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ABSTRACT

Composition of computational science applications, whether into
ad hoc pipelines for analysis of simulation data or into well-defined
and repeatable workflows, is becoming commonplace. In order to
scale well as projected system and data sizes increase, developers
will have to address a number of looming challenges. Increased
contention for parallel filesystem bandwidth, accomodating in situ
and ex situ processing, and the advent of decentralized program-
ming models will all complicate application composition for next-
generation systems. In this paper, we introduce a set of data services,
Faodel, which provide scalable data management for workflows
and composed applications. Faodel allows workflow components
to directly and efficiently exchange data in semantically appropri-
ate forms, rather than those dictated by the storage hierarchy or
programming model in use. We describe the architecture of Faodel
and present preliminary performance results demonstrating its
potential for scalability in workflow scenarios.
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1 INTRODUCTION

In order to accelerate the extraction of information from data, work-
flows that couple computational science applications are proving
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increasingly useful. By allowing developers to reason about their
computational problems in a modular and regular manner, such
workflows trade initial complexity in their definition and construc-
tion for ease of modification and increased reuse once they are in
place. In order to maintain workflow construction as a viable tech-
nique for computational science, that complexity must be managed
as projected system and data sizes increase.

Several potential complications are clouding the horizon, how-
ever:

• Impedance mismatches between data generation rates and
parallel filesystem bandwidth have been an issue in com-
putational science for some time now. System architectures
have addressed this with various refinements to the mem-
ory hierarchy, more recently involving the development of
node-local "burst buffers". While these changes provide more
options and flexibility for workflow designers, they also in-
troduce added design considerations.

• Coupling simulation and analysis using in situ and ex situ
techniques present a different set of choices for workflow
designers. Depending on system loads, problem inputs, or
changing availability of specialized compute engines, it may
be advantageous to migrate analytics tasks in and out of a
particular application. While this may not make a difference
in the end state of a workflow, adding this capability presents
significant data management issues.

• While the bulk-synchronous-program (BSP) model remains
dominant, emerging decentralized decomposition and sched-
uling models are being explored for their potential to provide
dramatically increased scalability. Assumptions underlying
the design of workflows for a group of cooperating BSP ap-
plications will not necessarily hold for workflows designed
around asynchronous many-task (AMT) execution. For ex-
ample, using a parallel filesystem to exchange data between
workflow components will likely be problematic as the num-
ber of discrete application tasks increases.

Our group has been exploring how changing the ways in which
cooperating applications exchange data can provide leverage on
these kinds of concerns. This paper describes a set of services for
data management and exchange, Faodel, for use in such applica-
tions. Our goal is to allow workflow components to exchange data
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in forms whose semantics are dictated by the problem being solved
by the workflow rather than by considerations such as the storage
hierarchy or programming model in use. This paper contributes a
discussion of the design and architecture of Faodel, a description of
its integration into a specific application, and preliminary perfor-
mance results in execution scenarios representing future workflow
component patterns.

2 FAODEL DESIGN & ARCHITECTURE

The design of Faodel is largely driven based on requirements derived
from the operating environment of today's high-performance com-
puting (HPC) platforms. As depicted in Figure 1, Faodel provides a
means of connecting several different jobs that run concurrently
on a platform. First, BSP or AMT parallel simulation jobs run and
produce data objects that are either stored in internal resources or
published to other resources. While coupling and workflow scenar-
ios may use Faodel to pass data between components, this more
complex use case has not been fully explored yet. Second, Faodel
may use distributed memory and NVM to absorb bursts of data
from the application or replay results from simulations to requesters.
Third, in situ analysis & visualization (ISAV) tools use Faodel to
retrieve and analyze data. Finally, coordination applications provide
a means of helping the different jobs in the environment locate and
connect with the resources of other jobs.
An examination of the application environment motivated three

fundamental requirements for the design of Faodel:

• Faodel must provide basic primitives for users to reason
about and decompose their datasets, but at the same time the
API must be as agnostic as possible about how developers
manage their data. Rather than force users to design algo-
rithms around a data stores indexing and migration policies,
it is better to provide mechanisms for users to express how
the system should manage their data. By offering mecha-
nisms to control data epoch visibility and a simple key/blob
interface, Faodel offers an approach that can serve many
kinds of clients.

• To aid scalability, separating application fates (i.e., the simu-
lation from the analytics) also offers independent scalability
through loose coupling. This requires using a communica-
tion layer that offers efficient data transfers between jobs
while at the same time not breaking the communication li-
braries used within jobs (e.g., MPI). As such, Faodel cannot
simply rely on sockets or splitting an MPI communicator and
must instead use a low-level Remote DMA (RDMA) commu-
nication layer. This layer is an evolution of the long proven
NNTI layer from the Nessie RPC library [9, 13].

• Faodel must provide a way of migrating data objects from
memory to higher-capacity resources, such as burst buffers
or the parallel filesystem (PFS). This requirement implies
Faodel must transition in-memory objects to systems with
vendor-proprietary or file-based APIs.

Faodel is made up of several software components. We describe
the higher-level components most relevant to application develop-
ers in the remainder of this section.

2.1 Kelpie

Kelpie provides a key/blob abstraction to facilitate flexible data
exchange between different executables (e.g., simulation applica-
tion and applications for visualization and analysis). A key is a
programmer-defined text string that allows the programmer to at-
tach semantic significance to the associated data, a blob. Although a
key attaches programmer-cognizable meaning (and possibly struc-
ture) to a blob, Kelpie is entirely ignorant of any meaning attached
to a key or its associated blob. An example key might encode the
application name, run number, iteration number, variable name,
and some information about what part of that globally distributed
array this blob represents. Separate processes can exchange data
via Kelpie by exchanging key information. Key exchange can be
explicit or implicit (i.e., keys can be constructed in a well-known
way).

2.2 Opbox

OpBox is a library for implementing asynchronous communication
between multiple entities in a distributed application. Our experi-
ences with remote procedure call (RPC) libraries found that while
RPCs provide a simple way to coordinate data transfers and invoke
action at remote nodes, it is often difficult to coordinate more so-
phisticated data management services (eg, ones involving more
than two nodes, time-out conditions, or race conditions). Rather
than leave the task of coordinating transfers entirely to the next
layer up, OpBox provides the user with primitives for expressing
a protocol as a state machine that the communication layer can
process in an asynchronous manner. A communication pattern
between a collection of nodes in OpBox is an Op. Users define and
instantiate various Op classes as desired. Each provides a handle to
the Op (implemented in C++ via f utu re/promi se), and a method
to instruct OpBox to start running its encapsulated state machine.
As each node in the Op communication pattern receives the Op, it
processes the state machine accordingly.
Opbox provides a collection of operations that are common to

many applications including ping and counter operations. In addi-
tion, Opbox includes a Directory Manager Service that can be easily
incorporated into an application. The Directory Manager stores
node information in a hierarchical directory. A typical Faodel appli-
cation would have at least one Directory Manager instance acting
as a naming service to locate components of an application.

2.3 Lunasa

Lunasa provides user-level memory management services for net-
work memory. For performance reasons, Faodel relies heavily on
RDMA to transfer data throughout an HPC system. RDMA elimi-
nates the need to copy user data objects to kernel buffers and allows
data transfers to occur without CPU intervention. RDMA transfers
require the user register the memory buffers that are the source or
destination of the transfer with the underlying network transport.
Additionally, the virtual memory space that contains the memory
buffer must be locked (or pinned) by the kernel to prevent it from
being relocated in physical memory. The costs of registering and
de-registering memory vary by network transport.
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Figure 1: High-level diagram showing the relationship of Faodel to a workflow comprised of an AMT application and in situ
analysis and visualization. The large colored shapes encompass the resources used by each entity. The small squares represent
computational resources (e.g., compute nodes, processors, or threads). The cylinders represent storage resources.

Lunasa amortizes these costs by facilitating the explicit reuse of
registered memory. Existing approaches to reuse registered mem-
ory, see e.g., [4, 8, 15], do so implicitly. In other words, instead of
de-registering memory buffers at the end of an RDMA operation,
the registered memory is left registered and its registration infor-
mation is cached. Subsequent requests to re-register the cached
memory can be fulfilled without incurring the costs of registration.1
As a result, application programmers are encouraged to manage
their memory buffers to extract as much reuse as possible. Lunasa
frees application programmers from the burden of managing these
implicit reuse semantics and allows them to explicitly request mem-
ory allocations for use in RDMA operations. To accomplish this
objective Lunasa requests blocks of memory from the system and
registers them at the outset. Lunasa then manages the resulting
pool of registered memory as a standalone resource for satisfying
user requests.

3 CASE STUDY: SIMPLEPIC

In this section we describe a sample application use case of Faodel
services, enabling in situ analytics in a computational science code.

Particle in Cell (PIC) methods are a class of well-established
computational techniques for simulating plasmas. Plasmas are com-
prised of charged particles in gaseous form interacting with each
other and the surrounding environment. PIC methods simulate
plasmas by computing: 1) electromagnetic (EM) fields created by
charged particles in the plasma, 2) chemical reactions of plasma
particles with the environment, and 3) motion of particles due to
forces exerted by the EM fields. This last step generates currents
and charges which further drive the EM field. Sandia is developing

I It is also worth noting that caching the registered memory eliminates the de-
registration costs that would otherwise be incurred at the end of an RDMA operation.

a new, PIC code named EMPIRE that is being architected to scale to
next-generation computing platforms. While EMPIRE is currently
implemented as a BSP-style MPI code, developers are evaluating
whether better load balancing can be achieved through a DARMA-
based AMT implementation. In order to allow researchers to better
explore AMT tradeoffs, the EMPIRE developers have constructed
a reference application called SimplePIC that isolates the particle
move phase. This phase is especially appealing for an AMT envi-
ronment because the move routinely causes imbalances in the way
the data is distributed across compute nodes.

Whether in a BSP or AMT setting, PIC simulations generate a
substantial amount of data that can make analysis challenging for
two reasons. First, the volume of data managed by a simulation is
large enough that writing to disk and performing post processing
is infeasible. This characteristic drives the need for ISAV tools that
can summarize current conditions in a way that is meaningful for
users. Second, efficient PIC applications periodically redistribute
their datasets to achieve better load balancing as particles disperse
over time in the simulation. While this load balancing is performed
manually in the BSP case and automatically in the AMT case, the
end result is that downstream ISAV applications need a mechanism
for locating and retrieving particles. Faodel performs this function
in both cases. Examples of ISAV applications include tasks such as
quantifying how many particles are close to regions of interest in the
mesh, identifying how many particles exceed a threshold velocity,
and rendering images to help developers verify the simulation is
modeling an environment correctly.

In order to provide a portable way for connecting PIC and ISAV
applications through Faodel, we have constructed a Particle DIM
(Data Interface Module) that is usable by both producers and con-
sumers of PIC data. From the producer perspective, an application
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task periodically generates a patch of particle data that is injected
into Faodel through the task's Particle DIM. The Particle DIM seri-
alizes the patch data into one or more key/blob pairs that are then
published into Faodel's resources. The unique key names for patch
data are also published as metadata in Faodel to provide a way
for downstream applications to locate data. From the consumer's
perspective, an application uses the Particle DIM to query metadata
and retrieve relevant particle patches.
From the programmer's perspective, there are multiple advan-

tages to using a DIM to interface with Faodel. First, a DIM estab-
lishes a contract between producers and consumers about how
data is exchanged, but does not dictate how those transfers are
implemented. This property allows DIM developers to write multi-
ple implementations that decompose datasets in different ways if
needed. Second, a DIM enables simulations to be decoupled from
ISAV applications while retaining the ability to leave data objects
in place if needed. The Particle DIM can be configured to store
data objects in the application or to other distributed resources that
are part of Faodel. Finally, a DIM provides a mechanism for imple-
menting indexing that's right for the application. While the current
Particle DIM performs basic indexing to locate items, it can easily
be extended to allow consumers to make advanced queries. Our
approach in this work is to have data producers compute statistics
on data as it is inserted and store the information as additional
metadata in Faodel.

4 EVALUATION

4.1 Opbox

One system that makes use of the Faodel infrastructure, and of
Opbox in particular, is the custom metadata management system
EMPRESS [7]. It allows clients to create custom attributes on parts
of a variable, the whole variable, or even the whole data set to
accelerate reading for data analysis. The two fundamental compo-
nents of EMPRESS are a client API and a set of dedicated metadata
servers. Opbox provides the connection between clients and servers.
Each EMPRESS function has an underlying Op that passes the re-
quest and related metadata between the clients and servers. The
performance of these Ops was tested using 100 write clients, 10
read clients, and one EMPRESS server. The data storage mecha-
nism for the EMPRESS servers is currently a SQLite in-memory
database. The evaluation results presented were obtained on the
Chama capacity cluster at Sandia.

Testing indicates that each of the fundamental writing and read-
ing Ops are efficiently supported as indicated in Figures 2 and 3.
All times are from the client perspective, include the round trip
communication and database operation times, and are the average
of 5 experiments. In each experiment, each client performs one
iteration of read or write operations. The operations demonstrated
for writing are (0) "activating" an output set (committing a trans-
action), (1) the metadata associated with the entire run overall, (2)
information for the current timestep, (3) the metadata for a single
globally distributed variable, (4) creating a new, custom attribute
type, (5) attaching an attribute to a run, (6) attaching an attribute
to a timestep, and (7) attaching an attribute to part of a variable.
For reading, the query returns (0) information about the run, (1)
what timesteps are written for the run, (2) what variables are in a
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particular timestep, (3) what attributes have been attached to the
run, (4) what attributes have been attached to the timestep, (5) what
attributes have been attached to the variables, (6) attributes of a
given type for a variable, and (7) attributes for a variable.

Write Ops: Chama
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0 001

0.0100

0.0010

-T•

4 5

0: Activate
1: Run
2: Timestep
3: Var
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5: Run Attr
6: Timestep Attr
7: Var Attr

Figure 2: Writing operation total times

Read (Catalog) Ops: Chama
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1: Tirnesteps in Run
2: Vars in Timestep
3: Run Attrs
4: Tirnestep Attrs
5: Var Attrs
6: Var Attrs of Type
& Var

7: Var Attrs of Var

Figure 3: Reading operation total times

4.2 SimplePIC analytics

To demonstrate the feasibility of Faodel, we implemented a sim-
ple visualization example using SimplePIC and VTK [5]. In this
example, particle data from SimplePIC are inserted into Faodel. The
visualization application then retrieves data from Faodel and uses
it to construct VTK objects for the purpose of generating a visual
representation of the data.
The results of this experiment are shown in Figure 4. This pre-

liminary evaluation is intended to demonstrate functionality and
feasibility rather than performance. This figure shows the time re-
quired to move groups of particle data as a function of the number
of particles being moved. The blue line shows the cost of inserting
a block of particle data into Faodel. Because Faodel is designed
to exchange data using shallow copies of reference-counted data
structures, the time required to insert a block of particle data is
independent of the number of particles for which data are being
inserted (displayed as insignificant overhead in Figure 4).

The orange line in Figure 4 shows the cost of reading particle
data from Faodel and generating VTK objects from its contents.
In this case, the time required increases with the size of the data
being manipulated. This is due to the fact that using particle data
to create VTK objects currently requires a deep copy of the data
read from Faodel.
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Figure 4: Preliminary data demonstrating the costs of mov-
ing data into and out of Faodel

5 RELATED WORK

The data management services provided by Faodel can improve the
efficiency, speed, and maintainability of key computational science
applications. An important body of existing research has examined
many similar services.

5.1 Asynchronous Many-Task Runtime
Systems

Asynchronous Many-Task (AMT) runtime systems promise to elim-
inate many of the scaling issues that have emerged in tightly-
coupled, synchronous applications by allowing independent tasks
to execute as soon as their data dependencies are satisfied. Because
predicting where and when a task may execute in an AMT pro-
gramming model is a formidable task, AMT runtimes depend on
services to provide efficient data movement. Meng et al. [11] de-
scribe how the Uintah "Data Warehouse" allows tasks to access
Uintah variables. Each variables is stored in a dictionary with a
well-defined key. Tasks are only allowed to work with variables
stored in their local memory and variables acquired from the Data
Warehouse. Faodel is aimed at providing job-to-job communication
in these environments.

5.2 Data Management in Scientific Workflows

Many modern scientific simulations require multiple phases of
execution to arrive at a solution. Efficient execution of these simula-
tions depends on robust data management services for exchanging
(or sharing) simulation data among the applications that comprise
the workflow. Dataspaces [2] uses distributed hash tables and lever-
age advanced interconnect services (e.g., RDMA) to exchange data
between applications (e.g., coupled physics codes). DDSS [16] is a
distributed service for sharing data in a datacenter environment.
The key abstraction in this approach is a logical shared memory
region referenced by a unique key. Sharing data is accomplished
by sharing the key associated with the data. Support for coherence
and access control (e.g., granting exclusive access) are provided.
Other research projects, e.g., Kepler [10] and Taverna [12], have

focused on developing tools that enable domain scientists to quickly
and easily assemble scientific workflows. Faodel is focusing to de-
liver similar capabilities to applications using other programming
models such as AMT.

5.3 Data Analysis

Many scientific simulations have the potential to generate vast
quantities of output data. Domain scientists rely on sophisticated
analysis and visualization to make sense of these data. Efficient use
of these tools requires robust data management services to find
and access output datasets. Pavlo et al. [14] compare the use of
MapReduce and Parallel Database Management Systems (DBMS)
for analyzing large volumes of data. For both of these approaches,
data is stored and exchanged through the filesystem. SENSEI [1]
defines a generic data model to facilitate the transfer of data be-
tween simulation and analysis tasks. Their generic data model is
intended to simplify the process of combining a simulation code
with different kinds of analysis.

5.4 Unified Storage Hierarchy

HPC systems have recently experienced significant growth in the
depth of their storage hierarchy. SSDs, NVRAM, and 3D-stacked
DRAM are all becoming increasingly common. Because each level
of the hierarchy represents a different set of tradeoffs (and possi-
bly also, different programming interfaces), application developers
face an increasingly complex set of choices when decided where
their data should reside. UNITY [6] provides a single interface for
applications to access all levels of storage hierarchy. Data Eleva-
tor [3] provides a transparent mechanism for moving data among
different layers of the storage hierarchy. Specifically, the authors
describe and demonstrate their approach to moving data between
burst buffers and the parallel file system.

6 CONCLUSION

This paper describes our work to date on Faodel, a set of services
we envision as a data backplane for applications in computational
science workflows. Using Faodel, applications in workflows will be
able to exchange data without necessarily involving a file system,
while structuring those exchanges according to semantics which
are meaningful to the developers involved. We have demonstrated
the generality and efficiency of the Faodel software stack in several
application use cases, two of which we have presented here. Our
initial evaluations have been intended to demonstrate feasibility
for these examples. Our future plans for Faodel include evaluations
in more complex workflows with larger computational and data
transfer requirements. We are also investigating integrations with
workflow definition and deployment tools under development by
other researchers at Sandia.
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