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Abstract—Remote Direct Memory Access (RDMA) is an in-
creasingly important technology in high-performance comput-
ing (HPC). RDMA provides low-latency, high-bandwidth data
transfer between compute nodes. Additionally, it does not require
explicit synchronization with the destination processor. Elim-
inating unnecessary synchronization can significantly improve
the communication performance of large-scale scientific codes.
A long-standing challenge presented by RDMA communication
is mitigating the cost of registering memory with the network
interface controller (NIC). Reusing memory once it is registered
has been shown to significantly reduce the cost of RDMA com-
munication. However, existing approaches for reusing memory
rely on implicit memory semantics. In this paper, we introduce
an approach that makes memory reuse semantics explicit by
exposing a separate allocator for registered memory. The data
and analysis in this paper yield the following contributions: (i)
managing registered memory explicitly enables efficient reuse
of registered memory; (ii) registering large memory regions to
amortize the registration cost over multiple user requests can
significantly reduce cost of acquiring new registered memory;
and (iii) reducing the cost of acquiring registered memory can
significantly improve the performance of RDMA communica-
tion. Reusing registered memory is key to high-performance
RDMA communication. By making reuse semantics explicit, our
approach has the potential to improve RDMA performance by
making it significantly easier for programmers to efficiently reuse
registered memory.

Index Terms—RDMA, HPC, memory management, messaging

I. INTRODUCTION

Modern extreme-scale computational science is supported
by high-performance computing (HPC) systems designed
around low-latency, high-bandwidth networks. Remote Direct
Memory Access (RDMA) leverages the capabilities of these
high-performance networks by providing zero-copy messaging
between a specialized programmable NIC and an application
without direct involvement from the target processor. In order
to realize these benefits on modern interconnects, an applica-
tion must register a memory region on both sides of a message
exchange with the NIC. However, memory registration is an
expensive operation. As a result, programmers have focused
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on reusing memory buffers once they have been registered.
A common approach is to cache registered memory regions
so that subsequent RDMA operations can reuse registered
memory. However, these cache-based approaches typically
rely on implicit semantics: the application programmer has no
explicit knowledge of whether a given buffer is still registered
(i.e., whether it is still resident in the cache). Instead the
programmer hopes that by carefully constructing her program,
her memory buffers will still be registered when she initiates
the next RDMA operation.

In this paper, we propose an approach that presents the pro-
grammer with explicit reuse semantics for memory buffers. We
make and empirically support the following specific claims:
(7) explicit management of registered memory facilitates its
efficient reuse; (¢¢) registration of large memory regions amor-
tizes the registration cost over multiple user requests and can
significantly reduce the cost of registering new memory; and
(#47) reducing the cost of acquiring registered memory can
improve the performance of RDMA communication.

Our discussion is organized as follows. We motivate our
proposed approach in Section II. We describe our approach
in Section III and provide background on related software in
Section IV. Sections V and VI provide detail on our experi-
mental environment, describe the microbenchmarks we use to
support our performance claims, and discuss our experimental
results. Section VII examines the performance of our approach
in the context of a case study of using RDMA communication
with the Kokkos programming framework. Sections VIII and
IX discuss related work and conclude the paper, respectively.

II. THE IMPORTANCE OF REUSING REGISTERED MEMORY

The cost of registering memory for RDMA communication
has long been recognized as a significant performance issue.
As a result, mitigation methods have been well-studied. The
most common approach is to build an application-specific
cache to facilitate reuse of registered memory. These ap-
proaches can either be dynamic (i.e., caching buffers as re-
quests arrive) [1], [2], [3], [4], [5] or static (i.e., pre-allocating
buffers during initialization) [6], [7]. However, many of these
approaches are built within specific applications and rely on
implicit semantics of memory buffer reuse or predictions
about future memory buffer use. Implicit reuse semantics



mean that application programmers cannot guarantee that any
given memory buffer remains registered (i.e., they cannot
guarantee that any given registered memory buffer is still
in the registration cache). Instead, in order to achieve high
performance, the programmer is compelled to carefully man-
age the reuse of her memory buffers in the hope that they
remain in a registration cache. In this paper, we propose to
make buffer reuse semantics explicit to ease the burden on
application programmers. The basic idea, explained in more
detail in Section III, is to allow the programmer to explicitly
acquire and release regions of registered memory for RDMA
communication.

III. OVERVIEW OF PROPOSED APPROACH

On many modern HPC interconnects (e.g., Cray Aries,
Infiniband), RDMA requires registration of the source and
destination memory regions. Registration requires requesting
the kernel to pin the memory (i.e., ensure that the region
is in physical memory and cannot be swapped) and then
communicating information about this pinned memory region
to the NIC. The time required to register memory for RDMA
communication has long been recognized as a significant over-
head in high-performance communication. Standard practice
is to reduce this cost by reusing memory that has already
been registered. However, managing registered memory to
ensure reuse is tedious and error-prone. The motivation for
managing registered memory to facilitate reuse is substantially
similar to the argument for using standard memory allocators
(e.g., malloc, memalign) for managing the reuse of heap
memory acquired from the kernel (e.g., using sbrk or brk)
rather than requiring to programmers to carefully construct
their programs to ensure efficient reuse.

In this paper, we introduce an approach to address these
issues. Our proposed approach uses two semantically distinct
allocators: one for standard heap memory; and one for regis-
tered memory. As a result, the programmer explicitly knows
whether the memory for a given buffer is registered or not.
Moreover, by managing registered memory explicitly we can
provide strong guarantees to the programmer that it is effi-
ciently reused. This approach provides two principal benefits:
(i) it frees programmers from managing RDMA buffer reuse
explicitly by making memory semantics explicit; and (i)
it reduces the cost of acquiring new registered memory by
allocating large blocks of memory to amortize the registration
cost over multiple user requests. It is still possible to register
regions of memory acquired from the standard heap memory
allocators, but by allowing the programmer to be explicit about
the type of memory that they need, this approach can provide
lower-latency RDMA operations.

Fundamentally, our approach presents the programmer with
two semantically distinct memory allocators: the standard
memory allocators (e.g., malloc, memalign) that allocate
ordinary memory; and a new memory allocator (our modified
version of TCMalloc) that manages memory that has been pre-
registered to improve RDMA performance. It is still possible
to register regions of memory acquired from the standard

memory allocators, but by allowing the programmer to be
explicit about the type of memory that they need, our approach
can facilitate lower-latency RDMA operations.

In this initial implementation, we manage registered mem-
ory with a customized version of TCMalloc.! However, our
approach does not depend on any particular feature of TC-
Malloc. In principle, any third-party memory allocator (e.g.,
Hoard [8], jemalloc [9], [9]) could be used for this purpose.

To prevent conflicts between TCMalloc and the default
memory allocators, we have modified TCMalloc so that it uses
memalign to acquire new memory. The minimum number
of bytes of memory that TCMalloc will request is 1 MiB.
Additionally, TCMalloc immediately registers each new block
of memory that it acquires.

IV. BACKGROUND
A. NNTI

The Nessie Network Transport Interface (NNTI) provides a
portable, lightweight abstraction for RDMA operations across
HPC interconnects [10], [11]. For our purposes, NNTI pro-
vides a single interface for RDMA communication over mul-
tiple interconnects. It includes support for Infiniband and Cray
XC Series interconnects; Infiniband Verbs (1ibibverbs) is
used for Infiniband networks and Cray’s User-Level Generic
Network Interface (uGNI) is used for Cray interconnects.

NNTI is part of Faodel [12], an open-source software pack-
age developed at Sandia National Laboratories that provides
mechanisms for managing data movement between related
jobs running on HPC platforms. The Faodel source code,
including NNTI, is publicly available on GitHub [13].

B. Kokkos

The proliferation of multi-core processors has presented
both new opportunities and new complexities for application
developers. The Kokkos [14] programming model provides
abstractions to insulate software developers from hardware
details, while providing performance portability across many
architectures. Kokkos is a C++ library that is linked with the
target application.

The key Kokkos abstractions that we rely on for the case
study presented in this paper are: memory spaces and Views.
A Kokkos memory space is essentially a memory domain (e.g.,
host memory, GPU memory) and an associated allocator. In
order to investigate the potential performance impact of using
our approach to facilitate RDMA transfers of Kokkos data
structures between nodes, we created a new memory space,
PinnedMemorySpace for use in our tests.

A View encapsulates a multidimensional array in the
context of a memory space. Our PinnedMemorySpace
enables programmers to create Views directly from registered
memory. More details and the results of our View experiments
are presented in Section VIIL.

ITCMalloc was designed as a drop-in replacement for malloc, i.., it
assumes that it is solely responsible for managing heap memory. We have
modified it to remove these assumptions.



Stria Mutrino
Architecture Linux Infiniband cluster Cray XC40
Interconnect ~ Mellanox IB (ConnectX5)  Cray Aries
Processor Marvell ThunderX2 Inel. Xeon
(Haswell)

TABLE I
COMPUTING SYSTEMS USED FOR EXPERIMENTS

V. EXPERIMENTAL APPROACH

In this paper, we use microbenchmarks and a case study
to explore RDMA communication on HPC platforms. Our
data was collected on two computing platforms at Sandia
National Laboratories: Mutrino and Stria. Mutrino is a Cray
development system for Trinity [15]. Although it is much
smaller than Trinity, its system administrators strive to ensure
that its hardware and software configuration matches Trinity.
Like Trinity, Mutrino has two compute node partitions: one
consisting of nodes built around Intel Haswell processors and
one consisting of nodes built around Intel Knights Landing
processors. The Mutrino results in this paper are from the
Haswell partition. Mutrino’s interconnect is Cray’s Aries net-
work. Similiarly, Stria is a development system for Astra.
Astra is a high-performance computing cluster built on ARM-
based processors.? Stria has an Infiniband network that uses
Mellanox ConnectX5 Infiniband NICs. Both systems use 4
KiB memory pages.® Details of these systems are summarized
in TABLE 1.

All of our microbenchmark results (see Section VI) were ob-
tained using NNTT to provide RDMA communication. For the
experiments performed on Mutrino, we configured NNTI to
use uGNI with Mutrino’s Aries network. For the experiments
performed on Stria, we configured NNTI to use Infiniband
Verbs (1ibibverbs).

VI. MICROBENCHMARK RESULTS

In this section, we use a set of microbenchmarks to explore
the potential benefits of using our proposed approach to
facilitate reuse of registered memory.

A. Experimental Design

For each of the microbenchmark experiments in this section,
we performed 1, 000 trials for each of 15 memory buffer sizes:
2% bytes, 7 < k < 21 (i.e., powers-of-two ranging from 128
bytes to 2 MiB). The time required to complete each trial was
independently measured. Each set of trials was performed on
a single allocation obtained from the resource manager.

2Astra debuted at number 203 on the Top500 list in November 2018 [16]
and was the first ARM-based supercomputer to qualify for the Top500 [17].

3Throughout this paper, we use the binary prefixes defined by the In-
ternational Electrotechnical Commission (IEC) to indicate binary orders of
magnitude. For example, a KiB is a kibibyte, 210 bytes and MiB is a mebibyte,
220 pytes.

B. Cost of Registering and De-registering Memory

RDMA on modern interconnects requires registration of
the source and destination memory regions, see Section IV.
In this subsection, we examine the time required to register
and de-register memory on our two systems. To measure
registration and de-registration time, we constructed a simple
microbenchmark. For each trial, it allocates, registers and de-
registers a memory buffer. We recorded the time to register
and de-register the memory for each trial. More details on the
trials conducted are provided in Section VI-A. The results of
these experiments are shown in Fig. 1. Each circle represents
the results from a single trial: pale blue for registration results
and pale orange for de-registration results. The position of each
circle on the z-axis corresponds to the size of the allocated
memory buffer. The position of each circle on the y-axis corre-
sponds to the amount of time required to acquire the memory
buffer. Darker regions form when the results of multiple ex-
periments overlap. These results demonstrate that registration
generally requires more time than de-registration and that the
time required to register or de-register memory increases with
the number of bytes being registered. Registering small buffers
is generally faster on Mutrino, but registering large buffers is
generally faster on Stria. Additionally, for both systems the
registration/de-registration times can vary significantly across
trials. In particular, Fig. la shows that for a small number
of trials on Mutrino, memory registration required several
milliseconds to complete, independent of the number of bytes
that were registered. These outliers correspond to the result
from the first trial for each memory block size. In addition,
the very first registration attempt (which registered a 128-byte
buffer), required more time to complete than any other trial.
As a result, we believe that these results are inflated due to
initialization costs that are not incurred by subsequent trials.
Although there is variation in the registration costs for Stria,
which uses an ARM processor and an Infiniband interconnect,
the data collected from it do not exhibit the same outlier
behavior.

On both systems, the time required to register or de-register
memory grows significantly with the size of the target memory.
On Mutrino, the mean time required to register a 2 MiB
memory buffer was approximately 90 x slower than registering
a 128-byte memory buffer. On Stria, registering a 2 MiB
memory buffer was approximately 4.4 x slower than the mean
time required to register 128 bytes. However, because the time
required to register a memory buffer grows more slowly than
the size of the buffer, it is much more efficient to register
one large memory region than several smaller regions. Fig. 2
shows the mean registration and de-registration times per byte
as a function of the memory buffer size. These data show
that on Stria the per-byte registration and de-registration times
decreases nearly linearly as a function of the size of the target
memory. On Mutrino, the registration cost-per-byte plateaus
for large (> 128KiB) memory buffers.
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Fig. 2. Per-byte registration and de-registration cost. These data show the mean per-byte registration and de-registration time as a function of the size of

the memory buffer that is being registered.

C. Cost of Allocating New Registered Memory

In this subsection, we examine the time required to allocate
new blocks of registered memory using our proposed approach
and compare it to the time required to acquire memory from a
standard memory allocator (i.e., malloc) and explicitly regis-
ter it. Allocating new registered memory means that satisfying
a user request requires increasing the total number of bytes that
are currently registered.* To compare these two approaches we
wrote a simple microbenchmark that records the time required

4When registered memory is being reused (cf. Section VI-D), an existing
region of registered memory is being used, so the number of bytes of registered
memory do not change.

to acquire a region of registered memory using our approach
and using allocation plus explicit registration. Because the ob-
jective of the experiments that use this benchmark is measure
how long it takes to acquire registered memory without reuse,
none of the allocated memory is released until all of the trials
complete. More details on the trials conducted are provided in
Section VI-A. The results of these experiments are shown in
Figures 4 and 3.

In Fig. 3, the result of each experiment is represented by
a single pale blue circle (for results that use our proposed
approach to explicitly manage registered memory) or a single
pale orange circle (for malloc and explicit registration). The
position of each circle on the z-axis corresponds to the size
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Fig. 3. Time required to allocate registered memory. Each semi-transparent circle represents the results of a single trial, darker regions occur where

multiple results overlap.

of the allocated memory buffer. The position of each circle
on the y-axis corresponds to the amount of time required
to acquire the memory buffer. Darker regions form when
the results of multiple experiments overlap. On the whole,
the results for the explicit registration experiments form a
curve that is very similar to the registration results in Fig. 1
(once the differences in the scale of the figures are accounted
for), thereby confirming that the cost of allocating registered
memory are dominated by the time required to register the
memory. The results from the experiments using our proposed
approach exhibit a different phenomenon. A significant ma-
jority of these experiments complete much faster than the
explicit registration experiments. Additionally, the speed of
the fast experiments (< 10us) remains relatively constant as
the size of the memory region increases. However, several
of the trials with our proposed approach require hundreds
of microseconds to complete. The frequency of these slow
results increases as the size of the memory buffer that is
being allocated increases. For memory regions that are 1 MiB
or greater in size, there are no fast trials. All of the trials
for these regions take hundreds of microseconds to complete,
much like the corresponding explicit registration experiments.
The results of the experiments with our proposed approach
are explained by examining how TCMalloc handles allocation
requests. When TCMalloc receives an allocation request that
cannot be satisified using registered memory that it already
manages, it allocates new memory (using memalign) to
satisfy the request and then registers it using NNTI. The
minimum number of bytes that TCMalloc will request is 1
MiB. For small allocations (128 to 512 bytes), a single 1
MiB allocation is sufficient to provide the necessary memory
for all of the trials for a specific memory buffer size. For
memory regions between 1 KiB and 256 KiB, TCMalloc must
request multiple allocations to satisfy all of the user allocation

requests. For memory regions that are 1 MiB or greater in size,
every user allocation request requires TCMalloc to acquire
and register more memory. Each such acquisition obtains
exactly enough 8 KiB memory blocks® to satisfy the user’s
request. The slow trials correspond to cases where TCMalloc
is requesting and registering new memory. When the size of
the allocated memory region is equal to or larger than the
size of TCMalloc’s minimum system allocation request, its
performance devolves to the explicit registration case since it
requests exactly the amount of memory that is necessary to
satisfy the current user request (i.e., for memory buffers that
are 1 MiB or larger and cannot be allocated from existing
registered memory), TCMalloc’s approach is effectively the
same as explicit registration).

Fig. 4 shows the mean time required to allocate a block
of registered memory as a function of its size. The blue
bars represent the results of the trials that use our proposed
approach and the orange bars represent the results of the trials
that allocate and explicitly register memory. The height of each
bar represents the mean allocation time as shown on the left
y-axis. The dotted line is plotted relative to the right y-axis
and shows how fast allocation with our approach is relative to
allocation and explicit registration. For memory regions that
are much smaller than TCMalloc’s minimum system allocation
request (e.g., 128 KiB or smaller), our approach is dramatically
faster than explicit registration: more than 134x faster for
128-byte memory buffers on Stria and more than 3.4 x faster
for 128-byte memory buffers on Mutrino. The speed of our
approach is due to its exploitation of the fact that the per-byte
registration costs decrease as the size of the allocated memory
region increases, cf. Section VI-B. However, as the size of the
memory buffer approaches the size of TCMalloc’s minimum

SInternally, TCMalloc manages memory in 8 KiB blocks



B proposed approach B malloc+registration
ims - 5%

F4.5x
100us T Fax

F3.5%

F2.5%
r2x
r15x
13 -5 00 B 0§ 1%¢

1045 1

&

Mean time to allocate and register memory
Speed of Faodel relative to baseline

100ns T .2 ™ =

QX L ‘27 QL ®

R N *—‘-l—‘ (—‘(—‘D‘i—‘%@‘)& *—‘@‘,ﬁ\‘
Number of bytes registered

(a) Mutrino

I proposed approach W malloc+registration
1ms 140x

r120x

2
o
E ]
g £
E 100ps 5 i ‘ = 1 a
g ] I 100x ©
'E r 80x %
9 10us 4 [
Z =
K I 60 §
© e
o N
p baox 2
£ 1us 4 2
B g
c 1 n
3 I 20x
=
100ns u et T ? Y
] % R QP PR P
Y O *_\ O AL NI S\
S5 e

Number of bytes registered

(b) Stria

Fig. 4. Mean time required to allocate new registered memory. Each bar represents the arithmetic mean of the time required to complete an allocation
that requires new memory registered (i.e., when it is not possible to reuse an existing registered memory buffer). The dashed line represents how much faster
memory allocation is with our proposed approach relative to standard memory allocation and explicit registration.

system allocation request (i.e., 1 MiB), the benefits diminish.
Above this threshold, the advantages of using our approach to
obtain new blocks of registered memory vanish® because its
approach essentially degrades to explicit registration.’

In addition to making reuse semantics explicit, our approach
has the potential to significantly reduce the amount of time
required to obtain new blocks of registered memory. If TC-
Malloc can satisfy a user’s request from memory it already
manages, it is exceptionally fast: generally less than 10us,
cf. Fig. 3. Similarly, if the size of a new memory buffer is
much smaller than the size of TCMalloc’s minimum system
allocation request, our approach is able to outperform explicit
registration by amortizing the cost of memory registration
across multiple user allocation requests.

D. Cost of Reusing Registered Memory

As we have stated several times in this paper, the principal
benefit of our approach is to facilitate and simplify the reuse
of registered memory. In this subsection, we compare the cost
of reusing registered memory obtained from TCMalloc with
the cost of acquiring ordinary heap memory and explicitly
registering it. To measure the cost of satisfying a user request
with memory that has already been registered, we constructed
a benchmark that includes a warm-up loop to ensure that
TCMalloc is managing enough registered memory to satisfy
all subsequent requests in the experiment. For each trial, we

OIn fact, the data collected on Stria for the very largest memory buffers
shows that there is a modest penalty (up to 11.3%) for using TCMalloc to
allocate new registered memory for a buffer that is 1 MiB or larger in size.
However, because our approach is intended to facilitate efficient reuse of
registered memory, this modest one-time penalty for large memory buffers
will not significantly diminish the performance benefit of reusing registered
memory, cf. Fig. 5 (showing that reusing a large buffer is nearly 900us faster
than allocating and explicitly registering a new memory buffer)

"The principle advantage of our approach, facilitating reuse of registered
memory, is unaffected by the number of bytes obtained.

measure the amount of time required to acquire a memory
buffer using TCMalloc to reuse existing registered memory.
We also measured the time required to acquire a memory
buffer using malloc and explicit registration. Comparing
the results of these two sets of experiments allows us to
characterize the benefit of using our proposed approach to
reuse memory. More details on the trials that we performed
are provided in Section VI-A. The results of these experiments
are shown required to obtain a block of registered memory as
a function of its size is shown in Fig. 5.

The data presented in Fig. 5 demonstrate the relative speed
of reusing registered memory and obtaining and explicitly
registering new memory. Each bar is plotted relative to the left
y-axis and its height corresponds to the mean time required
to acquire a memory buffer. The blue bars represent the time
to acquire a memory buffer using our proposed approach and
the orange bars represent the time to allocate and explicitly
register the memory buffer. The dotted line is plotted relative
to the right y-axis and shows the performance of our proposed
approach relative to allocation and explicit registration.

On Mutrino, reusing memory was very fast: the mean time
to acquire a memory buffer was less than 1us. In contrast, the
mean time required to explicitly register a new memory buffer
was as much as 883us. Reusing memory can therefore reduce
the mean time to acquire a registered memory buffer by as
much as 882us. In relative terms, reusing memory was up to
2054 x faster than explicit registration of a new buffer.

Similarly, on Stria, reusing registered memory was very fast:
the mean time to acquire a memory buffer was less than 2.5us.
In contrast, the mean time to allocate and explicitly register
a memory buffer was as much as 311us. Reusing memory
can therefore reduce the mean time to acquire a registered
memory buffer by more than 310us. In relative terms, reusing
registered memory is up to 253x faster than allocation and
explicit registration.
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registered memory.

E. RDMA Put

In this subsection, we examine the impact of our proposed
approach on the time required to transfer data between nodes
using RDMA Put operations. To measure the benefit of
reusing registered memory with our approach, we constructed
a benchmark that includes a warm-up loop to ensure that
TCMalloc is managing enough registered memory to satisfy
all subsequent requests in the experiment. The benchmark uses
either our proposed approach to acquired a memory buffer or
allocates heap memory for the buffer and explicit registers it.
It then transfers the buffer’s contents from one node to another
using an RDMA Put operation. More details on the trials
that we performed are provided in Section VI-A. The results
of this benchmark allow us to examine the benefit of using
our proposed approach relative to allocating and explicitly
registering memory buffers.

The results of these experiments are shown in Fig. 6. The
bars are plotted relative to the left y-axis and their height
represents the mean time to acquire and transfer the contents of
a memory buffer using an RDMA Put operation. The blue bars
represent the results of the experiments that use our proposed
approach to reuse registered memory for the memory buffers.
The orange bars represent the results of the experiments that
allocate heap memory with malloc and explicitly register
it. The error bars extend above and below the mean by the
standard error of the mean; the error bars are scarcely visible
because the standard error data is very small. The dotted
line is plotted relative to the right y-axis and represents how
fast using our approach is relative to the baseline. These
results demonstrate that using our proposed approach to reuse
registered memory is significantly faster with our approach:
up to 4.5x faster on Mutrino and 60.0% faster on Stria.

VII. CASE STUDY: Kokkos: :VIEwWw + RDMA

RDMA has been well-understood for more than a decade,
cf. [18]. Despite its long history, one-sided communication

remains rare in important scientific applications; communi-
cation continues to be dominated by two-sided operations.
As a result, in this section we develop an understanding the
practical benefit of explicitly managing registered memory by
examining results from a case study: using RDMA to transfer
the contents of Kokkos Views between nodes.

Programming frameworks are extremely valuable to the
development of scientific simulation codes. They allow pro-
grammers to focus on their problem domain and to outsource
the solution of common programming issues (e.g., effective
multithreading) to external libraries. Kokkos [14] is an open-
source programming framework that facilitates performance
portability. Programmers can write their code once and achieve
high performance across different architectures (e.g., on both
GPUs and CPUs). As a result, Kokkos is projected to be
a key programming model for exascale, see [19]. However,
Kokkos, like many such libraries, conceals memory allocation
behind API calls. Therefore, it is not currently straightforward
to construct Views from registered memory. In this section,
we demonstrate how our approach can be integrated with
Kokkos to create Views directly from registered memory
and to efficiently transfer their contents between nodes using
RDMA.

One of the key abstractions in Kokkos is the idea of a
Memory Space. Different Memory Spaces represent different
memory domains and encapsulate memory allocation func-
tions. For example, Host Space represents standard CPU-
accessible memory and CudaSpace repesents memory on
a GPU. To allow us to build a View from existing regis-
tered memory acquired, we created a new memory space:
PinnedMemorySpace. Using this Memory Space, we con-
structed a microbenchmark that allows us to compare three
strategies for registering the memory that stores the contents
of a View: (i) PinnedMemorySpace builds a View on
top of registered memory acquired using our apporoach;
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obtain a region of registered memory and transfer its contents from one node to another.

(i) HostSpace builds a View from ordinary memory and
explicitly registers its contents using a pointer to the memory
obtained via an API call; and (iii) Serialization builds a View
from ordinary memory and copies its contents into registered
memory acquired using our approach (i.e., explicitly request-
ing registered memory from TCMalloc). When the contents
of the View are in registered memory, our microbenchmark
initiates an RDMA Put operation to transfer the contents of
the View to a remote node. More details on the trials that we
performed are provided in Section VI-A. The results of these
experiments are shown in Fig. 7.

In Fig. 7 the height of each bar corresponds to the mean time
required to transfer the contents of a View from one node to
another using an RDMA Put operation. The error bars extend
above and below the mean by the standard error of the mean;
the error bars are scarcely visible because the standard error
for these data is very small.

For transfers of small Views (128 bytes to 2 KiB), the
PinnedMemorySpace approach is significantly faster than
using HostSpace, as much as 77% faster on Mutrino and
42% faster on Stria. As shown in the results presented in
Section VI-C, this is due to the registration cost amortization
benefits that our approach provides. However, for these small
buffers, using a PinnedMemorySpace provides a modest
improvement over serialization. This is due to the fact that both
approaches are leveraging our approach to explictly obtain
registered memory and the cost of copying a small number
of bytes into registered memory is small. For Views that
are larger than 2 KiB using a PinnedMemorySpace is
generally much faster than the other two approaches. On
Mutrino, it was more than 9.4x as fast as serialization and
as much 4.2x faster than Host Space. On Stria, it was more
than 19.4x as fast as serialization and as much as 50% faster
than Host Space.

VIII. RELATED WORK

The cost of registering memory for RDMA communication
has long been recognized as a significant issue. As a result,
mitigation methods have been well-studied. The most common
approach is to cache registered memory [1], [2], [3], [4], [6],
[71, [5].® Another approach is to overlap registration with other
operations to help hide memory registration costs [20], [21].
The viability and benefit of overlapping memory registration
with other operations is highly application dependent.

In contrast to these approaches, our approach allows pro-
grammers to explicitly express their intent to use regions
of registered memory for RDMA communication (e.g., by
requesting registered memory from our specialized version
of TCMalloc or by requesting ordinary heap memory from
malloc). The most similar approach can be found in the
memory pools used by Jia et al. [22] for TensorFlow. These
memory pools are integrated into the TensorFlow framework
but the authors provide no analysis of the benefit of this
approach to reusing registered memory outside of this frame-
work. Our approach makes reuse semantics explicit by provid-
ing an application-independent service. We have implemented
our approach as a stand-alone component of Faodel [12].
Faodel is an open-source data management software package
that is publicly available, see [13]. Moreover, we provide a
detailed analysis in this paper of the potential benefits of
reusing registered memory.

Mellanox has recently introduced On-Demand Pag-
ing (ODP) in some of its Host Channel Adapters (HCA).
Given the relative novelty of these devices, relatively little
research on the impact of ODP on Infiniband communication
performance has been published. Li et al. [23] have that there
are challenges associated with effectively exploiting ODP in
MPI implementations. Moreover, their proposed approach still

8See Section II for a more detailed discussion of these approaches.
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relies on a cache of pinned memory. As a result, there may
still be an opportunity to use our proposed approach to manage
pinned memory explicitly.

IX. CONCLUSION

RDMA-based communcation has been a preferred solu-
tion for many applications running on reliable, low-latency
networks. Recent innovations (e.g., [24]) from the enter-
prise/cloud computing space such as RDMA on converged
Ethernet [25] are making RDMA solutions more attractive in
other contexts as well. In this paper, we have demonstrated
how explicit management of registered memory can provide
clear performance gains for RDMA communication. Our ap-
proach provides a flexible and high-performance interface for
acquiring and efficiently reusing registered memory.
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