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ABSTRACT
Network security researchers often rely on EmulyticsTM to provide a way to evaluate the safety
and security of real world systems. This work involves running a large number of virtual
machines on a distributed platform to observe how software and hardware will respond to
different types of attacks. While EmulyticsTM software such as minimega [2] provide a scalable
system for conducting experiments, the sheer volume of network traffic produced in an
experiment can easily exceed the rate at which data can be recorded for offline analysis. As such,
researchers must perform live analytics, narrow their monitoring scope or accept that they must
run an experiment multiple times to capture all the information they require.

In support of Sandia's commitment to EmulyticsTM, we are developing new storage components
for the Carlin cluster that will enable researchers to capture significantly more network traffic
from their experiments. This report provides a summary of Haoda Wang's initial investigation of
how new AMD Epyc storage nodes can be adapted to perform packet capture at 100Gbps speeds
with minimal loss. This work found that the NVMe storage capabilities of the Epyc architecture
are suitable for capturing 100Gbps Ethernet traffic. While capturing traffic with existing libraries
was surprisingly challenging, we were able to develop a DPDK-based software tool that recorded
network traffic to disk with minimal packet loss.
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1. INTRODUCTION

Sandia National Laboratories uses EmulyticsTM as a way to evaluate how enterprise networks
perform under different operating conditions. In this work a framework such as minimega [2] is
used to launch a large number of virtual machines (VMs) on a cluster computer and establish
routing between the VMs in a way that emulates a specific environment of interest. The benefit of
EmulyticsTM over simply simulating the network is that software components behave more
faithfully because they are based on the software and firmware found in actual systems. Over the
last decade, Sandia researchers have used Emulytics to answer a variety of questions, ranging
from "How will this attacker's software spread?" to "Will our enterprise network be able to
support a video stream with a thousand consumers?".

Data management is an ongoing challenge for the community. Given the sheer volume of network
data that an enterprise-class experiment can produce, most researchers either limit their captures
to a very small number of connections of interest or focus on distilling data down to real-time
statistics. While these approaches are acceptable in many situations, many researchers would
benefit from the ability to have full packet capture. Packet captures offer proof that systems
performed in a certain manner and allow analysts to sift through the results after an experiment
and obtain better insight into what events took place.

1.1. Carnac Cluster

Sandia has a dedicated cluster named Carnac that is used for EmulyticsTM projects. Carnac has
288 compute nodes, each with 32 physical cores, 512GB of memory, 2TB of local SSD storage
and a single-port Connect-X 5 100GbE network card. Experiments communicate through a
100Gbps Ethernet (100GigE) network that uses an Arista DCS-7512N core switch. A custom
bare-metal scheduling service allows users to reserve cluster nodes for an extended period of
time. Users can install an operating system of their choosing onto node-local storage or PXE boot
the nodes into a diskless kernel/initramfs image.
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Figure 1-1 Sandia's 100GigE Carnac Cluster

1.2. Full-Packet Capture Challenges

Full-packet capture is challenging for a number of reasons:

Increased Network Speeds: Platforms such as Sandia's Carnac cluster feature 100Gbps
Ethernet for experiments. While most emulations take place at much lower speeds, a packet
capture system must take into account high-bandwidth bursts. Very few packet capture
libraries have been successfully tested beyond 40Gbps.

Storage Speed Challenges: A full-packet capture system must be able to store packets at a rate
that matches network bandwidth. Until recently, it was difficult to create a storage solution
in a node that could handle multi-gigabyte-per-second speeds.

Storage Capacity Challenges: Packet capture systems also need a large amount of capacity to
store incoming data. Current NVMe cards offer only a fraction of the storage of rotational
hard drives. Additionally, a host system has limited expansion bus (PCIe) lanes for hosting
multiple NVMe cards in a single system. As such it can be difficult to establish enough
storage for capturing long sessions of 100Gbps traffic.
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1.3. AMD Epyc Nodes

Given the usefulness of full-packet capture, we explored different alternatives for constructing a
computing system that could capture and store 100GigE network traffic for sustained periods of
time. AMD's new Epyc architecture provides a compelling system for this work. Epyc nodes
offer many cores, a large number of PCIe lanes, and support large amounts of memory.

Sandia procured 16 AMD Epyc nodes to serve as a high-performance storage array for both the
Carnac cluster and a neighboring high-performance data analytics (HPDA) system. An individual
Epyc node contains the following components:

Table 1-1 AMD Epyc Node Hardware

Component Description
Processor Dual-Socket Epyc 7551 (32 cores per socket)
Memory 1TB 2667MHz DDR4
NIC Mellanox Dual-Port ConnectX-5

Storage 10 x 2TB U.2 NVMe Drives

1.4. Outline

The remainder of this paper will focus on our work preparing these nodes for use in high-speed
packet capture. First, we conducted performance benchmarks to help evaluate the hardware and
make decisions about how it should be configured. Second, we explored different packet capture
packages and evaluated their performance on this hardware. Finally, we summarize some of the
lessons we learned in this work and outline next steps in this research.

2. EPYC NODE PERFORMANCE

As a first step in understanding the strengths and weaknesses of the Epyc node hardware, we ran a
number of standard benchmarks for CPU, memory and I/0 performance. This section provides a
summary of observations from these experiments.

2.1. Processor Benchmarks

The new Epyc nodes are well-suited for running heavily-multithreaded programs due to the large
amount of physical cores, as well as the extremely large cache sizes. However, they lag behind
Intel nodes currently available in our datacenter in single-core processing speed. Scimark2, a
single-threaded benchmark for scientific computing, was run using the Phoronix Test Suite on the
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various compute architectures available within our datacenter (Carnac and Kahuna Intel-based
clusters, Satya GPU machines, and Epyc nodes). The results of a composite benchmark can be
seen below. The Epyc node matched the Kahuna nodes' performance in Monte Carlo integration
and FFT, while falling behind on Gauss-Seidel relaxation, sparse matrix multiplication and dense
LU factorization.

scimark2 Composite
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o 300
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100 -

satya

machine
epyc io

Figure 2-1 Scimark2 performance results (higher is better)

When running benchmarks supporting multithreading, the Epyc nodes show performance results
that surpass the other compute nodes. This can be seen in the three benchmark results below,
which reflect multithreaded workloads that may be run on a large compute cluster, including code
compilation and simulation.

Ilvrn build time
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Figure 2-2 LLVM build time results (lower is better)
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Figure 2-3 C-ray test performance results (lower is better)
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Figure 2-4 Stockfish chess performance results (higher is better)

Users should be aware that the AMD Epyc processors have a different NUMA layout than
traditional Intel CPUs. Each physical Intel chip is its own NUMA node, while a single Epyc
processor contains 4 distinct dies [1], each with 2 core complexes, which share an L3 cache. Each
core complex holds 8 physical cores, with every 2 cores sharing a L2 cache. The complexity of
this memory hierarchy necessitates that more care should be taken to ensure that NUMA-sensitive
software runs on the correct NUMA regions.

Another interesting architecture choice involves RAM placement. While on traditional systems
the maximum memory throughput is attained by populating all DIMM slots, Epyc performs best
when the DIMM slots are only half populated1 . We observed a slight performance improvement
in benchmarks when removing half of the memory. However, this improvement was not observed
in dpdk_pdump experiments. Given that memory capacity is an important aspect of packet
capture, we chose to fully populate the DIMM slots for the remainder of the experiments in this
paper.

Ihttps://developer.amd.com/wp-content/resources/56301.pdf
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2.2. Local Storage Experiments

The Epyc nodes are equipped with ten 2TB Samsung 935 DCT NVMe storage devices that use
U.2-based PCIExpress to connect to the host. Our performance experiments focused on finding a
storage configuration for these devices that would maximize both bandwidth and minimize
latency for packet capture. We experimented with different filesystems and different RAID
approaches. Testing various configurations of filesystems with fio showed that XFS [9] provided
the highest throughput, while Btrfs [7] provided lower latency. ZFS [8] surprisingly provided the
lowest write speed, while also incurring the highest latency per write. F2FS [5] is a new
filesystem designed for flash devices, but the size was limited to 16TB and write speed did not
exceed that of XFS.

SPDK [10], a kernel bypass library providing direct access to a drive's block device, provided a
write speed below XFS and F2FS, but also showed the minimum latency, on the order of tens of
microseconds, while all the traditional filesystems exceeded 2,000 iLts latency. SPDK was
benchmarked with an independent benchmark tool shipping with the repo as it was not a
filesystem and required compilation. As the perf tool does not cache writes or rely on any
optimizations beyond SPDK, one can assume that the results from SPDK most accurately reflect
the maximum performance of these SSDs.

latency by filesysteln

ffs-raid

Ctrts-10

btrfs-raid-builtin -=

ttrfs-raid-md0
E

xts-10

xfs-rad

t2fs-10
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latency ins)
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Figure 2-5 Write latency by filesystem used (lower is better)
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Of these filesystems, extra benchmarks were done on F2FS and XFS to determine optimal block
size. At sizes of 4KB the latency is at a minimum, which may be an indicator of the physical
block size under the FTL. However, write speed was maximized at 1MB for F2FS and 512KB for
XFS, which implies that these filesystems may be doing write caching in the background to
optimize speed. The results for XFS, a more mature and well supported filesystem than F2FS, are
shown below.
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Figure 2-7 XFS RAIDO latency results (lower is better)
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Figure 2-8 XFS RAIDO transfer speeds (higher is better)

2.3. ConnectX-5 NIC Performance

The Epyc nodes also include Mellanox ConnectX-5 NICs that are rated for 100Gbps speeds. We
used iperf to help observe performance between a pair of hosts and tune our settings. Similar to
previous experiments we have conducted with other 100Gbps Ethernet cards, we found that it was
challenging to saturate the network link unless multiple, simultaenous transfers were performed
by different threads on the source and destination nodes. It is important to note that packet size
plays a significant role in performance. While it is trivial to reach line rate with many threads
using 1518B packets, the NICs struggled to reach an aggregate speed of 20Gbps when using 64B
packets. AMD's performance-tuning guide2 provided excellent guidance on maximizing
performance. Below is a set of commands that were used to tune the system at startup for high
throughput network performance

sudo systemctl stop irqbalance
sudo minx_tune —p HIGH_THROUGHPUT
sudo ethtool —L enp81s0f1 combined 8
sudo set_irq_affinity_cpulist.sh 40-47 enp81s0f1
sudo ifconfig enp81s0f1 mtu 9000
sudo ethtool —G enp81s0f1 rx 8192 tx 8192
sudo ethtool —C enp81s0f1 adaptive—rx off

2https://developer.amd.com/resources/epyc-resources/epyc-tuning-guides/
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Figure 2-9 Optimizations and their effect on network speed

2.4. RAM

In the case of a fully populated set of DIMMs, the Epyc nodes show higher bandwidth when
making a copy of a memory region than Carnac nodes, though a fill command has comparable
speed. Interestingly, memset can be done at nearly twice the speed on a Epyc node, though a
Carnac node performs memcpy about 1.5 times faster.

3. ANALYSIS OF COMMODITY PACKET CAPTURE

SOFTWARE

For decades network researchers have relied on tools such as tcpdump [4] to capture and record
network traffic. While tcpdump works with generic Ethernet NICs, it is common for users to
experience packet loss at higher network speeds because packets must be routed through the
kernel's network stack. In order to improve performance, researchers have constructed alternate
packet capture libraries that bypass the kernel, enabling the NIC to send packets directly into the
memory of userspace applications. The Mellanox ConnectX-5 card found in the Epyc nodes is
one of the few commodity network cards that supports this kernel bypass capability. This section
summarizes the characteristics of current packet capture libraries.
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3.1. Comparison of Available Packet Capture Frameworks

The table below lists some commodity packet processing frameworks and some of their
characteristics.

Table 3-1 Packet Capturing Libraries and Tools.

Tool Maturity Level Open Source Rated Bandwidth
tcpdump Production Yes <10Gbps
Wireshark Production Yes <10Gbps
Bro/Zeek Production Yes <10Gbps

OpenOnLoad Production No >40Gbps

VMA Production Yes 100Gbps
Netmap Production Yes >10Gbps
PF_RING Production Partially 40Gbps
Snabb Production Yes >10Gbps
DPDK Production Yes 100Gbps

Tcpdump, Wireshark and Zeek all use libpcap's PF_PACKET kernel interface to process packets
by default, which is significantly slower than using AF_PACKET, but using AF_PACKET
requires a rebuild of the library. AF_PACKET only supports up to 9 Mpps with tuning3, which is
still too slow for high speed capture purposes, where packet rates can go up to 40Mpps. libpcap
also supports using DPDK [3] or netmap [6] as a backend.

PF_RING, which works on Mellanox and Intel NICs, tries to solve this problem with a different
approach. It uses NAPI so that instead of having interrupts, the capture process continuously polls
the kernel, which allows it to capture at 10Gbps speeds. However, ntop also provides a
closed-source zero-copy module for PF_RING, which allows only Intel cards to capture at
40Gbps.

OpenOnLoad is a set of libraries specific to SolarFlare NICs that provide a drop-in replacement
for the traditional Linux network stack, bypassing the kernel entirely. VMA is similar, but works
only for Mellanox cards. Both require only a LD_PRELOAD of the VMA libraries when running
a program. A more general solution is Snabb, which supports Mellanox, Intel, SolarFlare,
Broadcom and Chelsio cards. There is no packet capture software readily available for Snabb, so
you would have to write your own.

DPDK is another kernel bypass framework that relies on poll-mode drivers. Intel NICs require a
separate kernel module for DPDK support, while Mellanox cards can work with mlx5_core in a
bifurcated mode that leaves the card available to the kernel. The API changes with each major
LTS release, so building a pre-existing DPDK-based program may require some trial and error to
find the right version. However, DPDK has the largest ecosystem of commodity software based
on the library and will be the focus of the next subsection of this paper.

3https://kulcuruku.co/post/capturing-packets-in-linux-at-a-speed-of-millions-of-packets-per-second-without-using-

third-party-libraries/
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3.2. DPDK Architecture

DPDK primarily consists of drivers, which may or may not map to actual interfaces. The three
investigated here are the mlx5, pcap and null drivers.

The mlx5 driver binds with the Mellanox OFED kernel module and copies over data from the RX
queues of the ConnectX-5 NIC into a ring buffer. A separate ring buffer is used with the TX queue
on the NIC. The pcap driver is similar, but the RX buffer is linked to a pcap file that is being
written to, while the TX buffer is linked to a pcap file that is being read from. The null device
writes random data into the TX ring buffer and clears the RX ring buffer after being written to.

Testpmd is a forwarding program that directly transfers data between these ring buffers, while
dpdk-pdump mirrors a ring buffer for its own pcap interface, like a tap on a switch.

3.3. Comparison of DPDK-based Packet Capture Tools

The table below lists open source software supporting packet capture based on DPDK and some
of their characteristics.

DPDK pdump: A built-in DPDK packet capture framework that needs to make a copy of the
network buffer in a separate mempool.

VPP: A software-defined router that supports packet capture and tracing, but does not record
UDP packets lost and crashes when recording TCP streams >50Gbps.

Trex: A traffic generator that supports packet capture and tracing, but does not scale above
20Gbps and is limited to one RX queue.

HPCAP4OG, DPDK2Disk: Dedicated research-grade packet capture software that claims to
support 40Gbps speeds, but does not support the mlx5 driver. Unmaintained as of May
2018.

FlowScope/libmoon: A research-grade Lua-based packet analysis framework claiming to
support 100Gbps traffic, but packets must be saved in memory before going into disk.
Unmaintained as of October 2018.

DPDKCap: A research-grade packet capture tool built before DPDK's librte pdump and
unmaintained as of March 2017.

4. PACKET CAPTURE WITH LIBPCAP

4.1. libpcap with DPDK

libpcap provides support for DPDK if built with DPDK libs in /usr/lib and /usr/include. Running
tcpdump with a DPDK-enabled libpcap can be done with the following command:
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sudo DPDK CFG="—dlibrte_mempool_ring . so —dlibrte_pmd_mlx5 . so —w 51:00.1 —1 40,41,42,43,44" tcpdump dpdk:0 —v

Performance seems to match with that of dpdk_pdump, which isn't surprising considering that the
code either calls memcpy on the network buffer for each iteration or passes a pcap_tmp_buf with
the capture data to libpcap4, which results in a memcpy later in the code. This is just like how
librte_pdump on the DPDK library creates a copy of the buffer on each iteration.

4.2. libibverbs Dependency on libpcap

When building libpcap from source, an interesting entry in the output of the configure script
mentioned checking for compatibility with libibverbs, which may be increasing the capture rate
of tcpdump. However, no difference was found when using tcpdump with and without libibverbs
support and the contribution history for libpcap shows that the libibverbs dependency is for
offloaded RDMA traffic5.

4.3. libpcap with VMA

Mellanox's VMA framework claims to support all Linux programs as long as they use the Linux
kernel stack6. However, running tcpdump with the library results in identical statistics to normal
tcpdump, which shows that VMA is not able to support libpcap's AF_PACKET interface. It seems
to require the application to use the Linux IP stack. This may still be a solution for assembling
packet captures from multiple computers onto one due to its high bandwidth and low latency.

4.4. Systemtap Instrumentation

In order to accurately pinpoint the bottleneck for packet capture, Systemtap was used to analyze
the timing of the function calls in the tcpdump library, libdpdk.so, librte_pmd_mlx5.so,
librte_mempool_ring.so and libpcap.so, as well as other factors affecting the system. This allows
for the relative runtime of functions to be ascertained. DPDK, libpcap and tcpdump needed to be
built with debug symbols, so the following line was added to dpdk/mk/rte.sdkroot.mk

MAKEFLAGS += —gdwarf

and the following was added to Makefiles in the libpcap and tcpdump directories.

CXXFLAGS += —gdwarf

4https://github.com/the-tcpdump-group/libpcap/blob/master/pcap-dpdk.c

https://github.com/the-tcpdump-group/libpcap/pul1/585

6http://www.mellanox.com/related-docs/prod_acceleration_software/VMA_8_6_10_User_Manual.pdf
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Systemtap was built from the upstream Git directory7 without the currently broken Dyninst
support. Debug symbols8 for the linux-image package need to be installed as well. A standard
configure, make and make install was sufficient.

libpcap runs on DPDK in this manner: first, mlx5_rx_burst_vec is called to create a copy of a
filled RX buffer into a ring buffer is made by DPDK. After the ring buffer is full,
pcap_dpdk_dispatch is called which makes a copy of the buffer for libpcap. Then it is run through
a BPF program allowing all packets through with the pcap_filter function and finally written to
file with pcap_dump, which opens a standard Linux file descriptor and writes to it with fwrite. As
tcpdump is single threaded, writing to the file takes up many cycles that could have been used to
grab more packets and results in a sizable amount of packet loss.

DPDK pdump also uses a single thread for writing to disk, but is able to use multiple threads to
receive packets from the ring buffer. This creates a bottleneck at the thread that writes to disk as
its calls to pcap_dump are costly. Interestingly, the packet buffer is copied twice, from the host
application to dpdk-pdump and then another time to a DPDK pcap virtual interface before finally
going into disk. The writer must also work as a single thread, which incurs huge delays in
processing when dpdk_pdump is called. Interestingly, when the pcap_dump call is removed from
the librte_pmd_pcap code, performance goes back up to become the same as before, meaning that
pcap_dump is the main bottleneck here. This method is also slower than forwarding to a libpcap
device, as it uses two ring buffers that are copies of each other instead of just one, greatly
increasing the number of writes to memory needed.

In order to get the probe latency to a minimum, only librte_pmd_mlx5.so was instrumented on a
later run of testpmd. Here one can see that each call of the mlx5_rx_burst_vec function runs in
slightly over 5,000 cycles, which is less than the maximum possible runtime of —4,900 cycles for
lossless capture.

5. PACKET CAPTURE TESTS

Packet capture at these high speeds is tricky due to the low amount of cycles allotted for each
packet. Given the max line rate of 40Mpps for 64-bit packets, the 2.40GHz clock speed of the
Epyc CPU and the 8 physical cores in the NUMA node adjacent to the NIC, each queue is allotted
4915 cycles to process, given that the NIC instantaneously sends packets to the CPU. That means
that each packet only has about 0.6 cycles to be processed if runtime is not amortized correctly.

5.1. DPDK Setup

When using DPDK, the Mellanox OFED stack needs to be installed with the following command
for DPDK 17.11 and above to build properly:

./ mlnxofedinstall —dpdk —upstream—libs

7https://sourceware.org/systemtap

8https://wiki.ubuntu.com/Debug\%20Symbol\%20packages
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After install, download the latest DPDK from http://www.dpdk.org/ and unzip it. Then, run the
dpdk/usertools/dpdk-setup.py script and select x86_64-native-linuxapp-gcc as the build option.
Immediately cancel the build and go into the new dpdk/x86_64-native-linuxapp-gcc folder. Edit
the .config file so that these lines match:

CONFIG_RTE_BUILD_SHARED_LIB=y
CONFIG_RTE_MAX_MEM_MB_PER_LIST= 1 3 1 27 2
CONFIG RTE LIBRTE PMD PCAP=y
CONFIG RTE LIBRTE MLX5_PMD=y

Now run make and all test apps should show up in dpdk/x86_64-native-linuxapp-gcc/app.
The test was repeated with AMD's clang-based AOCC9 compiler. While DPDK builds without
errors, the optimizations make DPDK access uninitialized memory when starting up, resulting in
an error when running testpmd or DPDK-based tcpdump.

5.2. Traffic Generation

Trex, an open source packet generator written by Cisco and based on DPDK, provides line-rate
packet generation. On a Mellanox ConnectX-5, it can run at 95Gbps using 1518B frames and at
20Gbps and 60Mpps when using 64B frames. It provides a stateless mode that allows clients to
connect to it using the web interface or trex-console.

Trex supports multiple threads for packet generation, as well as multiple TX queues. One needs
to specify a target IP address as well as destination MAC address, which may require a gratuitous
ARP request from the host for Trex to find. The figure below shows the average bandwidth
attained as transmitting cores are increased (given each core has its own TX queue). The effects
of NUMA can be seen in the slight decrease in output speed after all 8 cores on the NUMA node
are used, while the drop between 5 cores and 6 can most likely be attributed to too much noise on
the PCI lane.

The performance of Trex with various frame sizes is shown below as well. As Trex is based on
DPDK, it uses the mlx5 poll-mode driver written for it. This driver happens to optimize for
constant packet sizes10, which may inflate the bandwidth and not reflect real world performance.
All IMIX traffic is generated by the file in scripts/stl/imix.py, while all frame-based traffic comes
from scripts/stl/udp_for_benchmarks py.

9https://developer.amd.com/amd-aocc/

10http://mails.dpdk.org/archives/dev/2016-September/046705.html
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pktgen-dpdk is another solution to generate packets at line speed, but excels at replaying pcap
files instead of generating traffic through a script. The build instructions in its documentation are
well written and can be followed exactly, ignoring the DPDK build instructions. While a pcap file
provided by CCD with about 160,000 streams fails to load after even 10 minutes on Trex, pktgen
loads it within a minute. Shown below is a command to replay a packet at
/mnt/1_5GbpsPCAP/testNetPcap using all 8 cores on NUMA node 5 on the 2nd port of the mlx5
card.

sudo —E ./app/x86_64—native—linuxapp—gcc/pktgen 0000:51:00.1 —1 40,41,42,43,44,45,46,47 — —s 0:/mnt/1_5GbpsPCAP/testNetPcap —P —
N —m [41 —47].0

5.3. DPDK pdump Packet Capture

The dpdk-pdump library requires a separate DPDK process to be running from which it copies
packet buffers. This results in increased processing times and therefore decreased packet capture
raten. The testpmd app was used as the main DPDK process for dpdk-pdump to capture from. A
few benchmarks of testpmd forwarding without dpdk-pdump running are shown below. Packets
were able to be forwarded losslessly around 500B and above, with the best performance being
seen at around 3 RX queues. These performance numbers did not translate over to when
dpdk_pdump was running.
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11https://doc.dpdk.org/guides/howto/packet_capture_framework.html
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When dpdk-pdump is added onto the testpmd process, the performance degrades significantly, as
shown in the charts below. Interestingly, running testpmd with RSS now results in significantly
lowered performance than when running without RSS on a single RX queue. dpdk-pdump drops
packets at a slower rate compared to tcpdump and shows increased performance over every
network speed tested.

Intel CPUs have significantly worse performance, as the capture rate to ramdisk at 10Gbps of
IMIX traffic was 36.5% on a Carnac node, compared to the 56% seen on an Epyc node, given the
same number of threads. The decrease in performance is reflected in other speeds as well. With
hyper-threading enabled and all cores used, the capture rate increases to 47.1%, which still fall
short of the rate on Epyc. This may mean that the CPU itself is a bottleneck and shows the
benefits of an Epyc processor's 4-die architecture, since the smaller number of cores in each node
means that the latency of PCI devices is minimized when optimizing for NUMA. The memory
bandwidth of each device may also be affecting the scores, but as Carnac's memory speed is only
20% slower than the Epyc nodes, it does not fully explain the 40% drop in performance. In
addition, changing the size of the memory buffers do not change the results significantly.
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Packets also seem to be dropped at a uniform rate no matter the packet size. This was tested with
packet captures which were collected at 1.5Gbps. These pcap files were captured losslessly when
replayed at the same speed, but when replayed at line speed on a ConnectX-5 card with
pktgen-dpdk(at about 35Gbps), the packet loss was significant. As shown in Figure 15, it was also
evenly distributed between all packet sizes, so there does not seem to be a correlation between
frame size and packets captured when dealing with realistic traffic. This implies that packets are
not selectively dropped, since packet drop rate across all sizes is constant. The command for
running pktgen correctly from the source directory is shown here.

sudo —E ./ app/x86_64—native —linuxapp —gcc / pktgen \
—w 0000:51:00.1 \
—1 40 ,41 ,42 ,43 ,44 ,45 ,46,47 — \
—s P :/ mnt/1_5GbpsPCAP/ testNetPeap \
—P —m [41 —471.0
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After adding a setvbuf call to sf-pcap.c in the libpcap source tree, performance increased from
13% of packets captured to 41% of packets captured.

5.4. DPDK with libpcap and null Interfaces

DPDK provides support for a virtual libpcap and virtual null driver, which allow DPDK to read or
write packets to a pcap file as though it was another interface, or just transmit them to an empty
buffer that gets cleared right after in the case of the null interface. When running testpmd with the
null device, packet loss at line rate was about 3%, compared to 87% when capturing to a pcap
interface, which strongly indicates that the pcap interface is a bottleneck. It may be a good idea to
use this method over dpdk-pdump to capture packets as only one ring buffer is used here,
compared to two identical buffers with dpdk-pdump.

Receive traffic, copy to a buffer and then clear the buffer:

sudo ./ app/testpmd \
—w 0000:51:00.1 \
—1 40,41,42,43,44,45,46,47 \
—vdev=eth_null0 — \
—nb—cores=7 —mbuf—siz e =2048 \
—rxq=4 —txq=3 \
—port —topology=chained \
—forward —mode=rx only

Receive traffic and run pcap_dump on it:

sudo ./ app/testpmd \
—w 0000:51:00.1 \
—1 40,41 ,42 ,43 ,44 ,45 ,46 ,47 \
—vdev="net_pcap , tx_pcap =/mnt/ cap .pcap" —
—mbuf—size=2048 \
—port —topology=chained
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6. PRIMARY PROBLEM

The primary problem with both DPDK and libpcap was the large amount of time it takes for the
pcap_dump function to run, especially since it runs in a single-threaded fashion and
synchronously. The two bottlenecks for this program are the kernel (since writing to a eth_null
DPDK device is faster than writing to /dev/null) and the filesystem (since writing to /dev/null and
ramfs is faster than writing to the RAID array).

To solve this problem, the eth_pcap_tx_dumper function in drivers/net/pcap/rte_eth_pcap.c was
edited so that the mbuf itself was written to disk, instead of pcap_dump being called on individual
packets. Implementation was trivial as the pcap_dumper_t struct used with pcap_dump can be
cast to a FILE* for use with fwrite. This increased capture rate to 96%, though this file does not
follow standard pcap format but is instead an array of rte_mbuf objects.

The experiment was done in a similar way to the previous ones, where testpmd was started with a
virtual pcap device and then a pcap was replayed with pktgen-dpdk.

7. LESSONS LEARNED AND NEXT STEPS

7.1. Lessons Learned

• RAIDO though mdadm actually increases the latency of writes which is not ideal in a packet
capture use case.

• While DPDK does provide nearly double the performance of Linux AF_PACKET, it still
doesn't poll the RX queue fast enough for it to capture packets losslessly at line rate,
though it does work at 97% of line rate on normal traffic.

• Mellanox VMA allows for any program using the Linux IP stack to use kernel bypass, but
programs using AF_PACKET or PF_PACKET won't work with it.

• DPDK is fast enough to process packets at almost line rate, but the pcap virtual interface
used by DPDK still relies on libpcap and that relies on fwrite, which drops the capture rate
to 13% on an XFS RAIDO array.

• DPDK is not a suitable choice for packet capture as its pcap libraries rely on a single thread
and sequential pcap_dump calls. However, its integration into libpcap makes it a good
choice for getting a packet analysis framework like Bro to run at 100Gbps speeds.

7.2. Future Ideas

• Write metadata out to disk along with the mbuf, or make a separate program to read the
mbuf file and transfer it into pcap format.
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• Try using SPDK as the backend to DPDK's librte_pmd_pcap to write out directly to block
devices, which will decrease latencies. This is the most complicated solution as SPDK
writes directly to the block device without a filesystem backing it, but will provide the best
performance as the metrics in section 1.2 show. This is better done at the DPDK side, since
sending it through libpcap requires threading. An implementation of it rated up to 40Gbps
can be found here12.

• Fan out the packet capture so that multiple nodes receive it and then send aggregated
packets back to an Epyc box using VMA.

12https://d1.acm.org/citation.cfm?id=3167238
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