
Mediating Data Center Storage Diversity
in HPC Applications with FAODEL

Patrick Widener1(B), Craig Ulmer2, Scott Levy1, Todd Kordenbrock3,
and Gary Templet3

1 Center for Computing Research, Sandia National Laboratories,
Albuquerque, NM, USA

patrick.widener@sandia.gov
2 Scalable Modeling and Analysis Systems, Sandia National Laboratories,

Livermore, CA, USA
3 Perspecta, Inc., Chantilly, VA, USA

Abstract. Composition of computational science applications into both
ad hoc pipelines for analysis of collected or generated data and into
well-defined and repeatable workflows is becoming increasingly popu-
lar. Meanwhile, dedicated high performance computing storage environ-
ments are rapidly becoming more diverse, with both significant amounts
of non-volatile memory storage and mature parallel file systems avail-
able. At the same time, computational science codes are being coupled
to data analysis tools which are not filesystem-oriented. In this paper,
we describe how the FAODEL data management service can expose dif-
ferent available data storage options and mediate among them in both
application- and FAODEL-directed ways. These capabilities allow appli-
cations to exploit their knowledge of the different types of data they may
exchange during a workflow execution, and also provide FAODEL with
mechanisms to proactively tune data storage behavior when appropri-
ate. We describe the implementation of these capabilities in FAODEL
and how they are used by applications, and present preliminary perfor-
mance results demonstrating the potential benefits of our approach.

Keywords: Workflow · Composition · Data management · Scalability

1 Introduction

Traditionally, I/O for data storage in high-performance computing applications
(especially computational science simulations) has almost always meant data
transfer from node DRAM to a parallel file system (PFS) such as Lustre or
GPFS. That traditional arrangement has been destabilized in a number of ways:

– Impedance mismatches, between the rates at which application data is gen-
erated (through simulation of physical phenomena or capture from exter-
nal sources) and the available bandwidth to stable storage provided by
datacenter-scale PFS, have not abated.

SAND2019-6668C.

c© Springer Nature Switzerland AG 2019
M. Weiland et al. (Eds.): ISC 2019 Workshops, LNCS 11887, pp. 275–287, 2019.
https://doi.org/10.1007/978-3-030-34356-9_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34356-9_22&domain=pdf
https://doi.org/10.1007/978-3-030-34356-9_22

276 P. Widener et al.

– Available PFS solutions in many cases require application-specific configura-
tion and tuning, and continue to be a major source of resilience issues.

– Partly as a response to the above points, the storage hierarchy continues
to grow deeper and more complex. Potential layers include local and remote
memory (e.g., on package high bandwidth memory, DRAM, nonvolatile mem-
ory (NVM), 3D-stacked DRAM); compute area Storage Class Memories such
as burst buffers; parallel file systems; campaign storage; and archival storage.
Each level in the hierarchy has its own operational tradeoffs that users must
understand to efficiently leverage the underlying storage resources in their
application.

– The influence of data movement between host and accelerator memories, and
the desire to maintain zero-copy performance as that data must be moved to
stable storage, has increased the influence of APIs such as OpenACC [1] and
Kokkos [7].

Additionally, the abstractions commonly available to application develop-
ers will not support the development and deployment of future exascale sys-
tems. Several important trends in application design and deployment are highly
dependent on the availability of high-performance and semantically-flexible I/O
services:

– Coupled Simulation Codes: Increasingly, important scientific simulations
require multiple physical models to be evaluated simultaneously. To lever-
age existing software, one way to combine these physical models is to run
each model independently and map the output of one physical model to the
input for another, and vice-versa. In this way, physical models that are cap-
tured by independent executables exchange information about the state of the
simulated system as the simulation progresses. Achieving high performance
for these coupled simulation codes requires the availability of services that
facilitate the efficient exchange of data between multiple physical models.
Moreover, programmer efficiency is dependent on simple and robust mecha-
nisms for exchanging data between coupled simulation codes.

– Complex Workflows: Analysis of scientific simulation data commonly requires
processing by a sequence of several specialized analysis tools; the output of
one is the input for the next. The analysis tools that comprise these work-
flows include: mesh generation and mesh refinement tools, preconditioners,
uncertainty quantification tools, simulation frameworks, solvers, and visual-
ization/analysis tools. Workflow management tools have typically exchanged
data via a parallel filesystem. However, the PFS I/O bandwidth limitations
throttle severely the amount of work that can be done, while the gap between
compute speed and IO bandwidth continues to increase.

– Asynchronous Many-Task (AMT) Programming Models: AMT programming
models (e.g., Legion [4], Charm++ [14], and Uintah [10]) are designed to allow
compilers and the associated AMT runtimes to manage the complexities that
arise due to performance variation and resource heterogeneity [18]. Moreover,
the asynchronous nature of these models allows them to overcome many of the

Mediating Data Center Storage Diversity in HPC Applications 277

performance costs that are borne by bulk synchronous parallel (BSP) codes
on extreme-scale systems. However, these characteristics of AMT applications
mean that predicting where a task may execute is not straightforward. As a
result, AMT runtimes have commonly relied on the parallel filesystem to
facilitate access to applications. Because of the costs associated with parallel
filesystem access, the performance of AMT-based applications will be highly
dependent on the ability of AMT runtimes to leverage the entire storage
hierarchy to provide AMT tasks with efficient access to application variables.

– Beyond POSIX storage: Many widely used tools from the high-performance
data analytics (HPDA) space are oriented toward data storage without using
traditional file system interfaces. Apache’s Spark [9] toolset is an exemplar
of this approach. Spark relies on data access capabilities provided by the
non-POSIX APIs of sources like HDFS, Cassandra, and others which may
themselves rely on traditional filesystems to varying extents but do not expose
those interfaces to their users. As HPDA becomes a more popular component
of workflows, sharing data in a single data center with HPDA tools means
finding ways to coexist with their data management strategies.

– Resilience: The dominant approach to fault tolerance is checkpoint/restart.
Minimizing the performance impact of checkpoint/restart requires services
that provide efficient access to persistent storage resources. Moreover, while
checkpoints have traditionally been stored in parallel filesystems, techniques
for leveraging the entire storage hierarchy have begun to grow in importance,
cf. [16].

FAODEL [19] provides a set of data movement, storage, and management ser-
vices designed to address these challenges for next-generation HPC applications
and workflows. FAODEL’s advantages include:

– Programmer efficiency: presenting application programmers with a single
interface for data movement lowers the burden on application programmers,
reduces development costs, and lowers the risk of mistakes as programmers
attempt to master multiple interfaces to data movement services.

– Shared optimization: because FAODEL provides data movement services
through a unified interface, optimization and validation of shared components
can provide performance benefits in multiple data movement scenarios.

– Aggregated storage resources: because FAODEL provides a unified interface
to multiple levels of the storage hierarchy, it can dynamically make decisions
that allow it to avoid storage resources that are slow or have high energy costs
unless absolutely necessary (e.g., avoiding the parallel filesystem in favor of
node-local storage: DRAM, SSDs, NVRAM).

In this paper, we describe recent work which expands upon the last of these
advantages. Specifically, we describe how FAODEL allows applications to choose,
in a semantically appropriate manner, different persistent storage destinations
for different subsets of the data they produce or exchange with other applications.
These decisions are typically driven by a tradeoff space that encompasses the
available storage hardware, the locality properties of the data in question, and

278 P. Widener et al.

whether other tools requiring specific data management are being used. This
kind of tradeoff space is already not uncommon: data center managers seek to
leverage existing power and cooling installations; same-platform deployment of
both HPC and HPDA applications is becoming a priority; and as stated above
increasingly diverse storage hierarchies are now in wide deployment.

Our discussion is structured as follows. Section 2 briefly recaps the struc-
ture of FAODEL, with emphasis on the Kelpie service within which our work
described here is implemented. Section 3 describes our implementation of medi-
ated storage within Kelpie. Sections 4 and 5, discuss related work and conclude
our discussion, respectively.

2 FAODEL Background

We briefly discuss relevant components of the FAODEL service in this section.
An overview of the relationships between the software components that comprise
FAODEL is shown in Fig. 1. A more detailed description of other FAODEL
components can be found in [20]. High-level components that are most relevant
to application developers in the remainder of this section.

2.1 Kelpie

Kelpie provides a key/blob abstraction to facilitate flexible data exchange
between different executables (e.g., a simulation application and applications

Fig. 1. Software architecture overview of FAODEL.

Mediating Data Center Storage Diversity in HPC Applications 279

for visualization and analysis). A key is a programmer-defined text string that
allows the programmer to attach semantic significance to the associated data: a
blob. Although a key may attach programmer-cognizable meaning (and possibly
structural information) to a blob, Kelpie is entirely ignorant of any meaning
attached to keys or blobs.

Independent processes can exchange data in Kelpie by simply exchanging
keys. The semantics of the keys exchanged may be implicit, the processes involved
in the exchanges are unaware of the keys’ semantics, or explicit, the processes
involved in the exchange can extract meaning from the key. For example, a
programmer may construct a key by encoding metadata (e.g., the application
name, run number, iteration number, and variable name) that describes the
contents of the associated blob. Based on shared knowledge of the key’s encoding,
the recipient of a key can extract the metadata from the key to inform its
handling of the blob.

A key abstraction in Kelpie is represented by Pool objects. Each Pool object
represents a collection of resources (e.g., nodes) that support a key/blob store. A
Pool supports three basic operations: Publish, Want , and Need . Publish allows
the user to add a key/blob pair to the Pool. Want and Need allow the user to
request the blob associated with a key in the Pool. The distinction between the
two is that Want is a non-blocking operation and Need is a blocking operation.

2.2 I/O Management (IOM) Modules

One of the services provided by Kelpie is to allow users to request the transfer
of key/blob data to persistent storage. The interface between Kelpie and per-
sistent storage resources (e.g., NVRAM, parallel filesystem, databases) is man-
aged by I/O Management (IOM) modules. IOMs are built on high-level APIs
(e.g., POSIX-compliant filesystems, HDF5, LevelDB) that provide access to the
underlying storage resources. Each Pool is associated with an IOM that provides
access to a particular storage resource interface (e.g., POSIX, HDF5).

FAODEL provides applications with services for transferring data to storage
resources throughout the system’s storage hierarchy. Each tier in the storage
hierarchy provides different access characteristics that are leveraged by different
use cases.

Various types of storage resources are accessible through Kelpie’s IOM mod-
ules:

– Distributed memory. Distributed memory provides access to the collective
DRAM (conventional DRAM devices and 3D-stacked DRAM devices) within
the application’s hardware allocation. Relative to other storage resources,
distributed memory provides low-latency, high-bandwidth storage. RDMA
transfers allow for efficient access to remote memory resources. Distributed
memory can be used by AMT runtimes to store and exchange application
variables and by coupled codes to exchange simulation data.

– Local persistent storage. Local persistent storage resources include SSDs
and NVRAM. Locality varies by system. In some cases, persistent storage may

280 P. Widener et al.

be available on each compute node, other systems may provide per-chassis or
per-rack persistent storage resources. Local persistent resources can be lever-
aged as part of a checkpoint/restart solution (cf. [16]). Similarly, because these
devices typically provide much more storage capacity than volatile memory
(i.e., DRAM), they may also be used in support of in situ analytics.

– Burst buffers. Recent HPC systems such as the Cray XC40 (deployed at
Los Alamos National Laboratory and the National Energy Research Scientific
Computing Center) and the IBM CORAL system provide fast non-volatile
storage colloquially referred to as burst buffers. These resources are made
available to compute nodes via vendor-specific libraries (e.g., Cray DataWarp)
and integrated via high-speed interconnects.

– Archival storage. In most systems, the principal archival storage resources
are provided by a parallel filesystem. Archival storage provides high-latency,
low-bandwidth access to high-capacity storage devices (e.g., hard disks).

3 Mediating Storage Using Kelpie Object Naming

Applications use the Kelpie interface to specify data they wish to store, retrieve,
or exchange with other applications using the service. Like in other key-value
stores, applications can use Kelpie’s key structure to represent a namespace
whose components have semantics appropriate to those applications and to
application-to-application interactions. In this way, the namespace can convey
important information about the data being exchanged and help developers rea-
son about the structure of the problem being addressed.

Our work here explores the use of the Kelpie namespace to reflect information
about how Kelpie handles data storage. A common conceptual distinction in
computational workflows is the notion of a control plane of metadata about the
current problem being solved and a data plane of result data from simulation
or analysis. The difference between these two is the amount of data and how
it is used. The control plane typically comprises larger numbers of smaller data
items which are more frequently used. This use case is well supported by storage
on solid-state media where reads and random access are advantaged. Volume
data comprising smaller numbers of larger data sets, conversely, is better suited
to bulk parallel file systems which are optimized for this case. An orthogonal
case which also can be addressed here is when certain data must be shared
with other applications that do not rely on file system interfaces, instead using
byte-addressable interfaces or relying on services such as NoSQL databases.

We describe in this section how we support the annotation of Kelpie object
namespaces with enough information for Kelpie to perform storage mediation.
In this way, determination of persistent storage destinations for data can be
based (to varying degree) on how that data is named. This provides multiple
benefits. Applications can structure the namespace to hint to Kelpie about the
relative “shape” of their data (signaling metadata vs. result data, for example). A
partition of the namespace can be dedicated to storage via non-POSIX methods,
allowing other workflow components to better understand which data is being

Mediating Data Center Storage Diversity in HPC Applications 281

produced for which purposes. Also, our approach provides mechanisms for Kelpie
to either cooperate with application-structured namespaces (and the implied
storage hints), weigh those hints alongside internal considerations which need not
be exposed to applications, or restructure or even ignore application namespace
partitioning entirely.

3.1 Kelpie Architectural Considerations

Kelpie Namespaces. Kelpie implements different key indices; for the purposes
of our discussion we concern ourselves with its distributed hash table (DHT)
implementation (its details are similar to implementations in other KV stores).
Kelpie’s API provides either a one- or two-dimensional namespace. In practice,
this allows applications to easily separate 2-dimensional data (row vs. column)
for efficient distributed indexing. A Kelpie key can be anything serializable to
a string. For a one-dimensional Kelpie keyspace, a hierarchical tree-based name
structure (similar to that used in POSIX file systems) can be defined. This is
the type of namespace we consider in this work.

Kelpie Persistent Storage. FAODEL (of which Kelpie is a component) is
designed as a memory-to-memory data management system, where running
Kelpie instances on separate nodes cooperate in DHTs by storing and providing
data in node memory. However, Kelpie also supports persistent storage of data
to satisfy resilience requirements or to relieve pressure on node memory alloca-
tions. This persistent storage is managed by Kelpie’s I/O management (IOM)
subsystem. Each Kelpie instance has associated with it an IOM object which
provides access to a particular kind of persistent storage. IOM types include file
system storage supported by POSIX and HDF5 APIs, lightweight KV storage
implemented in LevelDB [11,12], and the Apache Cassandra column-oriented
database [8,15].

3.2 Annotating the Kelpie Namespace

Applications interact with Kelpie through a Pool object, issuing Want , Need ,
and Publish operations for data objects located at given points in the namespace
managed by the Pool. We did not want to change this interaction for existing
Kelpie clients, so we added an aggregation object called Metapool. A Metapool
mimics the interface of a Pool, allowing clients to use it in the same manner.
Calls to this interface are delegated to a collection of Pools which are managed
by the Metapool (Fig. 2). A newly created Metapool cannot be used until it this
collection of Pools is provided.

Applications using a Metapool acquire Pool objects in the normal manner.
Each Pool object is registered with the Metapool along with a C++ function
closure or lambda whose function signature is bool fn(const std::string&
keystr). Each call to the Metapool object’s Publish, Want , or Need methods
takes the key string (supplied as a required parameter) and searches through the

282 P. Widener et al.

Fig. 2. A Publish operation makes data available at a particular location in the Kelpie
namespace. Using the Metapool object, the location is examined to determine which
of the managed Pools should handle the request. Each Pool can be configured with a
different persistent storage strategy through its IOM component, giving applications a
means of selecting their preferred storage approach. In a hypothetical example depicted
here, the application makes large experimental result data available at /results/exp2,
and its Metapool has been configured to delegate management for data under /results
to a Pool whose persistent storage method is the HDF5 library.

collection of Pools in order of their registration, calling the associated function
closure for each registered Pool. The first function closure called that returns
true indicates that its paired Pool is the one which should be delegated this
call from the Metapool object. This results in, for example, a Publish operation
being delegated to a particular Pool, which has an IOM subsystem targeted at
a particular kind of storage (HDF5 vs POSIX vs LevelDB, etc.).

This arrangement gives application developers a great deal of flexibility in
partitioning the namespace. For example, assume two Pools are in use, P1 and
P2. P1 is registered with the Metapool using a function closure that returns true
if the given key string has a prefix of /metadata’ and is configured to store data
persistently using LevelDB. In similar fashion, P2 is registered using a function
closure returning true for keys prefixed by /results, and is configured to store
data persistently using HDF5 (Fig. 3). Under this arrangement, the application
can store control plane information using the /metadata key prefix and exploit
lightweight storage for that data. This would of course depend as well on how
LevelDB was configured, and in this scenario configuring LevelDB to use locally
accessible NVRAM would be appropriate. The end effect is that of a single
namespace available through and managed by the Metapool object, which after
configuration provides data persistence to different storage targets without any
additional intervention by the application (Fig. 4).

3.3 Service-Initiated Mediation

The Metapool implementation also provides Kelpie with the means of mediating
the configuration of Pools requested by an application. Since Kelpie manages
the collection of Pools, it can introduce changes to Metapool handing at run

Mediating Data Center Storage Diversity in HPC Applications 283

hdf5_dht = kelpie::Connect("ref:/myapp/results");
leveldb_dht = kelpie::Connect("ref:/myapp/metadata");
cassandra_dht = kelpie::Connect("ref:/myapp/analytics");

metapool.Manage(hdf5_dht,
[](const kelpie::Key& k) {
if(k.K1.size() < 9) return false;
if(k.K1.substr(0, 8) != "/results") return false;
return true;

});

metapool.Manage(leveldb_dht,
[](const kelpie::Key& k) {
if(k.K1.size() < 10) return false;
if(k.K1.substr(0, 9) != "/metadata") return false;
return true;

});

metapool.Manage(cassandra_dht,
[](const kelpie::Key& k) {
if(k.K1.size() < 11) return false;
if(k.K1.substr(0, 10) != "/analytics") return false;
return true;

});

Fig. 3. An example of configuring the Metapool object from client code. The appli-
cation supplies lambda functions to the Metapool object through the Manage method,
associating each with a particular Kelpie Pool.

time, in response to changing system or workflow conditions. Different strategies
that Kelpie can employ for such service-initiated mediation include:

– Weighting partition function responses. If the local Kelpie configuration has
enough information about local storage configuration, it might be appropriate
to assign different weights to the filter functions registered with the Metapool
(as opposed to the nominal situation where the first true response is con-
sidered 100% authoritative. This could prove useful in a case where a Kelpie
application configured for one data storage environment is ported to a differ-
ent environment.

– Changing IOM configuration at runtime. Different storage targets can be
assigned as a workflow execution evolves, and additional targets might be
added as a form of load balancing.

– Disregarding partition function responses entirely. At times it may make sense
to disregard the application’s suggested namespace partitioning entirely and
route data to a specific storage configuration. This also might be useful in
the case of porting a Kelpie application to a new storage environment.

3.4 Performance Considerations

In its current state, our work is a usability contribution, not a performance-
improvement contribution. There are several aspects to this. Metapool oper-
ations impose an extra overhead on top of normal FAODEL Pool operations,
dominated by the O(n) search through all managed Pools for a Pool matching a

284 P. Widener et al.

for(int i = 0; i < 25; i++) {
kelpie::Key k;

k.K1("/metadata/" + random_string(10));

lunasa::DataObject ldo(0, 256, lunasa::DataObject::AllocatorType::eager);
metapool.Publish(k, ldo);

}

for(int i = 0; i < 25; i++) {
kelpie::Key k;

k.K1("/results/" + random_string(10));

lunasa::DataObject ldo(0, 256 * 1e6, lunasa::DataObject::AllocatorType::eager);
metapool.Publish(k, ldo);

}

Fig. 4. An example of using the Metapool object to publish data to Kelpie. The appli-
cation need not do anything except use the designated namespace partition for each
“kind” of data it intends to publish. The Metapool uses the previously-supplied names-
pace partition functions to decide how to route the Publish request.

given namespace partitioning. There are obvious algorithmic and data-structure
enhancements to Metapool which could address this, but this can be managed
directly by the application through the degree of partitioning it implements.
Apart from that, I/O performance will be governed by the performance of the
chosen storage backend, over which FAODEL has no control.

The contribution of the Metapool concept, from a performance standpoint,
is the degree of control it provides to applications in matching their data to the
characteristics of available storage backends. We expect this to be a foundation
for future performance advantages for applications using FAODEL. Instead of
having to explicitly partition the data namespace according to (well-informed,
to be sure) assumptions about data usage, policy-driven or machine learning
approaches could be introduced to automatically micro-manage the partitioning
(and consequently the IOM layer and associated storage modalities). This possi-
bility underscores our choice of a service mediator like FAODEL as a beneficial
place for such decisions, rather than performing them at the storage layer or
embedding them in applications.

4 Related Work

One of the first efforts to apply semantics to hierarchical namespaces was the
Intentional Naming System [2], which introduced the principle of naming what
applications are interested in, as opposed to where to find them (e.g., locat-
ing services by their internet hostnames). Active Names [21] was another early
effort to couple resource location and naming semantics. Another example is the
Proactive Directory Service [5], which allowed applications to add user-defined
behavior and data management to partitions of a shared namespace. Our work

Mediating Data Center Storage Diversity in HPC Applications 285

takes inspiration from these projects, giving applications tools to overlay seman-
tics associated with how data should be persistently stored onto the shared key
namespace offered by Faodel.

Many scientific simulations have the potential to generate vast quantities of
output data. Domain scientists rely on sophisticated analysis and visualization
to make sense of these data. Efficient use of these tools requires robust data
management services to find and access output datasets. Pavlo et al. [17] compare
the use of MapReduce and Parallel Database Management Systems (DBMS) for
analyzing large volumes of data. For both of these approaches, data is stored
and exchanged through the filesystem. SENSEI [3] defines a generic data model
to facilitate the transfer of data between simulation and analysis tasks. Their
generic data model is intended to simplify the process combining a simulation
code with different kinds of analysis.

HPC systems have recently experienced significant growth in the depth of
their storage hierarchy. SSDs, NVRAM, and 3D-stacked DRAM are all becoming
increasingly common. Because each level of the hierarchy represents a different
set of tradeoffs (and possibly also, different programming interfaces), applica-
tion developers face an increasingly complex set of choices when decided where
their data should reside. UNITY [13] provides a single interface for applications
to access all levels of storage hierarchy. Data Elevator [6] provides a transpar-
ent mechanism for moving data among different layers of the storage hierarchy.
Specifically, the authors describe and demonstrate their approach to moving data
between burst buffers and the parallel file system.

5 Conclusion

As modern extreme computing environments evolve, flexible solutions for man-
aging data exchanges between the applications they host will be necessary. In
this paper, we have described a set of modifications to the FAODEL data man-
agement framework which allow applications to mediate among available data
storage services. By partitioning the namespace provided by the Kelpie key-value
service within FAODEL, applications can indicate, based on their knowledge of
how data will be used, where subsets of the data they manage are best stored.
We anticipate that this type of capability will prove useful in data centers where
applications must make use of a set of common storage systems and services
instead of being able to supply their own custom configurations. We also expect
workflows which couple HPC and HPDA tasks to benefit from Kelpie’s ability
to persistently store data in formats suitable for off-the-shelf services without
requiring explicit application data transformation or reformatting. We are work-
ing to expand the functionality of Kelpie’s Metapool interface as well as to more
fully characterize its performance with production-scale workflows.

References

1. The OpenACC application programming interface, November 2018. http://
openacc-standard.org

http://openacc-standard.org
http://openacc-standard.org

286 P. Widener et al.

2. Adjie-Winoto, W., Schwartz, E., Balakrishnan, H., Lilley, J.: The design and imple-
mentation of an intentional naming system. In: Proceedings of the Seventeenth
ACM Symposium on Operating Systems Principles, SOSP 1999, pp. 186–201.
ACM, New York (1999). https://doi.org/10.1145/319151.319164

3. Ayachit, U., et al.: The SENSEI generic in situ interface. In: Workshop on In Situ
Infrastructures for Enabling Extreme-Scale Analysis and Visualization (ISAV), pp.
40–44. IEEE (2016)

4. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: expressing locality and
independence with logical regions. In: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, p. 66. IEEE
Computer Society Press (2012)

5. Bustamante, F., Widener, P., Schwan, K.: Scalable directory services using
proactivity. In: Proceedings 2002 ACM/IEEE Conference on Supercomputing.
ACM/IEEE, Baltimore, November 2002

6. Dong, B., et al.: Data elevator: low-contention data movement in hierarchical stor-
age system. In: 2016 IEEE 23rd International Conference on High Performance
Computing (HiPC), pp. 152–161. IEEE (2016)

7. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: enabling manycore per-
formance portability through polymorphic memory access patterns. J. Parallel
Distrib. Comput. 74(12), 3202–3216 (2014). https://doi.org/10.1016/j.jpdc.2014.
07.003. http://www.sciencedirect.com/science/article/pii/S0743731514001257.
Domain-Specific Languages and High-Level Frameworks for High-Performance
Computing

8. The Apache Software Foundation: Apache cassandra (2018). https://cassandra.
apache.org/. Accessed 10 May 2018

9. The Apache Software Foundation: Apache spark - unified analytics engine for big
data (2018). https://spark.apache.org/. Accessed 10 May 2018

10. Germain, J.D.d.S., McCorquodale, J., Parker, S.G., Johnson, C.R.: Uintah: a
massively parallel problem solving environment. In: 2000 Proceedings the Ninth
International Symposium on High-Performance Distributed Computing, pp. 33–41.
IEEE (2000)

11. Ghemawat, S., Dean, J.: LevelDB, a fast and lightweight key/value database library
by Google (2014)

12. google: Github - google/leveldb: Leveldb is a fast key-value storage library written
at Google that provides an ordered mapping from string keys to string values
(2018). https://github.com/google/leveldb. Accessed 10 May 2018

13. Jones, T., et al.: Unity: unified memory and file space. In: Proceedings of the 7th
International Workshop on Runtime and Operating Systems for Supercomputers
(ROSS 2017), p. 6. ACM (2017)

14. Kale, L.V., Krishnan, S.: Charm++: a portable concurrent object oriented system
based on C++. ACM SIGPLAN Not. 28, 91–108 (1993)

15. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
SIGOPS Oper. Syst. Rev. 44(2), 35–40 (2010). https://doi.org/10.1145/1773912.
1773922

16. Moody, A., Bronevetsky, G., Mohror, K., de Supinski, B.R.: Design, modeling,
and evaluation of a scalable multi-level checkpointing system. In: Proceedings of
the 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1–11. IEEE Computer Society (2010)

17. Pavlo, A., et al.: A comparison of approaches to large-scale data analysis. In:
Proceedings of the 2009 ACM SIGMOD International Conference on Management
of Data, pp. 165–178. ACM (2009)

https://doi.org/10.1145/319151.319164
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
http://www.sciencedirect.com/science/article/pii/S0743731514001257
https://cassandra.apache.org/
https://cassandra.apache.org/
https://spark.apache.org/
https://github.com/google/leveldb
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/1773912.1773922

Mediating Data Center Storage Diversity in HPC Applications 287

18. Pébaÿ, P., et al.: Towards asynchronous many-task in situ data analysis using
legion. In: 2016 IEEE International Parallel and Distributed Processing Symposium
Workshops, pp. 1033–1037. IEEE (2016)

19. Ulmer, C., et al.: Faodel: data management for next-generation application work-
flows. In: Proceedings of the 9th Workshop on Scientific Cloud Computing, p. 8.
ACM (2018)

20. Ulmer, C., et al.: Faodel: data management for next-generation application work-
flows. In: Proceedings 9th Workshop on Scientific Cloud Computing, Science Cloud
2018. ACM, June 2018

21. Vahdat, A., Dahlin, M., Anderson, T., Aggarwal, A.: Active names: flexible location
and transport of wide-area resources. In: Proceedings USENIX Symposium on
Internet Technology and Systems, October 1999

