5: Convergence of the real part of the frequency of the Langmuir wave as a function of
At, number of cells, and number of particles per cell.

57

lr
na
gi
na
ry
 F
re

qu
en

cy
 (
Mp
)

0.0003

0.00025

0.0002

0.00015

0.0001

5x10-5

0

-5x10-5

-0.0001
16 32 64 128 256 512

Number of Timesteps per Period

Wave Perturb'ation 0.001eV
Wave Perturbation 0.01eV —X—
Wave Perturbation 0.1eV —)K— -

exact result —
1st order —

lr
na
gi
na
ry
 F
re

qu
en

cy
 (
M
O

0.0006

0.0005

0.0004

0.0003

0.0002

0.0001

-0.0001

-0.0002
1024 2048 8 10 12 14 16

Log base 2 of the number of particles per cell

Wave Perturbation 0.001eV
Wave Perturbation 0.01eV
Wave Perturbation 0.1eV

exact result
1st order

18 20

(a) Convergence of the imaginary part of wave fre- (b) Convergence of the imaginary part of wave fre-
quency as a function of At while keeping 212 particles quency as a function of number of particles per cell
per cell and the number of cells at 128 per wavelength. while keeping At = 1 / (256fp) and the number of cells

at 128 per wavelength

LL
97,

E

0.00035

0.0003

0.00025

0.0002

0.00015

0.0001

5x10-5

0

-5x10-5

-0.0001

Wave Perturbation 0.001eV —I--
Wave Perturbation 0.01eV —X—
Wave Perturbation 0.1eV

exact result —
2st order

16 32 64 128 256 512

Number of Elements per Wavelength

1024 2048

(c) Convergence of the imaginary part of wave fre-
quency as a function of number of cells per wavelength
while keeping 212 particles per cell and At = 1/ (256fp)

Figure 4.6: Convergence of the imaginary part of the frequency (growth or decay) of the Langmuir
wave as a function of At, number of cells, and number of particles per cell. The imaginary part
should be near zero. For these plots a positive number is a decay in the wave amplitude.

58

The Landau damping case, shown in Figures 4.7 and 4.8, show similar trends to the Langmuir
wave convergence. The real part of the frequency, Fig. 4.7, shows convergence with time-step size,
number of particles and mesh resolution; however, the solution is not as converged as it is for the
Langmuir wave. It is unclear why the Landau damping case needs more resolution for the same
accuracy. The imaginary part of the frequency is even harder to resolve. The simulations show a
weak convergence to the theoretical results. Part of this is because the larger amplitude waves are
showing convergence to a damping value near the theoretical value, getting closer to the theoretical
results going from a perturbation of 0.1 eV to 0.01 eV. For the 0.001 eV case, the imaginary part
of the frequency is converging in Fig. 4.8(a) to the same value as in the 212 particles per cell and
128 cell per wave length cases seen in subfigures (b) and (c), but because the amplitude is smaller
it is more difficult to resolve the wave.

Note that for computational expediency, it was chosen to perform these convergence studies in
each parameter with the other two parameters not at their most refined value. This is adequate to
determine convergence rates, but not for determining the converged solution value that EMPIRE is
predicting.

Figures 4.5-4.8 show (with some uncertainty) that the convergence is second order accurate
in time, second order accurate in space, and first order accurate in the number of particles. With
this you can construct a refinement schedule expanding on Oberkampf and Roy [15] analyzing
for spatial and temporal order verification using only two numerical solutions to three numerical
paramters. The benefit of this refinement schedule is that it allows analysis of both space, time,
and particle convergence simultaneously against a theoretical convergence rate. This is show in
Fig. /refrefinement. The refinement plot for the real part of Langmuir wave (a) is close to the
theoretical value for for all values of the wave amplitude. The refinement plot imaginary part
of the Langmuir wave (b) shows some systematic departure from the theoretical values. For the
larger wave amplitude is looks like the convergence has stalled for the last refinement value. For
the smallest wave amplitude the imaginary values is still converging; however, from this plot it is
unclear if there is a convergence floor or that the two larger amplitudes have stoped converging.
The refinement plot for the real part of the Landau damping case (c) the larger amplitude wave
is converging to a value near the small amplitude limit The smaller amplitude wave do show
convergence for all the refinement levels. For the 0.01 eV perturbation the error value has switched
sign between 3 and 4 refinement level. For the imaginary part of the frequency for the Landau
damping (d), the convergence is not as expected. For the largest amplitude, 0.1eV, the simulation
have converged to a nearby values. For the 0.01eV perturbation the error value has switched
sign between 0 and 1 refinement level and then is converging to a value near the small amplitude
theoretical value. The 0.01eV amplitude is converging to a value closer to the theoretical small
amplitude value than the 0.1eV amplitude wave value. The smallest wave amplitude simulated is
still converging, but the convergence rates is about half of that which is expected. There are still
some open question in how EMPIRE is converging for the Landau damping case and this will be
further investigated next year.

59

R
e
a
l
 F
r
e
q
u
e
n
c
y
 M
O

1.156

1.155

1.154

1.153

1.152

1.151

1.15

1.149

1.148

1.147

Wave Perturbation 0.001eV
Wave Perturbafion 0.01eV —X—
Wave Perturbation 0.1eV —X-

16 32 64 128 256 512 1024 2048

Number of Tirnesteps per Period

1.165

1.16

RI 1 155

LL

1.15

1.145

1.14

Wave Perturbation 0.001 eV
Wave Perturbation 0.01eV —X—
Wave Perturbation 0.1eV

exact result — -

1.135 6
8 10 12 14

Log base 2 of the number of particles per cell

16 18

(a) Convergence of the real part of the wave frequency (b) Convergence of the real part of the wave frequency
as a function of At while keeping 212 particles per cell as a function of number of particles per cell while keep-
and the number of cells at 128 per wavelength. ing At = 1/ (256fp) and the number of cells at 128 per

wavelength

R
e
a
l
 F
r
e
q
u
e
n
c
y
 (
f/
fp
)

1.17

1.165

1.16

1 155

1.15

1.145

1.14

1.135

1. 3

1.125
16

Wave Perturbation 0.001eV
Wave Perturbation 0.01eV —X—
Wave Perturbation 0.1eV —*—

exact result —

32 64 128 256 512 1024

Number of Elements per Wavelength

(c) Convergence of the real part of the wave frequency
as a function of number of cells per wavelength while
keeping 212 particles per cell and At = 1/ (256fp)

Figure 4.7: Convergence of the Langmuir wave frequency in the Landau damping case as a func-
tion of At, number of cells, and number of particles per cell.

60

lr
na
gi
na
ry
 F
re

qu
en

cy
 (
f/
fp
)

0.018

0.016

0.014

0.012

0.01 -

0.008 -

0.006

Wave Perturbation 0.01eV —X—
Wave Perturbation 0.1eV —X—

exact result -

)1(

16 32 64 128 256 512

Number of Tirnesteps per Period

1024 2048

lr
na
gi
na
ry
 F
re

qu
en

cy
 (
f/
fp
)

0.022

0.02

0.018

0.016

0.014

0.012

0.01

0.008

0.006 6

Wave Prturbation
Wave Perturbation 0.01 eV
Wave Perturbation 0.1 eV

exact result

8 10 12 14 16

Log base 2 of the number of particles per cell

18

(a) Convergence of the imaginary part of the wave fre- (b) Convergence of the imaginary part of the wave fre-
quency as a function of At while keeping 212 particles quency as a function of number of particles per cell
per cell and the number of cells at 128 per wavelength. while keeping At = 1/(256fp) and the number of cells

at 128 per wavelength

Im
ag

in
ar

y
Fr
eq
ue
nc
y

(f
/f
p)

0.018

0.016

0.014

0.012

0.01

0.008

0.006

0.004
16

Wave Perturbation 0.061eV —I--
Wave Perturbation 0.01eV —X—
Wave Perturbation 0.1eV —OE— -

exact result —

32 64 128 256

Number of Elements per Wavelength

512 1024

(c) Convergence of the imaginary part of the wave fre-
quency as a function of number of cells per wavelength
while keeping 212 particles per cell and At = 1/(256fp)

Figure 4.8: Convergence of the Langmuir wave damping frequency in the Landau damping case
as a function of At, number of cells, and number of particles per cell. For these plots a positive
number is a decay in the wave amplitude.

61

2-,

'g•

2-1°

LL

CL

Lf, 2-14

Wave Perturbation 0.001eV
Wave Perturbation 0.01eV —X—
Wave Perturbation 0.1eV

2-16 0

0.5 1.5 2 2.5

Refinement Level

3 3.5 4

23°

17 228

c
S 224
g

22°

2-

216

0 0.5 1.5 2 2.5

Refinement Level

Wa6 PerturbAon 0.001eV
Wave Perturbation 0.01eV —X—
Wave Perturbation 0.1eV

3 3.5 4

(a) Convergence of the real part of the wave frequency (b) Convergence of the imaginary part of the wave fre-
for the Langmuir wave case. quency for the Langmuir wave case.

2-4

26

I. 2

LL 2.1.

t 2-12

C171

2-14

Wave Perturbation 0.001eV
Wave Perturbation 0.01eV —X—
Wave Perturbation 0.1eV

0.5 1 Z 2 2.5

Refinement Level

3 3.5 4

Wave Perturbation 0.001eV
Wave Perturbation 0.01eV —X—
Wave Perturbation 0.1eV

0.5 1 1.5 2 2.5

Refinement Level

3 3.5 4

(c) Convergence of the real part of the wave frequency (d) Convergence of the imaginary part of the wave fre-
for the Landau damping case. quency for the Landau damping case.

Figure 4.9: Refinement plots for a Langmuir wave and and Landau damping.

62

4.4 Verification Conclusion

The two examples shown above shows how EMPIRE converges to theoretical solutions in two
different regimes; first for a cold fluid EM wave and then for a warm electrostatic wave with
and without kinetic effects. These are representative of the range of problems that EMPIRE can
solve. The results show the general trend that for electrostatic problems the time stepping and the
spatial discretization is second-order accurate and the convergence in number of macro particles
is first-order accurate, consistent with the theoretical rates of the numerical algorithms used. For
electromagnetics, the spatial discretization is second-order accurate and the time stepping and
convergence in number of macro particles is first-order accurate. A second-order electromagnetic
time integrator will be implemented in EMPIRE soon.

63

64

Chapter 5

1/0

HPC application performance is often hindered by the platform's I/0 subsystem because the
hardware simply cannot store data as fast as the application can produce it. Historically users have
not had many options to fix I/0 bound problems other than reducing the amount of data that is
made persistent. Fortunately, new platforms such as ATS-1 and ATS-2 feature Burst Buffer [21]
devices that provide sizable amounts of nonvolatile memory (NVM) for temporary storage. This
NVM provides a way for the platform to rapidly resolve periodic I/0 spikes that are common in
bulk synchronous parallel applications. The I/0 community is actively working with application
teams to help determine the best way to take advantage of this technology.

This section summarizes our experiences in adapting EMPIRE to leverage the Cray DataWarp
[22] Burst Buffer available on the ATS-1 platform. In addition to evaluating 110 for mesh and
particle result files, a new checkpoint restart capability was developed for EMPIRE using the new
ATDM-developed FAODEL software. Initial testing at small scale on Mutrino indicates that the
Burst Buffers dramatically improve I/0 performance, and that FAODEL can offer additional per-
formance benefits.

5.1 EMPIRE 1/0 Environment

In terms of I/0, EMPIRE executes in a manner that is similar to other HPC applications: after
generating initial data or loading it from disk, the simulation stores a timestep's essential variables
to result files that can be inspected at a later point in time. Result files are primarily used for
visualization purposes, and require that the simulation data is converted into a file format (e.g.,
Exodus) that ensures compatibility with other tools. Given the scale at which EMPIRE is designed
to run, it is important that EMPIRE's I/0 facilities also provide an efficient mechanism for sup-
porting checkpoint/restart. This mechanism allows users to run jobs that are longer than can be run
in a single job allocation window, and mitigates system reliability issues that naturally occur on
large-scale platforms. EMPIRE has two types of data that must be managed by the I/0 software:

Mesh Field Data: EMPIRE uses a mesh to represent multiple variables in physical space. This
field data can be exported to Exodus result files for visualization purposes. However, some of
EMPIRE's internal field variables cannot be represented correctly in Exodus (e.g., multiple
edge values) and must be interpolated to produce valid Exodus variables. This interpolation

65

adds overhead and prevents the Exodus result files from being used for restarts. As such,
checkpoint data must be stored through separate mechanisms.

Particle Data: The bulk of EMPIRE's simulation data is particle data. An individual particle
currently requires 80 bytes of state, but it is expected that an additional 16 bytes of data will
be required to house random number generator state. Given the sheer size of the particle data,
EMPIRE simulations typically store the data infrequently (e.g., never, end of simulation, or
at hourly checkpoints). EMPIRE writes result files using the H5Hut [23] library, which
produces HDF5 files that are readable in other applications.

Table 5.1 lists the amount of data that is expected to be generated for different outputs. The
Exodus result file is approximately three times larger than the checkpoint size due to the generation
of extra variables that are necessary for visualization.

Table 5.1: Estimated Output Sizes for Field (left) and Particle (right) data

of
Elements

Exodus Timestep
Size

Checkpoint
Size

337K 25MB 8MB
2.68M 202MB 67MB
20.7M 1.5GB 520MB
166M 12GB 4GB
1.332B 100GB 33GB

5.2 FAODEL

of
Particles

Checkpoint
Size

16M 1.3GB
128M 10.7GB
1B 85GB
8.2B 687GB
65.6B 5.5TB

EMPIRE I/0 work for FY18 focused on developing checkpoint/restart mechanisms that would
be capable of managing both the particle and field data through a single library. As a demonstration
of ATDM-developed technologies, the checkpoint/restart code was implemented using ATDM's
FAODEL (Flexible, Asynchronous, Object Data-Exchange Libraries). This work was performed in
such a way that the core checkpoint/restart software could be adapted to other libraries if FAODEL
was deemed insufficient or inappropriate for EMPIRE. FAODEL is a collection of communication
libraries for HPC platforms that make it easier for I/0 developers to write custom data manage-
ment services for applications. FAODEL provides a portable collection of low-level libraries I/0
developers often need: RDMA-based messaging, network-memory management, a naming service
for distributed resources, in-application RESTful services for introspection, and a key-blob service
for migrating objects between applications, distributed memory, and storage. U0 developers can
use FAODEL to rapidly migrate data from their MPI application to a separate set of caching nodes
that can disseminate the data to other applications or offload to storage.

The goal of the FY18 work was to implement a basic checkpoint/restart service for EMPIRE
that simply serializes EMPIRE data into FAODEL constructs that could then be written out in the
most straightforward manner by the nodes. This approach reduces the complexity for the EMPIRE

66

team to use this work in real runs and provides a starting point in FY19 for experimenting with
more sophisticated scenarios (e.g., using external nodes to aggregate data before I/0).

Checkpoint/restart units were developed to allow FAODEL to manage both particle and field
data. The particle unit followed the same approach as the H5Hut unit and manually packs particles
into an outgoing buffer, particle by particle. The mesh unit was written in a more efficient manner
that copies data straight from the underlying Kokkos Views into an outgoing buffer. This approach
greatly improves serialization time and represents an important opportunity for Sandia codes to
use Kokkos data structures all the way through an application.

5.3 1/0 Performance

Performance experiments were conducted on Mutrino to measure the amount of overhead cre-
ated by I/0. These experiments adjusted parameters in EMPIRE's input decks to vary the size of
the data, the target storage system, and the number of compute nodes used in the simulation. Each
experiment generated a uniform distribution of particles in a mesh and then ran for ten timesteps.
Simulations generated full checkpoints and result files at each timestep in order to maximize I/0
load. EMPIRE was configured to use Kokkos' OpenMP backend to perform data-parallel compu-
tations efficiently on all of a node's cores. The experiments primarily focused on using a single
rank per node.

Two storage targets were tested in these experiments: a Lustre-based scratch file system and
the DataWarp Burst Buffer. Experiments targeting the Burst Buffer requested a striped-scratch
topology with 2TB of capacity. Mutrino provisioned this storage using fragments on all six of
its Burst Buffer nodes, resulting in a theoretical maximum write performance of 34GB/s. IOR
performance tests of the allocation achieved 30GB/s of performance using an ideal I/0 workload
(i.e., multiple ranks on 90 nodes writing 512KB blocks of data to independent files).

For performance reasons, the experiments focused more on checkpoint operations than restart.
Of the two, checkpoint performance is more important because checkpoints occur periodically in
a simulation while restarts occur once per run. The experiments also focused more on particle data
than field data due to the characteristics of the data. In addition to being larger in size, particles
migrate between the ranks in the simulation and cause load balance issues for the I/0 subsystem.
In this section we examine the particle and field data independently in order to better report on
their characteristics.

5.3.1 Particle Data

The first performance experiment for particle checkpointing used 64 compute nodes and varied
the number of particles from 128M to 512M. As illustrated in Figure 5.1, the overhead to the appli-
cation for checkpointing data grows linearly with the number of particles. The H5Hut method adds
a sizable amount of overhead to the timestep when writing to Lustre. Part of this overhead comes

67

from the fact that a single output file is produced and ranks need to coordinate their appends. The
Burst Buffer improves H5Hut performance significantly. However, FAODEL is more streamlined
and achieves better performance Haswell processors performed better than Knights Landing in all
cases.

256
Particle Checkpoint Time (64 Haswell Nodes)

128 -

64 -

32 -

8 -

4 -

2 -

-0- H5Hut Lustre

- H5Hut Burst Buffer

-M- FAODEL Lustre

-M- FAODEL Burst Buffer

128M 256M
Number of Particles

512M

256

128

64

32

16

8

4

2

Particle Checkpoint Time (64 KNL Nodes)

-0- HSHut Lustre

- HSHut Burst Buffer

-M- FAODEL Lustre

-M- FAODEL Burst Buffer

128M 256M
Number of Particles

512M

Figure 5.1: Particle Checkpoint Overheads for 64 Nodes on Haswell (left) and KNL (right)

The second performance experiment for particle checkpointing varied the number of compute
nodes used to solve a fixed-sized problem. This experiment used two particle sizes (16M and
128M) and two corresponding ranges of nodes. As depicted in Figure 5.2, increasing the node
count improves performance because the I/0 workload is distributed across a larger number of
ranks. Additional runs confirmed that these improvements taper out as the number of particles per
rank diminishes and per-rank I/0 startup costs dominate the operation.

128
Particle Checkpoint Time (Haswell Nodes)

64 -

32 -

16 -

8-

4 -

2 -

-0- H5Hut Lustre

-0- H5Hut Burst Buffer

-M- FAODEL Lustre

-M- FAODEL Burst Buffer

16M Particles

v.,

■

128Aticles

2 4 16
Number of Nodes

32 64

128

64

32

16

E

2

Particle Checkpoint Time (KNL Nodes)

-0- H5Hut Lustre

-0- H5Hut Burst Buffer

-M- FAODEL Lustre

-M- FAODEL Burst Buffer

/6M Particles

a,

128M Particles

'a

4 16
Number of Nodes

32 64

Figure 5.2: Impact of Node Scaling for Particle Checkpoints on Haswell (left) and KNL (right)

68

An important observation of the checkpoint overhead data is that performance is much lower
than what the Burst Buffer can deliver. For example, checkpointing 512M particles through
FAODEL to the Burst Buffer takes 6.9s. The resulting transfer rate of 6.2GB is much lower than
the theoretical 34GB/s of performance that Mutrino's Burst Buffer offers. This loss is primarily
due to data serialization overheads and is further explored in Section 5.3.4.

5.3.2 Mesh Field Data

Similar experiments were performed to measure the amount of time required for the application
to store mesh field data. These tests varied the number of elements in the mesh from 0.5M to 32M
elements when using 64 nodes on Mutrino. As depicted in Figure 5.3, overheads for field data
grow with the mesh size. While the Exodus result file writer takes more time than the FAODEL
checkpoint writer, it is storing three times the number of variables and must perform interpolation.

64

16

4

1

0.250

0.062

0.016

0.004

Field Data Write Overhead (64 Haswell Nodes)

—111— Exodus Result File Lustre

-11- Exodus Result File Burst Buffer

—M— FAODEL Checkpoint Lustre

-M- FAODEL Checkpoint Burst Buffer

0.5M 4M

Number of Elements
32M

64

16

4

1

0.250

0.062

0.016

0.004

Field Data Write Overhead (64 KNL Nodes)

—II— Exodus Result File Lustre

-0- Exodus Result File Burst Buffer

—M— FAODEL Checkpoint Lustre

-M- FAODEL Checkpoint Burst Buffer

0.5M 4M
Number of Elements

Figure 5.3: Mesh Checkpoint Overhead for 64 Nodes on Haswell (left) and KNL (right)

32M

Additional experiments were conducted to observe how the number of nodes in the simulation
affects performance. As illustrated in Figure 5.4, using more nodes decreases the checkpoint over-
head because it distributes the workload. The FAODEL checkpoints demonstrated more variability
than the Exodus operations. It is likely that caching effects are affecting the performance due to
the small size of the data involved (e.g., only 12-48MB per node for 32M elements).

5.3.3 Load Balance Challenges

An important difference between the particle and field data checkpoints is that the distribution
of particle data on the nodes changes over time while field data does not. Figure 5.5 depicts the
amount of particle data that each node in a simulation produced during the first ten timesteps of

69

E

128

32

8

2

0.500

0.125

0.031

Field Data Write Overhead (Haswell Nodes)

4M Elernents

-0- Exodus Result File Lustre

-410- Exodus Result File Burst Buffer

-0- FAODEL Checkpoint Lustre

- FAODEL Checkpoint Burst Buffer

....,..................._______,832M Elements
............

............

4 16
Number of Nodes

E

128

32

8

2

0.500

0.125

0.031

Field Data Write Overhead (KNL Nodes)

4M Elements

32M Elements

-0- Exodus Result File Lustre

-0- Exodus Result File Burst Buffer

FAODEL Checkpoint Lustre

-0- FAODEL Checkpoint Burst Buffer

4 16
Number of Nodes

32 64

Figure 5.4: Impact of Node Scaling for Field Data Output on Haswell (left) and KNL (right)

the experiments. While the nodes start with equal amounts of data, the amount of data each node
needs to checkpoint changes as the particles migrate through the mesh. Similar to other portions of
EMPIRE, the checkpoint mechanisms will perform poorly when one rank has substantially more
work to do than the other ranks.

Checkpoint Data Distributions for 16M Particles

4 Nodes

1.2

1.0

o

1.2 -

1.0 -

0.8 0.8 -

in
o

0.6 0.6

0.4 0.4

0.2 0.2

0.0 0.0
0 2 4 6

Timestep
10

16 Nodes

—.
o 4 6

Timestep

10

64 Nodes

4 6

Timestep

Figure 5.5: Particle Checkpoint Data Distribution for Initial Steps with 4, 16, and 64 Nodes

70

10

5.3.4 Serialization Challenges

The overhead numbers reported in the previous sections are from the application's perspective
and include two phases of work: serializing the data and performing the actual write to storage.
The particle checkpoint operations for FAODEL were instrumented to gain better insight into how
much time is spent in each phase. The breakdowns for the particle and field data checkpoint
overheads are presented in Figure 5.6 for jobs run with 64 nodes. In these scenarios 42GB of
particle data and 805MB of field data is serialized and written to storage. For the particle data, the
actual I/0 write performance for the Burst Buffer and Lustre is respectively 26GB/s and 6GB/s.
Serializing the particle data takes place at a rate of 8GB/s on Haswell nodes and 1.4GB/s on KNL.
The field data rates are difficult to accurately measure due to the small amount of data that each
node writes (12MB) and caching effects. The I/0 rates at this size are approximately 10-15GB/s.

40

35

30 -

25 -

E 20

15

10

FAODEL Particle Overhead (512M Particles, 64 Nodes) FAODEL Field Overhead (32M Elements, 64 Nodes)
0.09

F I/0 Write

Serialize

111
HSW HSW KNL KNL

Burst Buffer Lustre Burst Buffer Lustre

0.08

0.07

0.06

.7,- 0.05

F 0.04

0.03

0.02

0.01

- I/0 Write

- Serialize

0.00
HSW HSW KNL KNL

Burst Buffer Lustre Burst Buffer Lustre

Figure 5.6: FAODEL Serialization and I/0 Write Times for Particle (left) and Mesh (right) Check-
points

In the particle checkpoint case, serialization is the dominant cost because the checkpoint soft-
ware must assemble a large number of small items. The current implementation is not written in
a parallel form and provides poor performance, especially on KNL nodes. Section 5.5 provides
information about our strategy for mitigating this issue. The field data does not incur significant se-
rialization overhead because the packing process involves copying a few, large arrays of data into
an outgoing buffer. The current field data implementation is expected to be sufficient for larger
scale operation.

5.4 Discussion

Three technology choices were explored in the performance experiments: using the Burst
Buffer instead of the parallel file system, using Haswell nodes instead of KNL, and using FAODEL

71

instead of existing file I/0 libraries. In order to better examine the impact of each of these tech-
nologies individually, the particle performance numbers have been normalized to show speedup
for each technology in Figure 5.7.

14

12

10

Burst Buffer Speedup (64 Nodes)

a

14

12

10

Haswell Speedup (64 Nodes)

a

14

12

10

FAODEL Speedup (64 Nodes)

-0- H5Hut + HSW

-6- H5Hut + KNL

-M- FAODEL + HSW

-M- FAODEL + KNL

FAODEL + Burst Buffer

-M- FAODEL + Lustre

-0- H5Hut + Burst Buffer

-0- H5Hut + Lustre

-6- Lustre + HSW

-0- Lustre + KNL

-0- Burst Buffer + HSW

-0- Burst Buffer + KNL

-0 8
a,

-0
8

-0
a,

8

Ln ut Ln

6 6 6

M- -M
4 4 4

• -0 -•
• •

2 2 2
-0 -•

0 0 • 0
128M 256M

Number of Particles

512M 128M 256M

Number of Particles

512M 128M 256M

Number of Particles

512M

Figure 5.7: Impact of Burst Buffer (left), Haswell (center), and FAODEL (right) on Particle Check-
point Performance

A number of observations can be made from these speedup measurements as well as the check-
point experiments in general:

Burst Buffer Acceleration: The Burst Buffer provides a significant improvement in performance
with little developer effort. A 4x improvement was observed for H5Hut, simply by changing
the output location from a Lustre mountpoint to the Burst Buffer. FAODEL received a 1.5x
speedup.

Haswell vs. Knights Landing: Haswell provided better performance than Knights Landing for
I/0 operations. This difference can be attributed to the fact that the data formatting oper-
ations in the I/0 code is currently serial and will naturally run significantly faster on the
Haswell.

FAODEL Improvement: The FAODEL writer is considerably faster (approximately 2-8x) than
the H5Hut writer. While the amount of application data being saved is the same for both,
HDFS performs coordination between ranks to write a single output file and incurs overhead
for formatting data for the file container.

Linear 1/0 Performance at Small Scale: Checkpoint overhead increased linearly with dataset
size in these small scale tests. While the dataset sizes were large enough to remove I/0
caching effects, the actual I/0 operations were not intense enough to saturate the Burst
Buffer.

72

Serialization Dominates Checkpoint Overhead: Serializing particles is currently the dominant
expense in checkpointing EMPIRE's data. The current implementation uses a single core to
serialize the particle data and accounts for approximately 70% of the Burst Buffer checkpoint
overhead. It is expected that this overhead can easily be diminished by parallelizing the
serializer or switching to a mechanism that simply uses the underlying Kokkos View as a
native container for the data.

5.5 Current Limitations and Next Steps for I/0

The small-scale I/0 testing has helped the I/0 team identify potential risks to the FY20 perfor-
mance goals and gain a better understanding of where effort should be placed next. The following
is a prioritized list of limitations that will be addressed in the near future:

Limited Restart Capability: The current checkpoint/restart infrastructure has largely been tested
with electrostatic simulations and will need revisions to better support electromagnetic sim-
ulations. The field data interface is not currently robust, as it relies on EMPIRE's meshing
components to initialize the underlying structure. A better solution would be to make the
checkpoint/restart code have greater awareness of the underlying mesh structure.

Lacking Random Number Generator (RNG) Storage: EMPIRE uses a large number of RNGs
to control how particles progress in the simulation. The current implementation does not
checkpoint the state of these RNGs, causing the restart code to create new RNGs during a
restart. As such, restarts will not produce identical results. This capability is desirable and
will need to be implemented in FY19. The work involves extracting the state value for each
RNG and saving it, as well as modifying the particle insertion code to use a predefined RNG
state.

Limited Per-Node Particle Size: The current serialization code attempts to pack a rank's entire
list of particles into a single object, which FAODEL limits to 4GB in size. This constraint
limits an individual rank to holding approximately 50 million particles, and creates unnec-
essary pressure on the memory system. While fixing this problem is straight forward, we
deferred this problem to FY19 in order to focus on other aspects of the I/0 problem. We
expect that storing a rank's particles in multiple objects will have additional benefits due to
pipelining in the I/0 system.

Poor Serialization Performance: The initial implementation of the particle data is not parallel
and has poor performance. We will investigate converting the operations to a parallel form,
as well as determine whether the native Kokkos View representation can be leveraged to
bypass serialization.

Limited Scale Testing: The experiments conducted this year focused on small-scale studies on
Mutrino. While larger I/0 runs have been performed on Trinity, additional tests will be
necessary to determine if I/0 performance will become an issue at scale. While it is expected

73

that the scaling of Trinity's Burst Buffer resources will be sufficient, the leading concern is
that the sheer number of files generated by 100K ranks could impact performance. The
mitigation for this issue would be to use FAODEL to aggregate the I/0.

Lack of M-to-N Restarts: The current implementation is only able to restart on the same number
of ranks as the simulation that checkpointed the data. It is straightforward to adapt the
particles data to an M-to-N restart (e.g., all ranks load all data with discard). Changes to the
mesh will require more significant work.

Broken Job-to-Job Handoffs on Cray Platforms: A benefit of FAODEL is that it allows users
to migrate U0 and analysis tasks into a separate job. Unfortunately there is a known bug in
Cray's Dynamic RDMA Credentials (DRC) [24] service on NNSNs platforms that prevents
the application from acquiring a DRC. Without a DRC, job-to-job communication is impos-
sible. Once the administrators apply Cray's update for this problem, we will revisit the task
of using FAODEL to export EMPIRE's data into a separate job.

74

References

[1] Charles K Birdsall and A Bruce Langdon. Plasma physics via computer simulation. CRC
Press, 2005.

[2] Roger W. Hockney and James W. Eastwood. Computer simulation using particles. Taylor &
Francis Group, 1988.

[3] Thomas JR Hughes. The finite element method: linear static and dynamic finite elernent
analysis. Courier Corporation, 2012.

[4] A. Bossavit. Whitney forms: a class of finite elements for three-dimensional computations in
electromagnetism. IEE Proc., 135:493-500,1988.

[5] Jason M. Gates Eric C. Cyr, Roger P. Pawlowski. Panzer package. [Online; https://
trilinos.org/packages/panzera

[6] P. Bochev, J. Hu, C. Siefert, and R. Tuminaro. An algebraic multigrid approach based on a
compatible gauge reformulation of Maxwell's equations. SIAM Journal on Scientific Com-
puting, 31(1):557-583, 2008.

[7] Enrst Hairer, Syvert Paul Norsett, and Gerhard Wanner. Solving Ordinary Differential Equa-
tions I: Nonstiff Problems. Number 8 in Springer Series in Computational Mathematics.
Springer-Verlag, New York, second revised edition edition, 2000.

[8] Enrst Hairer and Gerhard Wanner. Solving Ordinary Differential Equations II: Stiff Problems.
Number 14 in Springer Series in Computational Mathematics. Springer-Verlag, New York,
second revised edition edition, 2002.

[9] Shadid, Cyr, Pawlowski, Widley, Scovazzi, Zeng, Phillips, Conde, Chuadhry, Hensinger,
Fischer, Robinson, Rider, Niederhaus, and Sanchez. Towards an IMEX Monolithic ALE
Method with Integrated UQ for Multiphysics Shock-hydro. Technical Report SAND2016-
11353, Sandia National Laboratories, 2016.

[10] E. C. Cyr. IMEX Lagrangian Methods. Technical Report SAND2015-3745C, Sandia Na-
tional Laboratories, 2015.

[11] G. M. Hulbert and J. Chung. Explicit time integration algorithms for structural dynamics with
optimal numerical dissipation. Computer Methods in Applied Mechanics and Engineering,
137:175-188, October 1996.

[12] H. M. Hilber, T. J. R. Hughes, and R. L. Taylor. Improved numerical dissipation for time inte-
gration algorithms in structural dynamics Earthquake Engineering and Structural Dynamics,
5:283-292, 1977.

75

[13] A. Mota, W. Klug, and M. Ortiz. Finite element simulation of firearm injury to the human
cranium. Computational Mechanics, 31:115-121,2003.

[14] N. M. Newmark. A method of computation for structural dynamics. Journal of the Engineer-
ing Mechanics Division ASCE, 85(EM3):67-94, 1959.

[15] William L Oberkampf and Christopher J Roy. Verification and validation in scientific com-
puting. Cambridge University Press, 2012.

[16] Francis F Chen. Introduction to plasma physics and controlled fusion. Springer, third edition,
2016.

[17] Clément Mouhot and Cédric Villani. On landau damping. Acta mathematica, 207(1):29-201,
2011.

[18] W. Herr. Introduction to landau darnping. In CAS-CERN Accelenuor School: Advanced
Accelerator Physics, 2014.

[19] D. R. Nicholson. Introduction to Plasma Theory. Krieger Publishing Company, Malabar,
Florida, 1992.

[20] J. A. Bittencourt. Fundamentals of Plasma Physics. Pergamon Press, New York, 1986.

[21] Ning Liu, Jason Cope, Philip Carns, Christopher Carothers, Robert Ross, Gary Grider, Adam
Crume, and Carlos Maltzahn. On the role of burst buffers in leadership-class storage systems.
In Mass Storage Systems and Technologies (MSST), 2012 IEEE 28th Symposium on, pages
1-11. IEEE, 2012.

[22] Dave Henseler, Benjamin Landsteiner, Doug Petesch, Cornell Wright, and Nicholas J Wright.
Architecture and design of cray datawarp. Cray User Group CUG, 2016.

[23] Mark Howison, Andreas Adelmann, E Wes Bethel, Achim Gsell, Benedikt Oswald, et al.
H5hut: A high-performance i/o library for particle-based simulations. In Cluster Computing
Workshops and Posters (CLUSTER WORKSHOPS), 2010 IEEE International Conference on,
pages 1-8. IEEE, 2010.

[24] James Shimek and James Swaro. Dynamic rdrna credentials. Cray User Group CUG, 2016.

76

DISTRIBUTION:

1 MS 0899 Technical Library, 9536 (electronic copy)

78

v1.40

79

Sandia National laboratories

80

