
Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Mediating data center storage
diversity for HPC applications
with FAODEL

Patr ick 	Widener, 	Cra ig 	U lmer, 	 Scott 	 Levy, 	Gary 	
Templet , 	 Todd 	Kordenbrock

Sand ia 	Nat iona l 	 Laborator ies
A lbuquerque 	NM	/ 	 L ivermore 	CA
SAND2 0 1 9 - 6 6 6 8 C

Deep Memory/Storage Hierarchy

CPU

Archival Storage

Campaign Storage

Parallel File System

Nonvolatile Memory

Remote DRAM

DRAM

HBM

CPU Vendors

Storage Vendors

Data Management
Services

0.5-10 ns

100 ns

1,000 ns

30,000 ns

>1,000,000 ns

100 ns

HPC applications face evolving data management needs2

• Data	center	storage	will	be	a	focal	point	for	HPC	application	evolution	
• Simulate	/	output	/	analyze	cycle
• Integration	point	has	traditionally	been	the	storage	system
• Scale-up,	scale-out	on	same	platform

• Changes	aren’t	permanent,	but	change	is
• Impedance	mismatches	between	data	capture	/	
production	vs.	storage

• Applications	want	flexible	and	resilient	data	storage,	
but	want	complexity	hidden

• Storage	hierarchies	growing	deeper	and	more	complex
• Barriers	to	integration	with	analytics	/	viz	/	other	
downstream	processing	(file	formats,	storage	locations)

• Support	for	workflows	and	portable	analytics
(potentially	on	same	platform)

Need for Data Management Services at Exascale3

Asynchronous Many-TaskTraditional HPC

Bootstrapping	AMT

Meshing

Viz

Code	Coupling

Simulation	B

Simulation	A

Workflows

SAW:	NextGen
Workflows

DAG,	I/O

• File Read/Write
• Checkpoints

Staging

= Data Management Service

We are implementing these capabilities in the FAODEL service

Faodel Component Structure4

Application

Local Cache

RDMA Portability

Pool

Pool

Network
MMU

REST
Unit

I/O
Drivers

Network State Machines

Kelpie

Lunasa I/O

Particle
API

Mesh
API

OpBox

Data Interface Modules (DIMs)
• No single API for all datasets
• Develop new modules for each

dataset
• Top: Implement familiar user API
• Bottom: Faodel calls

Faodel Component Structure5

Application

Local Cache

RDMA Portability

Pool

Pool

REST
Unit

I/O
Drivers

Network State Machines

Kelpie

I/ONetwork
MMU

Particle
API

Mesh
API

OpBox

Lunasa: Network Memory Management
• Network memory requires registration
• Registration can be expensive
• Suballocate memory with tcmalloc

Faodel Component Structure6

RDMA Portability

Network State Machines
OpBox

Application

Local Cache

REST
Unit

I/O
DriversI/O

Pool

Pool

Network
MMU

Particle
API

Mesh
API

Kelpie: Distributed Key/Blob Service
• User-controlled Local Cache
• Leave callbacks for objects
• “Pool” controls object distribution

Distributed
Hash Table

Compute Node

Pool 1

Persistent Distributed
Hash Table

Local
Cache Pool N

Faodel Component Structure7

Application

Local Cache

RDMA Portability

REST
Unit

I/O
Drivers

Pool

Pool

Network
MMU I/O

Particle
API

Mesh
API

OpBox: Network State Machines
• RPCs insufficient
• Implement transfers in state machines
• More clarity, better error handling
• OpBox manages progress via Ops

= Op
Network

State Machines

Faodel Component Structure8

Local Cache

Application

RDMA Portability

REST
Unit

I/O
Drivers

Pool

Pool

Network
MMU I/O

Particle
API

Mesh
API

RDMA Portability
• Low-level network transfers
• Support NNTI or libfabric

Network
State Machines

Faodel Component Structure9

Local Cache

RDMA Portability

Network
State Machines

Application

REST
Unit

I/O
Drivers

Pool

Pool

Network
MMU

Particle
API

Mesh
API

I/O Drivers
• Interface to Burst Buffers, NVMe, PFS
• Support for XC40 DataWarp and PFS

I/O Modules in FAODEL

Kelpie Producer / Consumer Example11

void
produce(const size_t ds, const size_t item_count)
{
dht = kelpie::Connect(url);

for(const size_t i = 0; i < item_count; i++) {

kelpie::Key k;

k.K1(std::to_string(mpi_rank));
k.K2(std::to_string(i));

lunasa::DataObject ldo (0, ds);

dht.Publish(k, ldo);
}

}

void
consume(const size_t ds, const size_t item_count)
{
dht = kelpie::Connect(url);

for(const size_t j = 0; j < item_count; j++) {

kelpie::Key k;

k.K1(std::to_string(mpi_rank));
k.K2(std::to_string(j));

lunasa::DataObject ldo1;

dht.Need(k, &ldo1);
}

}

URL-based naming scheme for
resource groups (for example,
processes implementing a DHT)

Fine-grain control over keys and
therefore hashing performance

Event-based API
Publish, Want, Need

I/O Modules (IOMs) in FAODEL12

FAODEL was designed as an in-memory service
◦ Essentially a way to leverage node memory and fast networks in a cluster

Application users wanted a way to interact with persistent storage
◦ Either extract from FAODEL and store, or FAODEL learns about storage

IOMs are an attempt at a middle path
◦ Provide FAODEL with an abstraction of persistent storage
◦ Straightforward extension to many kinds of storage systems

I/O Modules for Checkpoint – Restart13

• Adding checkpoint/restart capabilities to an existing aerosciences CFD simulation
code
• Inputs are structured and unstructured meshes

• Primary restart use case is to ”bridge” long-running problems across job allocations

Simulation

Exodus

Checkpoint
/Restart Faodel IOM

DataWarp

PFS

CGNS
Mesh

Checkpoint/Restart

I/O Modules for Checkpoint – Restart14

Simulation

Exodus

Checkpoint
/Restart Faodel IOM

DataWarp

PFS

CGNS
Mesh

Checkpoint/Restart

• Mesh description handled by existing file / container formats
• Exodus (NetCDF) and CGNS historically popular

• Tied to file system
• Complicated API, interdependent metadata updates

during I/O
• Frequently the mesh structure doesn’t represent the problem

(which is what needs to be memo-ized)

I/O Modules for Checkpoint – Restart15

Simulation

Exodus

Checkpoint
/Restart Faodel IOM

DataWarp

PFS

CGNS
Mesh

Checkpoint/Restart

• Solution state is what must be checkpointed
• Often makes sense to represent independently of mesh

• Significant space savings possible
• Organize representation for specific cases – restart, viz,

analysis
• Many times only 1 or 2 checkpoints are necessary

• … as opposed to writing all to a filesystem-hosted library

I/O Modules for Checkpoint – Restart16

Simulation

Exodus

Checkpoint
/Restart Faodel IOM

DataWarp

PFS

CGNS
Mesh

Checkpoint/Restart

• Simulation chooses a set of keys to represent desired semantics
• Sometimes just arrays of state variables

• Values stored in LDOs allocated through Lunasa
• Kelpie stores LDOs in desired pool structure (e.g. DHT)
• LDO contents (the checkpoint) distributed among DHT nodes

Checkpoint contents have to end up on stable storage eventually

I/O Modules for Checkpoint – Restart17

Simulation

Exodus

Checkpoint
/Restart Faodel IOM

DataWarp

PFS

CGNS
Mesh

Checkpoint/Restart

• Application developers would like to use “burst-buffer” storage
• Fast I/O for checkpoint
• Background “trickle” to PFS
• Potentially, preferentially retain some data at burst-buffer

• Targets are new systems which will have some type of near-line
fast storage

• But they do not want to manage this process themselves if they
don’t have to

I/O Modules for Checkpoint – Restart18

Simulation

Exodus

Checkpoint
/Restart Faodel IOM

DataWarp

PFS

CGNS
Mesh

Checkpoint/Restart

• The role of the I/O Module
• Mediate between K/V structure and stable storage APIs
• Still need explicit interaction with job scheduler

• At intervals:
• Faodel supplies a set of keys to the IOM attached to each DHT node to be persisted
• IOM writes to stable storage as configured

• IOM can write to either DataWarp (Cray burst-buffer) or PFS

Expanding IOMs: dynamically mediating among storage destinations 19

FAODEL is an abstraction over the storage hierarchy

Not all application data has the same “shape”, though
◦ Metadata and control-plane content is very different from experiment results
◦ We want to match data shape and usage to appropriate storage tools
◦ We have implemented IOMs for HDF5, LevelDB, and Cassandra

Part of the IOM rationale is to enable flexible data sharing
◦ Reduce data transformation by storing persistently in the right place the first time
◦ If analytics tools use a column store, let’s just use that directly (Cassandra)

We address a shared data center environment where multiple services and APIs are
available and where we cannot dictate which ones are used

Dynamically mediating among storage destinations 20

How to provide applications with a naturally expressive way to select an IOM?

We made it possible to attach semantics to the object namespace in FAODEL

The Metapool class
◦ Interface resembles the Pool class (Pool manages an IOM)
◦ Extra methods for managing a set of a Pools and implementing semantics
◦ Multiple possibilities here, but to start with we use this to select IOMs

Metapool high-level view21

/
metadata

results

analytics

exp1

exp1

exp3

exp2
IOM (HDF5)PF

PF

PF

Pool::Publish

Pool::Publish

Pool::Publish

Metapool::PublishKelpie key namespace

Application wants to Publish()
“results” data at /results/exp2

Metapool associates a partition of the
key namespace with an IOM (storage)

Publish() / Want() requests are
delegated to a Pool based on what part
of the key namespace they address

Partition functions control which managed Pool
is identified as a delegate

Defining partition functions22

hdf5_dht = kelpie::Connect("ref:/myapp/results");
leveldb_dht = kelpie::Connect("ref:/myapp/metadata");
cassandra_dht = kelpie::Connect("ref:/myapp/analytics");

metapool.Manage(hdf5_dht,
[](const kelpie::Key& k) {
if(k.K1.substr(0, 8) != "/results") return false;
return true;

});

metapool.Manage(leveldb_dht,
[](const kelpie::Key& k) {
if(k.K1.substr(0, 9) != "/metadata") return false;
return true;

});

metapool.Manage(cassandra_dht,
[](const kelpie::Key& k) {
if(k.K1.substr(0, 10) != "/analytics") return false;
return true;

});

Separate Pool constructed
for each storage modality

PF is given the Key of the
Publish request. Can take
other actions.

App provides partition functions
as C++ lambdas through the
Metapool::Manage() method

Using the Metapool interface23

for(int i = 0; i < 25; i++) {
kelpie::Key k;

k.K1("/metadata/" + random_string(10));

lunasa::DataObject ldo(0, 256, lunasa::DataObject::AllocatorType::eager);
metapool.Publish(k, ldo);

}

for(int i = 0; i < 25; i++) {
kelpie::Key k;

k.K1("/results/" + random_string(10));

lunasa::DataObject ldo(0, 256 * 1e6, lunasa::DataObject::AllocatorType::eager);
metapool.Publish(k, ldo);

}

• Metapool iterates its collection of
partition functions

• First true response forwards the
Publish request to the associated Pool

Other Metapool policies possible: random Pool selection, non-
binary PF response, weighted PF response, not-just-PF

FAODEL service design allows such policies to be changed
dynamically & by third party

Evolution of the Metapool concept24

Metapool provides benefits at a macro scope
◦ Matching data to storage service characteristics
◦ Raw performance is governed by the storage service itself

Handling of IOMs can evolve in different ways depending on available/installed services

Namespace semantics can also be used for different things
◦ Caching behavior, TTL, protection mechanism, others?
◦ This is defined by applications, so overloaded namespace components is for them to resolve

Ability to change mediation behavior externally opens up policy management possibilities

Perhaps a good thing to keep storage destinations opaque
◦ Users match the known “shape” of data with a set of performance/capability characteristics

Metapool is an example of FAODELs usefulness as a mediation point
◦ … between applications & storage, within workflows

Conclusion25

• Faodel provides	data	management	tools	&	
services	for	computational	science	applications

• Faodel is	a	promising	integration	point	for	
managing	data	in	complex	storage	hierarchies
• …	while	providing	applications	with	abstractions

• This	exploration	of	IOM	capabilities	is	an	
example	of	extending	those	abstractions

• Our	group	is	currently	working	on	additional	use	
cases	for	evaluation	purposes
• We	care	about	performance	and	scalability	
• We	care	more	about	uptake	among	users

• A	public	release	of	Faodel is	available:	
https://github.com/faodel/faodel

Data Caching Job

ISAV Jobs

BSP MPI Job

AMT Runtime

AMT Job

Platform
Resource
Manager

Job

Faodel

Sand ia Na t iona l Labora tor i e s i s a mu l t imis s ion labora tor y managed
and opera ted by Nat iona l Technolog y and Eng ineer ing So lu t ions of
Sand ia LLC, a whol l y owned subs id i a r y of Honeywe l l In te r na t iona l
Inc. for the U.S. Depar tment of Energ y ’s Na t iona l Nuc lea r Secur i t y
Admin i s t r a t ion under cont rac t DE-NA0003525 .

This research was supported by the Exascale Computing Project (17-SC-20-SC), a
joint project of the U.S. Department of Energy’s Office of Science and National
Nuclear Security Administration, responsible for delivering a capable exascale
ecosystem, including software, applications, and hardware technology, to support the
nation’s exascale computing initiative.

