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ABSTRACT

A new in transit Data Service is presented and compared to the traditional file-based workflow
and the newly refactored in situ Catalyst workflow. Each workflow is enabled by the IOSS mesh
interface equipped with data management layers for Exodus and CGNS (file-based), Catalyst (in
situ), and FAODEL (in transit). FAODEL is a distributed object store that can transmit data across
MPI allocations. Catalyst is a ParaView-based visualization capability developed as part of the
CSSE Data Services effort. The workflows considered here take SPARC data into Catalyst for
visualization post-processing. Although still in unoptimized form, we show that the in transit
approach is a viable alternative to file-based and in situ workflows and offers several advantages
to both simulation and post-processing developers. Since IOSS is a mature interface with wide
adoption across Sandia and externally, each workflow can be reconfigured to use different
simulations that generate mesh data and post-processing tools that consume it.
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EXECUTIVE SUMMARY

Introduction

The overall goal of this work was to 1) demonstrate in transit workflows 2) promote IOSS as a
performance portability layer 3) lay out a roadmap for development environments that support
workflows and 4) rally the CSSE 1/0 and Visualization teams around workflow development.
These goals further the Data Services approach to HPC systems by fostering development of new
workflows that are responsive to users and ultimately deployable in NGW and other workflow
management tools.

Milestone Description and Completion Criteria

As displayed in the ASC Implementation Plan (IP) and the Milestone Reporting Tool (MRT), the
milestone description and completion criteria state:

1. An initial release of the Catalyst data service utilizing the FAODEL data management layer.

2. A performance and resource-usage evaluation of in situ, file system-based workflow, and
the data-service approaches.

Impact Statement

There are two primary impacts of this milestone: a practical example to assess of the viability of
data services for ASC applications, and an understanding of gaps and potential areas for
improvement to our computing environment to better support this model of computing for
production on ASC platforms. Lessons learned from this milestone will drive future work in our
CSSE path forward in both our I/O and Data Analysis portions of the program.

Summary of Work Done

Note that all results, chapter/section, and table/figure numbers below are taken from
SAND2020-9451.

The first goal and exit criteria 1 and 2 were completed and documented in Sec.6.4 which provides
workflow performance and resource usage analysis from experiments conducted using 64 nodes.
Table 6-1 and Figure 6-9 provide raw timing and memory usage data for each workflow. Each
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workflow was also executed in SAW (figures 7-1,7-2,7-3). These results show workflow
tradeoffs: file based workflows tax I/O bandwidth and disk space but are a “tried and true” option;
in situ greatly reduces I/0 bandwidth used but increases CPU load and development complexity;
in transit increases overall complexity but does so by offloading data management duties from
simulation developers into a dedicated data management layer. in transit potentially provides the
most flexibility considering the use of workflow management tools as a means of configuring
workflows with multiple data producers and consumers.

A more detailed discussion of tradeoffs for each workflow from a performance perspective is
found in Sec.6.4. Further discussion in Sec.7.5 describes the impact workflows might have on
simulation development costs. The current in transit workflow exhibits a software defect when
handling Exodus data but works as expected for CGNS data. The build/run process for these
workflows and experiments are documented in Appendix A. This is the handoff criteria until the
current work can be made production ready with software fixes and optimizations to the FAODEL
data management layer Sec.6.1.

The second goal and exit criterion 2 were also demonstrated in Sec.6.4 using IOSS as the data
management layer for each workflow. This minimized the development costs for SPARC as it
already uses I0SS for I/0 (Sec.7.2) Changes to SPARC for this work enabled new IOSS data

management layers as first-class options in SPARC’s configuration files.

The third goal is demonstrated in Sec.8.1 where lessons learned from this work drive
recommendations for changing HPC systems so that they support workflows more easily. Issues
include Dynamic Resource Management, Security Models Designed to Support Data Services,
and Containerized Workflows for in sifu visualization.

The fourth goal was demonstrated by the important contributions of the Catalyst team to the L2
work, spanning all workflows (Sec.4.3,4.4,4.1). Also, the Catalyst team accelerated their
development schedule to help make IOSS a common tool in each workflow also impacting the
second goal. They also provided insight in debugging in transit workflows and advice on building
and running SPARC.

Path Forward

As mentioned above, successful completion of this effort has given Sandia a demonstration of an
in transit workflow that couples SPARC and Catalyst. The use of IOSS as a vehicle for engaging
with ASC integrated codes, evaluating research ideas in I/O and data analysis, and as a tool for
rapid deployment of our technology is now a core part of our R&D strategy moving forward. As
mentioned in Chapter 8 of the report, this milestone identified a number of research ideas to
improve support for data-services in our HPC computing environment. We are hoping to
aggressively pursue some of these potentially disruptive ideas as part of our CSSE research plan,
but also through other means (e.g. Office of Science, LDRD, etc.). The target vehicle for in
transit and the refactored Catalyst in situ workflows is NGW as described in Section 8.3.1. Once
the in transit workflow described in this work is complete and optimized, NGW could deliver in
transit to a wide variety of IOSS based computational tools.
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1. MILESTONE STATEMENT & EXIT CRITERIA

This work addresses the following ASC Level II milestone:

As the volume and complexity of data being generated by ASC applications
continues to increase, the need to develop technologies to couple simulation and
analysis becomes more necessary. For nearly a decade, research projects have been
developing in situ visualization capabilities like ParaView/Catalyst that combine (at
compile time) a scientific simulation with visualization software to provide analysis
directly on the application data structures. Other efforts like the Sandia Analysis
Workbench (SAW) loosely couple simulation with analysis through shared access to
a parallel file system. We are proposing a third approach, a Catalyst data service that
couples analysis and simulation through a middle-tier FAODEL data-management
layer. While the in situ approach has potential to provide the highest-resolution
analysis, it introduces a number of practical challenges that make it extremely
difficult and hinder productivity of the computational scientist. First, analysis and
visualization algorithms often require significant memory and processing resources
that large-scale applications may want/need. Second, linking a fairly complex
general-purpose library like Catalyst is extremely complicated and potentially fragile.
Both the application and the library may use the same third-party libraries and if they
happen to use different versions, getting the correct compiling configuration is
tedious and problematic. A number of other issues exist that we will expand on in the
text of the milestone document.

Using a workflow tool like SAW is also acceptable, but now, instead of having
direct access to the data structures, the application and the analysis code use a parallel
file system where data is written, then read using a common file format (e.g., Exodus,
CGNS). Tools like SAW provide an “automation’ capability to couple simulation
with analysis. Using a file system as a communication mechanism between
application and simulation should be portable and avoids some of the issues identified
with in situ approaches, but is limited by capacity and bandwidth of the file system
and puts a significant burden on the metadata management system of a file system.
The data-service approach is a hybrid of the tightly-coupled in situ approach and a
loosely coupled SAW workflow. The service executes as a separate job in the HPC
system to avoid some of the practical issues of in situ analysis, and it accesses an
in-system data-management layer, FAODEL, an alternative to file systems designed
to support application workflows. This work will also demonstrate how to couple
components in a SAW workflow using the FAODEL data-management layer instead
of a file system.

This milestone includes development of a ParaView/Catalyst data service,
selection of a representative application (preferably from ATDM or Integrated codes),
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and a performance and resource-usage evaluation of in situ, file-based workflow, and
data-service approaches. We expect the evaluation will require almost no changes to
the application source code since we are planning to implement the Catalyst data
service as a new backend to the IOSS library, already in use by ATDM and IC
applications.

1.1. Satisfaction of Exit Criteria

This report presents details of the satisfaction of the exit criteria for this milestone. In
particular:

* An initial release of the Catalyst data service utilizing the FAODEL data management
layer.

This initial release is detailed in Appendix A. Each source code repository used in creating
the SPARC/Catalyst workflows described in this report is listed, along with the unique
identifiers (git commit hash and associated tag) which can be used to retrieve the source
code associated with completion of this milestone.

This release includes software changes to IOSS which enable each workflow to engage the
different IOSS data management layers. Also included are instructions for building the
entire SPARC/Catalyst/FAODEL software stack on mutrino for KNL and Haswell nodes,
and running the HIFIRE-1 example in SPARC for each workflow.

The Catalyst data service runs correctly with CGNS mesh data. A software defect when
handling Exodus mesh data remains to be resolved before the associated code can be
committed to the master IOSS repository. Also, IOSS and FAODEL code changes must go
through formal release processes before being pushed to the public repositories for [OSS
(https://github.com/gsjaardema/seacas and FAODEL
https://github.com/faodel/faodel.

* A performance and resource-usage evaluation of in situ, file system, and data-service
workflow approaches.

Our performance and resource usage evaluations are summarized in Section 6.4, including
a discussion of the tradeoffs posed by the different workflow composition strategies.
Details are presented throughout Chapter 6 and include performance and resource
management results derived from experiments based on a 32-rank SPARC run. Total
runtimes for each workflow are presented, as well as a breakdown of memory usage and
runtime for individual workflow components.

We also describe the interactions our work has had with the code bases and products we
sought to integrate, including IOSS, SPARC, and the Sandia Analysis Workbench
(Chapter 7). Our evaluation concludes with a discussion (Chapter 8) on how our work
might contribute to a future data services ecosystem at Sandia.
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2. EXPERIMENT DRIVER

We demonstrated three workflows (depicted in Figure 2-1) that provide a data conduit between
SPARC and Catalyst. For each workflow, SPARC computes air flow over the HIFiRE-1
(Hypersonic International Flight Research and Experimentation) vehicle [25]. HIFiRE-1 is an
aero vehicle that was used in experiments to gather high-resolution, full-scale heating and
pressure data. HIFIRE-1 data is used extensively to validate CFD codes. It is also of research
interest to SNL staff studying how to build reduced order models (ROMs) using data from large
numbers of small scale (~4 nodes) SPARC runs, as well as staff investigating algorithms for
computing flow statistics. The HIFiRE-1 simulations for SPARC use a series of meshes of
varying resolution as inputs to pre-defined scaling studies. Our goal is to leverage these studies
and eventually partner with the SPARC team in their performance and scaling studies. The
SPARC team is already studying the file-based and in situ workflows, and in transit will be a third
workflow in that study once development and testing is complete.

In simulating the HIFiRE-1 data, SPARC generates meshes for both volume and surface data
which contain fields to record temperature and pressure changes the body experiences during the
simulation. For each timestep, the Catalyst tool renders visualizations of field data over both the
surface and volume meshes. These include a set of images that show the meshes and field data as
computed on the surface and also as slices through the volume. These images are a product of
parallel rendering during which multiple Catalyst processes communicate and coordinate to
create each image.

IOSS is the enabling technology that underlies each workflow demonstrated in this work. At the
application level, IOSS provides developers with an interface that describes mesh data with a
geometric analogy applicable to both structured and unstructured meshes. IOSS also is equipped

( IOSS::Exodu's/\./\ exodus2Catalyst
File-based SPARC U. - Catalyst
L 10S5::CGNg \/-\/‘ cgns2Catalyst
[ loss::Catalyst::Exodus ]

In-situ SPARC ’ ‘ Catalyst
( loss::Catalyst::CGNS ]

| RDMA Calls [ faodel2Catalyst_exodus ]—\
In-transit SPARC Faodel Server Faodel Server H Catalyst
|
=

0SS::Faodel [ faodel2Catalyst_cgns ]_)

Figure 2-1. Software components of the file-based, in situ, and in transit workflows.
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Figure 2-2. Volumetric Data created by faodel2Catalst

Figure 2-3. Surface Data created by Catalyst

17



with several "I/O backends" that communicate mesh data to and from specific mesh file formats
like Exodus or CGNS. These backends are implemented in C++ as concrete descendants of the
IOSS class Toss: :DatabaseIO and are specified by the application developer via the factory or
registry software design pattern. This architecture makes it straightforward to change the mesh
storage format that the application uses.

Although the IOSS interface is generic, the mesh storage formats are not necessarily
interchangeable. Historically, Exodus has been used for unstructured data that is typically found
in Finite Element Method computations and CGNS has been used for structured data that is
typically found in CFD work on Finite-Difference and Finite-Volume techniques. Like most
multi-physics codes, SPARC uses a hybrid mesh (containing both structured and unstructured
mesh data), and so uses both the Exodus and CGNS storage formats to store mesh data. This is a
consequence of the storage formats involved and not a limitation intrinsic to IOSS. There is an
on-going effort to have Exodus and CGNS store hybrid meshes in their entirety and this has
shown progress. In fact, SPARC has the option to write volume data to an Exodus file.

At the IOSS software design layer, the work described in this report includes the addition of three
new database classes: ITofaodel: :DatabaseIO, Iovs_cgns: :DatabaselIO, and
Tovs::exodus_DatabaseIO to the IOSS I/O factory mechanism. The first,

Iofaodel: :DatabaseIO, marshalls mesh data into the FAODEL data management layer. The
second, Tovs_cgns: :DatabaseIO, marshalls CGNS data into Catalyst for visualization. The
third, Tovs_exodus: :DatabaseIO, marshalls Exodus data into Catalyst for visualization. The
last two have an additional qualifier for Exodus or CGNS; this follows the SPARC pattern where
Exodus or CGNS names indicate surface and volume meshes, respectively.

Modifying SPARC to use these new IOSS interfaces to read and write mesh data enables each of
the three workflows studied in this report. This approach also holds promise for how simulation
applications themselves are developed. Clearly, the ability to read meshes produced by different
meshing tools and utilities is an early step in the development process as is writing computed
mesh data for later analysis. Using IOSS, a relatively stable interface, this I/O capability can fixed
early in the development process and is available when later processes such as V&V are
conducted. In this way, choosing the particular form of the mesh ouput or input will not affect
how the simulation runs, only where the data ends up.
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3. FAODEL

In order to accelerate the extraction of information from data, workflows that couple
computational science applications are proving increasingly useful. By allowing developers to
reason about their computational problems in a modular and regular manner, such workflows
trade initial complexity in their definition and construction for ease of modification and increased
reuse once they are in place. In order to maintain workflow construction as a viable technique for
computational science, that complexity must be managed as projected system and data sizes
increase.

Several potential complications are clouding the horizon, however:

* Impedance mismatches between data generation rates and parallel file system bandwidth
have been an issue in computational science for some time now. System architectures have
addressed this with various refinements to the memory/storage hierarchy, more recently
involving the development of node-local “burst buffers”. While these changes provide more
options and flexibility for workflow designers, they also introduce added design
considerations.

* Coupling simulation and analysis using in situ and ex situ techniques present a different set
of choices for workflow designers. Depending on system loads, problem inputs, or
changing availability of specialized compute engines, it may be advantageous to migrate
analytics tasks in and out of a particular application. While this may not make a difference
in the end state of a workflow, adding this capability presents significant data management
issues.

* While the bulk-synchronous-program (BSP) model remains dominant, emerging
decentralized decomposition and scheduling models are being explored for their potential
to provide dramatically increased scalability. Assumptions underlying the design of
workflows for a group of cooperating BSP applications will not necessarily hold for
workflows designed around asynchronous many-task (AMT) execution. For example, using
a parallel file system to exchange data between workflow components will likely be
problematic as the number of discrete application tasks increases.

Our group has been exploring how changing the ways in which cooperating applications
exchange data can provide leverage on these concerns, which are central to this milestone. This
section describes a set of services for data management and exchange, FAODEL , for use in such
applications.
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Figure 3-1. High-level diagram showing the relationship of FAODEL to a workflow
comprised of an AMT application and in situ analysis and visualization. The large
colored shapes encompass the resources used by each entity. The small squares
represent computational resources (e.g., compute nodes, processors, or threads).
The cylinders represent storage resources.
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3.1. FAODEL Design & Architecture

The design of FAODEL is largely driven based on requirements derived from the operating
environment of today’s high-performance computing (HPC) platforms. As depicted in Figure 3-1,
FAODEL provides a means of connecting several different jobs that run concurrently on a
platform. First, BSP or AMT parallel simulation jobs run and produce data objects that are either
stored in internal resources or published to other resources. While coupling and workflow
scenarios may use FAODEL to pass data between components, this more complex use case has
not been fully explored yet. Second, FAODEL may use distributed memory and NVM to absorb
bursts of data from the application or replay results from simulations to requesters. Third, in situ
analysis & visualization (ISAV) tools use FAODEL to retrieve and analyze data. Finally,
coordination applications provide a means of helping the different jobs in the environment locate
and connect with the resources of other jobs.

An examination of the application environment motivated three fundamental requirements for the
design of FAODEL :

* FAODEL must provide basic primitives for users to reason about and decompose their
datasets, but at the same time, the API must be as agnostic as possible about how
developers manage their data. Rather than force users to design algorithms around a data
store’s indexing and migration policies, it is better to provide mechanisms for users to
express how the system should manage their data. By offering mechanisms to control data
epoch visibility and a simple key/blob interface, FAODEL offers an approach that can
serve many kinds of clients.

* To aid scalability, separating application fates (i.e., the simulation from the analytics) also
offers independent scalability through loose coupling. This requires using a communication
layer that offers efficient data transfers between jobs while at the same time not breaking
the communication libraries used within jobs (e.g., MPI). As such, FAODEL cannot simply
rely on sockets or splitting an MPI communicator and must instead use a low-level Remote
DMA (RDMA) communication layer. This layer is an evolution of the long proven NNTI
layer from the Nessie RPC library [16, 19].

* FAODEL must provide a way of migrating data objects from memory to higher-capacity
resources, such as burst buffers or the parallel file system (PFS). This requirement implies
FAODEL must transition in-memory objects to systems with vendor-proprietary or
file-based APIs.

FAODEL is made up of several software components. We describe the higher-level components
most relevant to application developers in the remainder of this section.

3.2. Kelpie

Kelpie uses a distributed hash table (DHT) to provide a key/blob abstraction that facilitates
flexible data exchange between different executables (e.g., simulation application and
applications for visualization and analysis). A key is a programmer-defined text string that allows
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the programmer to attach semantic significance to the associated data, a blob. Although a key
attaches programmer-cognizable meaning (and possibly structure) to a blob, Kelpie is entirely
ignorant of any meaning attached to a key or its associated blob. An example key might encode
the application name, run number, iteration number, variable name, and some information about
what part of that globally distributed array this blob represents. Separate processes can exchange
data via Kelpie by exchanging key information. Key exchange can be explicit or implicit (i.e.,
keys can be constructed in a well-known way).

3.3. OpBox

OpBox is a library for implementing asynchronous communication between multiple entities in a
distributed application. Our experiences with remote procedure call (RPC) libraries found that
while RPCs provide a simple way to coordinate data transfers and invoke action at remote nodes,
it is often difficult to coordinate more sophisticated data management services (e.g., ones
involving more than two nodes, time-out conditions, or race conditions). Rather than leave the
task of coordinating transfers entirely to the next layer up, OpBox provides the user with
primitives for expressing a protocol as a state machine that the communication layer can process
in an asynchronous manner. A communication pattern between a collection of nodes in OpBox is
an Op. Users define and instantiate various Op classes as desired. Each provides a handle to the Op
(implemented in C++ via future/promise), and a method to instruct OpBox to start running its
encapsulated state machine. As each node in the Op communication pattern receives the Op, it
processes the state machine accordingly.

OpBox provides a collection of operations that are common to many applications including ping
and counter operations. In addition, OpBox includes a Directory Manager Service that can be
easily incorporated into an application. The Directory Manager stores node information in a
hierarchical directory. A typical FAODEL application would have at least one Directory Manager
instance acting as a naming service to locate components of an application.

3.4. Lunasa

Lunasa provides user-level memory management services for network memory. For performance
reasons, FAODEL relies heavily on RDMA to transfer data throughout an HPC system. RDMA
eliminates the need to copy user data objects to kernel buffers and allows data transfers to occur
without CPU intervention. RDMA transfers require the user register the memory buffers that are
the source or destination of the transfer with the underlying network transport. Additionally, the
virtual memory space that contains the memory buffer must be locked (or pinned) by the kernel to
prevent it from being relocated in physical memory. The costs of registering and de-registering
memory vary by network transport.

Lunasa amortizes these costs by facilitating the explicit reuse of registered memory. Existing
approaches to reuse registered memory [24, 12, 4], do so implicitly. In other words, instead of
de-registering memory buffers at the end of an RDMA operation, the registered memory is left
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registered and its registration information is cached. Subsequent requests to re-register the cached
memory can be fulfilled without incurring the costs of registration.! As a result, application
programmers are encouraged to manage their memory buffers to extract as much reuse as
possible. Lunasa frees application programmers from the burden of managing these implicit reuse
semantics and allows them to explicitly request memory allocations for use in RDMA

operations [10]. To accomplish this objective, Lunasa requests blocks of memory from the system
and registers them at the outset. Lunasa then manages the resulting pool of registered memory as
a standalone resource for satisfying user requests.

3.5. NNTI

The Nessie Network Transport Interface (NNTI) provides a portable, lightweight abstraction for
RDMA operations on common HPC systems. The NNTI library was originally developed as part
of Sandia’s Network Scalable Service Interface (Nessie) RPC project to enable portability across
HPC interconnects [16, 19]. In the following years, NNTI was spun off into a separate project so
it could be used beyond RPC applications.

NNTT is built around four core concepts: memory buffers, send operations, one-sided operations
and events.

Many HPC interconnects require memory regions to be registered with the NIC before the
memory can be used in the data transfers—especially one-sided operations. In order to do DMA,
the NIC must know the physical address of the memory region involved. When the application
registers the memory region, the pages are pinned to prevent the Virtual Memory

Manager (VMM) from relocating the pages and changing the physical addresses. NNTI tracks
these memory regions and provides the application with a handle that can be shared with peers to
perform data operations.

The NNTI send protocol is a messaging protocol used to transfer data from sender to receiver.
The protocol uses command packets to initiate the transfer and tell the receiver the parameters of
the message including destination, length, and event flags. The exact format of the command
packet is transport specific, but it is expected that it contains enough information for the receiver
to make decisions about message delivery.

The NNTI one-sided API is a lightweight RDMA API that is mapped as closely as possible to
interconnects with native one-sided operations. On interconnects that do not have native
one-sided operations, NNTT uses a protocol similar to the send protocol to manage the transfer. In
addition to RDMA, one-sided atomic operations are provided.

All NNTI data transfer operations are asynchronous. NNTI events are generated at the
completion of data operations and contain the detailed results of the operation. Completion does
not mean success, so the event’s result field must be check for each operation. Events are
delivered to either an event queue or a callback.

't is also worth noting that caching the registered memory eliminates the de-registration costs that would otherwise
be incurred at the end of an RDMA operation.
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3.6. Inter- and Intra-dob Communication

From a data services perspective, a fundamental challenge for exascale computing is that the
community lacks modern tools for developing the services that are needed. Communication
within jobs (intra-job) is largely a solved problem: traditional applications use MPI while AMT
codes use low-level communication libraries such as GASNet. When joining multiple
applications together, the standard practice is to merge the codes into a single job that leverages
the same intra-job communication library. For MPI jobs this often involves using an MPI
communicator splitter to create a partition of ranks for each application. The practical challenge
of this approach is that the codes’ libraries must be able to coexist at build time and/or run time.
Similarly, a crash in one application can lead to a crash in all applications.

An alternate approach is to run the applications in separate job allocations and employ job-to-job
(or inter-job) communication. This approach is appealing because it provides native isolation
between applications and is amenable to workflows. However, inter-job communication is not
prevalent in HPC for a number of reasons. First, there is a lack of communication libraries that
make it easy to establish high-performance communication between jobs. Second, large-scale
platforms such as the Cray architectures implement access control mechanisms for security
reasons that make it difficult for users to perform inter-job communication. While necessary these
mechanisms impede users with platform-specific certificate challenges.

3.7. FAODEL and the Storage Hierarchy

FAODEL provides applications with services for transferring data to storage resources
throughout the system’s storage hierarchy. Each tier in the storage hierarchy provides different
access characteristics which provide benefits in different use cases.

Distributed memory provides access to the collective DRAM (conventional DRAM devices and
3D-stacked DRAM devices) within the application’s hardware allocation. Relative to other
storage resources, distributed memory provides low-latency, high-bandwidth storage. RDMA
transfers allow for efficient access to remote memory resources. Distributed memory can be used
by AMT runtimes, for example, to store and exchange application variables and by coupled codes
to exchange simulation data.

Local persistent storage resources include SSDs and NVRAM. Locality varies by system. In
some cases, persistent storage may be available on each compute node, other systems may
provide per-chassis or per-rack persistent storage resources. Local persistent resources can be
leveraged as part of a checkpoint/restart solution (cf. [18]). Similarly, because these devices
typically provide much more storage capacity than volatile memory (i.e., DRAM), they may also
be used in support of in situ analytics.

In most systems, the principal archival storage resources are provided by a parallel file system.
Archival storage provides high-latency, low-bandwidth access to high-capacity storage devices
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(e.g., hard disks). These resources are commonly an integral part of checkpoint/restart solutions.”

They may also be useful for storing analysis output generated by in situ analytics tasks.

2 Although checkpoints stored in local persistent storage can be used to recover from many failures, some failures
may incapacitate a compute node such that its local storage is inaccessible. In these cases, checkpoints stored on
global persistent storage resources can be used for recovery
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4. CATALYST

Catalyst is an in situ library built using ParaView to link visualization capability directly with a
simulation to produce visualization and analysis products as part of the simulation run. Catalyst
pairs with ParaView by taking pipelines which are generated interactively within ParaView,
including all views and algorithms, and exporting these into a pipeline which can be run as part of
the simulation to generate those same views and algorithms. Many improvements have been
made since Catalyst’s first release into ParaView version 3 to both the usability of the pipeline
creation and efficiency and scalability of library itself. While originally released as an optional
part of ParaView’s build process, Catalyst has since evolved into a separate library optimized for
in situ operation, to be available with ParaView version 4.

4.1. SPARC Catalyst Integration State Before Milestone

The initial Catalyst integration with SPARC consisted of two output database types defined in the
SPARC input deck. The first type, called catalyst, invokes an IOSS database for Exodus
unstructured data to output SPARC surface meshes. This Exodus IOSS database implementation
converts data from IOSS unstructured to Catalyst (VTK) and is loaded into the SPARC executable
at run-time by means of a dynamic library that contains the Catalyst (VTK) specific code. The
second type, called catalyst-direct, outputs structured mesh data (CGNS) to Catalyst and directly
converts the data to Catalyst (VTK) data structures within the SPARC code. The direct style of
output for structured data was used because IOSS handling of structured mesh data in parallel was
still under development at the start of the SPARC Catalyst integration project.

Control of Catalyst output from SPARC is managed by a Python file referenced in the SPARC
input deck. This Python control file can be exported from the ParaView GUI for a particular
SPARC input mesh, or it can be a Sandia developed Phactori Catalyst control interface file. The
Phactori interface allows users to define the operations and image output from Catalyst in terms
chosen and default parameters for common visualization tasks.

During the first half of FY20, a Python based build system called STAMPS (Sandia Targeted
Automated Make ParaView System) was developed to manage build and deployment of Catalyst
with SPARC. The STAMPS system builds ParaView/Catalyst for linking SPARC with
catalyst-direct and the run-time dynamic library necessary for IOSS Exodus Catalyst output.
STAMPS can build ParaView/Catalyst on all SPARC supported platforms (CTS-1, CEE, ATS-1,
ATS-2, TLCC2, Stria/Astra).

Catalyst support for the milestone required development four new capabilities to support
post-processing, in situ, and in transit workflows utilizing SPARC, 10SS, and FAODEL.
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1. ParaView/Catalyst post-processing of CGNS and Exodus data files written by SPARC

2. Structured mesh data (CGNS) output through an IOSS database to Catalyst to replace
SPARC catalyst-direct

3. Programs that read CGNS and Exodus data through IOSS and output to Catalyst through
IOSS using the database in requirement 2 to support FAODEL in transit workflows

4. Instrument SPARC to use the database in requirement 2 for in sifu output of structured
mesh data

4.2. Python Based Catalyst Post-Processing for SAW Workflow

To address the ParaView post-processing workflow for SPARC-generated Exodus and CGNS
files, two Python programs were developed that utilize the ParaView pvbatch program. These
programs, called cgns2cat and exo2cat, read in parallel CGNS and Exodus files, respectively,
and output to Catalyst. The ParaView pvbatch program can be run in symmetric mode, which is
identical to Catalyst running in situ while coupled to a simulation like SPARC. This allows these
programs to accept input from a ParaView generated Catalyst control script or a Phactori interface
control script. The Exodus and CGNS parallel data file read uses ParaView’s readers to convert
the data to Catalyst (VTK) format and does not use IOSS. A SAW workflow was developed that
utilizes these programs to read SPARC Exodus output files and generate a default set of external
mesh views using Phactori.

4.3. Catalyst I0SS Database for Structured Mesh Data

A new I0SS Database type called catalyst-cgns was developed to handle structured mesh Catalyst
output through IOSS. The implementation of catalyst-cgns is similar to the catalyst-direct output
type in SPARC. Additionally, a software refactoring was performed on the existing Exodus
catalyst IOSS database and was renamed catalyst-exodus to clearly distinguish the two output
paths for unstructured and structured data. The Catalyst pipeline control can now handle single
and multiple pipeline inputs with both catalyst-exodus and catalyst-cgns mesh types. IOSS
property options were added to control file writing to VTK vtm format of the Catalyst (VTK)
mesh representations, which is useful for both debugging and generating Catalyst control scripts
from ParaView. Both IOSS database types share a common dynamic library implementation that
is loaded at run-time by the application code that uses the databases.

44. Catalyst I0SS Post-Processing Programs

Alongside the creation of new IOSS databases for Catalyst, two programs were developed to read
Exodus and CGNS data in parallel through IOSS and output data to Catalyst using the new IOSS
databases: cgns2catalyst and exo2catalyst. The programs have command line options to
support various Catalyst control options and output the Catalyst (VTK) mesh representation to
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VTK vtm format output files. The FAODEL IOSS database implementation for reading data in
transit from a FAODEL data store can be easily coupled to modified versions of these
applications by changing the IOSS input properties and database name for the read portion of the
application.

4.5. SPARC Catalyst Integration Using New I0OSS Databases

Once there were catalyst_cgns and catalyst_exodus database types in IOSS, it was necessary to
alter the SPARC simulation code and input deck handling to correctly access these IOSS database
types and manage all the concomitant controls and parameters. Essentially, this involved:

1. Adding various parameter options and parameters to the SPARC input deck schema in the
volume-post-processing and surface-post-processing sections

2. Obtaining that information from the parsing and passing it through the SPARC execution
flow to the appropriate usage points

3. Adding to the SPARC mesh writing code to handle the additional IOSS database types

4. Adding extra code to the SPARC mesh writing functions to deal with various
specializations in the IOSS database types, e.g. IOSS properties to specify Catalyst scripts
and usages of mesh_model_coordinates vs mesh_model_coordinates_x/_y/_z.

The catalyst_cgns database type was made to work first in the volume-post-processing section of

the SPARC input deck. This feature was made to work first on CTS-1 systems (Eclipse), and then
moved to ATS-1 systems (Mutrino). The catalyst_exodus database type was then made to work in
the surface-post-processing section of the SPARC input deck.

4.6. Issues with Multiblock Parallelism in SPARC and Catalyst

It has become apparent than most research projects involving parallel I/O use single block
datasets. That is, the meshes are a single structured or unstructured grid of data. While this
simplifies the research by avoiding many issues not strictly bearing on the research in question, it
also hides a plethora of real-world problems which appear in parallel in production problems
which almost invariably involve multiblock data sets. A great deal of time and energy was spent
in successfully working on parallel multiblock issues for Catalyst during this effort, and most of
the work here transferred seamlessly to the FAODEL effort. The result is that the work done for
this milestone will be much more quickly applicable to real-world problems than had efforts been
confined to single block meshes.
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4.7. Build Issues on ATS-1 (Trinity-like) Systems

Although it is mainly a technical detail, we should note that getting all the Catalyst-related (and
FAODEL-related) pieces of this project built on the ATS-1 system presented many issues which
had to be worked through. There were configuration issues, build issues, link issues, and runtime
issues. The work presented in this report required the integration of several large software
packages, including:

* ParaView/Catalyst
SPARC

Trilinos

¢ Seacas

Ioss (in Seacas)

FAODEL

* Joss driver programs (cgns2catalyst, exodus2catalyst, etc.)

Each of these complex software package had to be configured, built and, in many cases, linked
together. Significant technical work was required to integrate all of these packages to create a
single, usable, high-level workflow.
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5. WORKFLOWS

In simplest terms a workflow for scientific computing is an any-type data coupling between a data
producer and data consumer. In most workflow researchers’ eyes, workflows are distinguished
from code-coupling by the ways in which the following characteristics are addressed:

* Multi-machine deployment. In the HPC sense, this means multiple platforms. A
workflow would run on more than one capacity cluster, or ideally on a capability cluster
(such as Trinity) and capacity clusters together. Policy challenges are frequently more
significant than technical ones. For example, to automate logging into Trinity from another
platform, permissions must be able to be scripted (eliminating the human in the middle).
The capabilities an automated connection offers are likely strictly limited to avoid potential
security errors. A fully capable workflow system would offer this as an option rather than
requiring user intervention. This would enable using a capability resource for the largest
compute tasks and then special purpose analysis clusters (for example, clusters with much
higher memory-to-core ratios but far fewer nodes) for other processing tasks. This not only
expands the types of codes which can be run, but also takes advantage of the right tool for
each job. Which tool a particular task is assigned to can be determined at deployment time
according to a particular run’s parameters.

With the size of pre-exascale and exascale machines, the expectation is that instead of
running a single, large task, collections of tasks will run which offer workflow-like
capabilities. These kinds of deployments, if loosely coupled, work and act like a traditional
workflow. The work demonstrated as part of this milestone follows this model, showing
three different ways to achieve this integration. The in sifu approach is not loosely coupled,
but it seeks to achieve the same ends, minimizing data movement while accepting other
tradeoffs.

* Orchestration. Different workflow engines handle this differently, but there should be
some ability to control what components are running at the same time, if any. For example,
with Kepler, a serial or parallel orchestrator controls what runs when. By switching out the
orchestrator component on the workflow, the way the workflow runs can be changed. The
ability to have fan-out and fan-in operations is crucial. Gatekeeper monitoring functions are
required that collect input values to make decisions or routes outputs to a collection of
processing components. The key idea is that where possible, having components execute
simultaneously offers faster time to processing than a purely serial approach. The
demonstrations for this milestone show different ways orchestration can be achieved,
including tightly via in situ processing and loosely via FAODEL.

* Monitoring. Seeing the status of a workflow in process is important to understand what is
happening. Some HPC workflow engines have this capability, with varying degrees of
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granularity and accessibility. A visual representation of the workflow makes clear what
components are running and can potentially also allow inspection output codes and other
status indicators. For debugging or understanding a workflow, this is crucial. The Dask
toolkit [20] offers a version of this for Python-based tools. FAODEL offers these tools via
the Whookie web-browser based monitoring interface.

Portability to other underlying infrastructure. While there has to be some base
compatibility for code to run elsewhere, it is desirable to minimize changes to the workflow
or the code to move to a new platform. For example, moving from Slurm to PBS as a job
queue manager should not require any changes. Instead, the appropriate component may
need to be swapped out by the user, or ideally for a good system, the workflow system
knows and swaps things out automatically without user knowledge or intervention. There
are limits to this, of course, but it is something all workflow engines strive to offer.

Flexibility to trivially handle small changes. Workflows should be parameterized so that
necessary metadata, such as the input deck for a run, can be set externally and inserted
where appropriate. Workflow components should be able to accept these parameters, within
reason, and operate without changes. Having to adjust the workflow for each small change
restricts the workflow to a single configuration. Instead, a workflow should offer a generic
framework for performing a series (or parallel) set of processing steps to achieve an
outcome. It should not include as that the particular pieces that describe a particular run.
I0SS and FAODEL offer these capabilities by abstracting away details and relying on
configuration files and directory services to fill in specifics at runtime.

Data management capabilities. Workflows, at their heart, are really more data
management engines rather than processing management engines. Task-based
programming is similar, involving the management of data creation, availability, and
placement to schedule tasks. The data might be the return code fed into a conditional to
decide which component to run next, but it is a data-based process management approach.
In most cases, the goal is some operation that causes a sequence of operations to either
transform data or execute the proper set of processing based on the state of components as
the work progresses. Large scale data storage is not really what a workflow does well, one
way in which HPC workflows are different from general workflows.

Further complicating this picture for HPC workflows are the data sizes. Instead of items in
the KB to MB range, they can easily be in the TB to PB range. Managing the movement of
consistently large, distributed data items from one place to another requires special effort,
an issue which has been addressed by researchers with the Doubly Distributed
Transactions [14, 13] system. DT manages parallel operations, such as MxN data
transfers ensuring that everything is both complete and correct.

Component-to-Component communication and signaling. While it is possible to simply
use the parallel file system to do all communication and signaling, that is just one option.
Below we present more comprehensive options with some of the tradeoffs of each.

— Use the parallel file system. Most HPC workflows today are written by application
scientists unfamiliar with the extensive work on decoupled messaging and data
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staging/transfer capabilities of modern platform. Further, it is simpler to read and
write files as the independent processes do rather than integrate more advanced
functionality. This results in files being used both to stage data between components
as well as special files being created to signal to the next component that a data set is
ready or what kind of processing to perform on the next data set. On the receiver side,
constant file system contents monitoring is required to notice the changes imposing
performance penalties on the whole storage array affecting all users. This is far from
an ideal solution and one that this milestone demonstrates is strictly not necessary.

— Abstracted I/0 API. By using an I/O abstraction, such as ADIOS [15] or IOSS,
instead of directly using POSIX or HDFS calls, the particular implementation used to
handle the data movement tasks can be replaced without affecting the surrounding
code. Instead, a simple re-link of the new library is sufficient to incorporate a new data
transfer technique. In this milestone, IOSS is demonstrated as it is the main interface
Sandia codes use to read and write mesh data.

— Special purpose APIs. In some cases, using particular APIs for signalling between
components or between a component and the workflow system can offer many
advantages. For example, the component can inform the workflow engine directly
what the output state is so that the proper next component can be invoked. Without
such a system, this information has to be inferred. Since low impact changes to the
applications and analysis components is the goal of this milestone, this approach was
not attempted.

While the above list offers a broad set of features, it is not comprehensive. For example, data
management activities for files and other persistent objects require special care. Most systems
cannot properly handle these activities and make a best effort. Underlying changes to data
location, names, or other features that happen outside the scope of the workflow system are
typically not able to be captured, leading to a potentially fragile system. No system today, unless
fully integrated using a tool like a database for all data storage, can realistically handle this more
advanced requirement.

Newer technology, like containers, offer promising ways to package and orchestrate workflow
components. Kubernetes orchestrates container deployment at large scales, relying on each
container to be self-contained and so eliminating concern about any particular local software
state.

Resilience issues for workflows are still a research area with only brute force solutions being
more widely available. Properly annotating a workflow in order to enable smarter resilience
operations is not well understood and requires considerable additional work for a robust solution
outside of a single domain niche.

The largest challenge with workflow systems today is that each scientific domain is creating a
custom solution tailored to their own needs eliminating the complexities of general solutions.
Developing general workflow solutions that are as easy to use as a domain specific tool is a
daunting task that all but eliminates any adoption outside of the workflow system development
partners.
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The FAODEL family offers additional tools and technology to create a loosely-coupled workflow.
This milestone explores some of these use cases to enhance Sandia production workflow needs. It
is one of the ways to achieve the component communications described above.

Given this workflow capabilities list, the approaches used for this milestone are discussed in more
detail in the following sections.

5.1. File-based

Currently, workflow are largely developed by hand and for specific purposes. This approach is far
from ideal given contemporary and future data sizes and data creation rates; storage arrays have
neither sufficiently large capacity nor have sufficiently large bandwidth to handle the loads at a
frequency that best suits the science and engineering tasks being explored. This is the base case
that this milestone demonstrates is no longer necessary with minimal changes to existing
components.

5.2. In situ

The In Situ Terminology Project Report [3] details the various ways in which two different
components can interact in situ. For this milestone, in situ refers to a direct memory-to-memory
transfer from the simulation to the analysis engine. While other approaches are possible under the
broad definition of in situ, for our HPC application purposes, memory pressures frequently
require this model.

5.3. In transit

The in transit case incurs an additional data transfer cost since there is a staging area in the
middle, but it enables decoupling the simulation from the analysis offering independent failure
domains. Further, it can eliminate any processing speed mismatch concerns that could stall the
simulation or overload the memory on the analysis nodes. It is not without potential faults, but
most of these can be managed. For example, memory pressures in the staging area can be
overcome by spilling excess data to some larger capacity storage such as additional compute
nodes, local burst buffers, or even centralized parallel file storage. Additionally, resilience is more
easily incorporated into this model since the staging area has knowledge of what was successfully
handed off from the simulation to staging and what staging successfully processed. FAODEL
offers these kinds of features as demonstrated in the milestone.
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5.4. Workflows foster algorithm development

One side-effect of standardized, general workflows is that application scientists can focus on one
part of their process at a time and mix and match different algorithm options with fewer concerns
about how this will affect other components. Through decoupling or loosely coupling
components behind standard interfaces, different options can be tested quickly with few fears of
immediate failure. Instead, specific parts of the workflow, now isolated, can each be optimized
accelerating not just the scientific inquiry, but also improving tools for general use.

The in transit approach demonstrated for this milestone offers the decoupling advantages
described above. Specifically, when analysis is coupled in situ with the application, they share
memory, CPU, network, and most importantly, failure domains. Should either the analysis or
application fail, both fail. The pressures on node memory can also force a thinner, more
widespread data distribution to fit both the computation and the analysis on the same nodes. This
forces more communication and shorter computation phases generating less efficient workflows.
The in transit approach addresses these limitations.

First, by separating the application from the analysis, either can fail without causing the other to
necessarily fail. While it is true that the workflow must be able to compensate for the failure and
restart of any component for it to be truly resilient, unless the components are decoupled like the
in transit workflow, there is not a viable option for separating the failure impacts.

Second, the memory and network pressures are relieved. The computation can maximize the
memory footprint it uses maximizing the computation time between communication phases and
reducing the number of nodes necessary to run a job. The in transit nodes can stage the data to the
separate analysis routines. Since the data staging routines offered by FAODEL are relatively
lightweight compared to the computation or analysis code, far more data can be stored per
FAODEL node than can be held for computation or analysis.
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6. RESOURCE STUDIES

As a means of better understanding the tradeoffs of using the different workflow styles we
constructed multiple experiments that focused on different aspects of data transfer within the
workflows. All of these experiments focused on connecting a parallel SPARC simulation to
analysis operations implemented in Catalyst. Given that using FAODEL is a new mechanism for
implementing in transit workflows, we placed more emphasis in this exploration on
characterizing how FAODEL performed in different scenarios. End-to-end performance
characteristics for the three workflows is summarized at the end of this chapter.

In compliance with the U.S. Department of Energy’s policy for digital research data
management', experiment data collected in this work has been retained in the following
repository:

https://cee-gitlab.sandia.gov/dsva/fy20-12-experiments

6.1. Examining the Content of IOSS Data Exported through FAODEL

An important part of understanding the performance characteristics of the in transit workflow is
inspecting how different datasets are decomposed and distributed by FAODEL. Library
developers take into account a number of factors when determining how to split a dataset into
labeled objects that FAODEL can use. For example, should multiple data structures be packed
into a single object to maximize throughput or split into multiple objects to minimize unnecessary
data in retrievals? How descriptive do object labels need to be in order to ensure data is
discoverable? How should labels be picked to control how data is distributed across FAODEL
pool resources?

The initial version of the FAODEL database for IOSS focused on a conservative implementation
that splits data structures into their own objects. It also uses a verbose, descriptive labeling scheme
to help developers get a firm handle on what objects IOSS/FAODEL produces when SPARC
generates CGNS and Exodus data. This section explores the content generated in a normal
SPARC run to help determine how future IOSS/FAODEL implementations can be improved.

1https ://www.energy.gov/datamanagement /doe-policy-digital-research-data-management
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6.1.1. Generating Simulation I/O Traces

For these experiments we enabled FAODEL’s new tracing capability to get a timeline of when
SPARC writes output to IOSS, which in turn generates and publishes FAODEL data objects that
are transmitted to FAODEL pools in the system. The tracing capability works at the client side of
a pool and records the time at which the client invokes the operation, as well as information such
as the key name and object sizes when known. We configured SPARC to run on 32 nodes and
export both volume and surface data in CGNS and Exodus formats respectively.

SPARC I/O Timeline for First Four Output Timesteps
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Figure 6-1. FAODEL'’s tracing capability recorded /O activity for the first 16-nodes
of a SPARC run. This trace includes I0SS database initialization operations during
startup and four timestep operations. The amplitude represents the amount of data
published in an individual operation at a point in time.

Figure 6-1 depicts the timeline of IOSS/FAODEL activities for the first 16 nodes of the SPARC
run. After a small amount of activity at the beginning of the simulation for initialization, FAODEL
only generates traffic at the four points in time when the simulation writes out timestep data. As
expected, these writes take place at the same time due to the synchronous nature of the simulation.
This synchronicity is the defining characteristic for HPC 1/O, producing a massive amount of data
that must be received and stowed away as quickly as possible in order for a synchronous
simulation to proceed (performance implications of this behavior for in situ analytics have been
studied in [11] and elsewhere). Burst buffers were introduced in HPC platforms to make
traditional I/O fast enough to absorb this crashing wave. However, systems such as FAODEL
offer an alternative where data can be trickled out as needed by downstream applications.

A more detailed view of the I/O patterns for the volume and surface datasets is presented in
Figure 6-2. During startup (a), both datasets issue a series of publish operations to push necessary
information such as dataset properties that consumers will need to access and interpret the
dataset. A normal timestep operation (b) typically produces a collection of larger objects such as
transient field data. An inspection of this data reveals that there is a definite amount of natural
skew that takes place between ranks. While a portion of this skew can be attributed to the
best-effort nature of FAODEL’s tracing facilities, it is expected that simulation nodes will drift
from each other until a synchronization point due to compute load or variations in hardware.
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Figure 6-2. The surface and volume datasets produce different I/O patterns during (a)
the startup portion of the simulation and (b) the normal output phase of a timestep.
The amplitude reflects the size of an individual object being published. Volume and
surface amplitudes are plotted separately due to significant size differences between
the two.

6.1.2. Object Sizes

We analyzed the FAODEL traces generated by the SPARC simulation to get a better
understanding of the content being generated during the simulation. Figure 6-3 provides a
histogram for all the object sizes that were observed for the surface (a) and volume (b) datasets.
Small objects (less than 1KB) dominate both datasets due to the number of properties that are
written out as individual items. The volume data has objects which are roughly two orders of
magnitude larger than the surface data due to the nature of the data.

6.1.3. Object Key Sizes

We also analyzed the FAODEL traces to get a better understanding of the size of the keys used to
uniquely label each object with a practical workload. The current IOSS/FAODEL implementation
uses a descriptive label to make the data more searchable and includes a variety of information
about the object such as the block name and region type. Figure 6-4 provides the histograms of
key length for the surface and volume datasets. In both cases we see that keys can be considerably
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Object Size Histograms
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Figure 6-3. The histograms of object sizes found in the (a) surface and (b) volume
datasets show that different object sizes may vary based on data requirements.

long (100 bytes). The keys for the volume dataset have more variety in lengths than do those for

the surface data. This trait can be attributed to naming convention differences between the CGNS
and Exodus libraries.

Key Length Histograms
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Figure 6-4. The histograms of the object key labels found in the (a) surface and (b)
volume datasets show that the current IOSS/FAODEL implementation uses long keys
for labeling objects.

6.1.4. Discussion

The intent of the initial version of IOSS/FAODEL was to build a general system for housing the
different types of data that different IOSS applications need to store. Given that we did not know
what quirks we would find in the data streams until we started handling real application data, we
designed the encoding mechanism as conservatively as possible and oriented it to being capable of
being searched and debugged by humans as needed. This choice means that our implementation
may generate an excessive number of small objects. In many cases the key length is larger than
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the actual data value. Both of these traits create a high workload for FAODEL. Using many small
objects (1) increases the amount of bookkeeping FAODEL must do to index all items, (2) adds to
client load by increasing the number of objects that must be tracked during transmission, (3)
reduces the efficiency of network transfers, and (4) places strain on the actual file system that
stores objects. However, it is important to observe that even with this stress inducing workload,
IOSS/FAODEL was still able to move the data between systems and applications.

6.2. FAODEL Node Scaling

One of the advantages of FAODEL is that it provides workflow designers with an easy-to-use
mechanism for controlling the amount of resources in the compute platform allocated for hosting
intermediate data products. Users may want to scale resource pools in their allocation based on
dataset sizes, throughput targets, persistence requirements, or host availability at runtime. It is
therefore important to explore the impact of different scaling options on FAODEL’s
performance.

6.2.1. SPARC-to-FAODEL Experiment

We conducted a set of experiments to observe how the number of nodes and persistence
requirements affected SPARC performance. Similar to the previous experiment, we connected a
32-node (1 process per node) SPARC job to a FAODEL pool and directed the simulation to write
both surface and volume data through IOSS/FAODEL to an external pool. We varied the number
of nodes used to host the FAODEL pool and adjusted whether the pool nodes wrote the data to a
Lustre file system or not. We modified SPARC’s performance counters to measure how much of
the simulation’s run time was spent in I/O operations to observe the impact of the different
configurations on the simulation. While this approach does not capture the end-to-end timing of
an in transit analysis pipeline, it does illuminate overheads that can impede the simulation.

The timing breakdown for the two experiments is depicted in Figure 6-5. The top set of
experiments varied the FAODEL compute nodes from 1 to 16 and wrote incoming data objects to
both RAM and disk. The penalty for writing to disk was significant and accounted for over half
of the wall clock time of the simulation when the 32-simulation nodes wrote to a single FAODEL
node. Adding more nodes to the pool significantly improved performance, until plateauing at 8
nodes. While 16 FAODEL nodes decreases the amount of time spent in I/O, the total time
remains constant implying that there are other timing issues for the application that complicate
scaling. As the middle plot in Figure 6-5 illustrates, switching to burst buffers significantly
improves performance. However, FAODEL’s I/O times still impose a noticeable penalty on
SPARC performance. Finally, transitioning to a FAODEL pool that only stores data in memory
yields the best performance. As seen in the lower plot of Figure 6-5, RAM-based pools do not
impede SPARC performance. Performance for the 32-node simulation is maximized with a
four-node, RAM-based FAODEL pool.
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Figure 6-5. The performance for a 32-node SPARC job varies depending on the num-
ber of nodes in the external FAODEL pool and whether the pool writes to Lustre (top),
the DataWarp burst buffer (middle), or plain memory (bottom).

6.2.2. FAODEL-to-Catalyst Experiment

The last step in the in transit process is to transfer data from a FAODEL pool to an application
such as Catalyst for analysis. The set of faodel-to-catalyst programs were instrumented with
timers to provide information about how long it takes a consumer application to use the IOSS
library to retrieve data from a remote pool and pass it to a ParaView script for analysis. In this
experiment we varied the number of FAODEL pool nodes used to host the data while the
FAODEL-to-Catalyst program read and analyzed the data. We initially ran the
FAODEL-to-Catalyst program with a single rank. As depicted in Figure 6-6, using multiple
FAODEL nodes did not improve performance in this scenario because the single-rank consumer
cannot take advantage of the parallel hardware due to the way data is distributed. Specifically,
IOSS/FAODEL currently uses a coarse-grained data distribution strategy that places all data
generated by a particular SPARC rank on a single server. As such, an analysis application that
only retrieves one rank of data will only interact with one FAODEL server. This limitation will be
remedied in future work by using a finer-grained distribution policy that distributes data more
evenly.

The faodel-to-catalyst program was also run in 32 ranks to observe the impact of scaling the
FAODEL nodes when using a parallel consumer. As depicted in Figure 6-7, we see that the
parallel version runs faster than the serial implementation, and that adjusting the number of
FAODEL servers can influence performance. In particular, the analysis of the CGNS volume
dataset yielded its best performance when 4 FAODEL pool nodes were deployed.

6.2.3. Discussion

We investigated where the bottlenecks are in the system and found two issues in the current
implementations of FAODEL and IOSS/FAODEL. First, the commit-to-disk stage of a remote 1/0
operation in FAODEL is in the critical path and must complete before acknowledgement is
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Figure 6-6. The faodel-to-catalyst application reads (a) Exodus and (b) CGNS datasets
from FAODEL and pushes the data into Catalyst (1-rank)
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Figure 6-7. The faodel-to-catalyst application reads (a) Exodus and (b) CGNS datasets
from FAODEL and pushes the data into Catalyst (32-ranks)

transmitted to the sender. While this design choice ensures the system will not prematurely report
data is committed, it also impedes performance. In future work we will explore alternatives that
allow a relaxed consistency model that allows commits to be deferred. Second, the current
implementation of IOSS/FAODEL largely issues transactions in a serial manner. This approach
limits FAODEL’s ability to schedule concurrent transactions and reduces performance. We will
investigate mechanisms to increase asynchronous communication in future work.

6.3. Build Factors

As software developers we spent a considerable amount of time this year modifying, configuring,
building, and running the SPARC software stack. This task was challenging due to the complexity
of the stack’s libraries and the platform-specific issues of the build environment. Given that
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developer time is a significant resource cost in the ASC budget, it is worthwhile to assess how
software development factors influenced our productivity. While sorting the time spent on
different software development activities into bins is not a straightforward task, build time is both
amenable to measurement and provides insight into the overheads associated with this work.

We instrumented the build script discussed in Appendix A to determine how much time is
required to properly build the FAODEL, Trilinos, and SPARC components used in our software
stack. This script (1) retrieves each software library from its Sandia git repository, (2) configures
each library’s build system to use a specific combination of compilers and libraries that are
available on the platform, (3) builds each library, and then (4) links all code into an executable
that can be run on the platform. The current script builds shared libraries to enable software
developers to rebuild a specific library without having to relink the entire application, provided
the library’s APIs remain unchanged. In previous years, platforms required static builds that
necessitated a rebuild and relink of the top-level application any time a library changed.
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Figure 6-8. The amount of time to build components in the SPARC stack is significant
and can vary based on whether the platform is (a) lightly or (b) heavily used by others.

Figure 6-8 provides timing information for a complete build on a Mutrino login node at times
when the system is (a) lightly and (b) heavily used. The total amount of time required to build the
stack is roughly 1.5 to 2.0 hours, with the dominant overheads being the Trilinos and SPARC
builds. While we did not normally need to rebuild and relink the SPARC application due to our
use of shared libraries, it is important to point out that small changes to any component in the
stack for a static build should be expected to take at least a minute and a half to complete. This
delay impedes the iterative development cycle and provides additional motivation for in transit
approaches, in which separate executables (with separate build dependencies and iteration cycles)
are used for the application, data management, and analysis components. This decoupling of the
software involved allows for more independent design and development of the different
components, as long as the data interfaces between them are well-defined.
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6.4. Workflow Performance Summary

We have implemented all three workflows on the Mutrino platform at a small scale to demonstrate
that our software components are mature enough to be used to route data between the parallel
SPARC application and Catalyst’s parallel rendering facilities. In this section we summarize
different performance characteristics we observed while working with each workflow.

It is important for us to state up front that the in transit work is still early and that we have had to
limit our experiments to avoid known problems. These limitations include the following:

* Manual Launching: Due to development timelines, the work reported in this section was
conducted in a manual fashion where different workflow stages were launched by hand in
different allocations. This process enabled us to adjust settings and monitor internal job
information that is not required by normal workflow users.

* Lack of in transit Overlap: The current IOSS/FAODEL implementation does not publish
timestep information until the end of the job. As such, consumers such as the
faodel2catalyst job will not see the dataset until the job completes. This trait is a
significant impediment to performance, but can be remedied by modifying the
IOSS/FAODEL software to publish updates to the timestep value when a timestep closes.
While it is expected that concurrent writing and reading will impact performance, we
expect that it will not add significantly to the total workflow time.

* Limited Experiment Sets: Due to hardware availability and limited time, we currently do
not have a broad enough set of experiments to provide the in-depth details we desire for our
own interests as systems researchers. The reported measurements do not include
performance data from Mutrino’s Knight Landing (KNL) partition or a detailed assessment
of burst buffer performance.

The primary application driver in this work is to have a 32-node SPARC job run the HIFiRE-1
problem for 20 timesteps and generate both volume and surface output. In each workflow
Catalyst is then used to read the data and produce images about the simulation results. Table 6-1
provides a breakdown of how much time and memory is required to complete each stage in the
different workflows. Timing values are wall clock times that include startup and completion costs
for the individual stage. Memory estimates are based on the resident set size (RSS) the OS
reported for a single rank at the end of the simulation. While there are known issues with RSS
measurements on Mutrino due to the way huge pages are counted, the measurements are taken in
the same manner and give a means of comparison between different tests.

Figure 6-9(a) provides a comparison of the end-to-end runtimes for the different workflow
scenarios. A number of observations can be made from these initial performance experiments:

* Burst buffers improve performance: Mutrino’s burst buffers provided a 20%
improvement in SPARC’s performance compared to Lustre. We observed multiple
instances during our development where the Lustre file system was unusable due to activity
by other users while the burst buffers remained performant.
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Workflow Stage FAODEL Nodes Time (s) Maximum RSS (MB)

File-based (Lustre) SPARC w/ IOSS/CGNS n/a 18.542 s 180.611 MB
cgns2catalyst n/a 4.549 s 161.680 MB

. SPARC w/ IOSS/CGNS n/a 14.555 s 189.132 MB
File-based- (DaaWarp) cgns2catalyst n/a 4275 s 161.684 MB
In situ SPARC w/ IOSS/Catalyst n/a 42451 s 301.962 MB

2 30.384 s 189.912 MB

SPARC w/ IOSS/FAODEL 4 30.335 s 189.892 MB

8 30.184 s 189.784 MB

2 7.625 s 367.001 MB

In transit faodel2catalyst_cgns 4 6.612 s 367.001 MB

8 7.260 s 367.332 MB

2 9.691 s 307.801 MB

faodel2catalyst_exodus 4 9.459 s 308.227 MB

8 10.040 s 308.633 MB

Table 6-1. Timing information for different stages in the three workflow types.

* In situ may adversely impact simulation performance: While the in situ case is by far
the most convenient method when analysis is desired (just launch and collect results), it
took more than twice as long for the in sifu simulations to complete than the cases where no
analysis was needed in our experiments. However, it is important to note that this is an
unfair comparison, as the above experiments were not run long enough to overcome startup
costs.

* In transit was better than anticipated: As discussed in this report, the in situ
implementation was largely targeted at delivering a new capability as opposed to achieving
optimal performance. As expected, SPARC simulations using FAODEL were slower than
simulations that simply wrote to disk. However, the FAODEL solution was only 2x slower
than the native simulation, and faster than the in situ approach (Figure 6-9(a)).

* In situ adds to memory overhead: As illustrated in Figure 6-9(b), SPARC’s memory use
was roughly 1.5x larger in the in situ case than the file-based case for this particular
visualization task.

* In transit shifts memory and compute burden: While we do not have performance
numbers for an in transit scenario where simulation and visualization overlap, our
experiments indicate that in transit workflows can shift memory and compute burdens out
of the simulation.
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Timing for SPARC + CGNS Catalyst Workflows
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7. IMPACT

The core enabling technologies for the in situ and in transit workflows are the additions to the
SEACAS IOSS libraries. The file-based workflow used well-established 10SS tools for CGNS
and Exodus. Minimal Changes to SPARC enabled these new IOSS tools to be used in all
workflows. The SPARC code that exercises the IOSS interface was unchanged.

7.1. Catalyst suport for IOSS

Changes to the SEACAS library were quite extensive and include concrete descendants of the
abstract class Toss_DatabaseIO. These support serializing mesh data into Catalyst and into
FAODEL for both surface and volume data which would typically be written and Exodus and
CGNS file respectively.

In addition to the above, there are several tools that use the IOSS interface to map data into
Catalyst.

cgns2catalyst
exo2catalyst
faodel2catalyst_cgns

faodel2catalyst_exodus

The above tools are named after their function, converting from a concrete Ioss: :DatabaseIO
type to Catalyst. This code was written with reuse in mind as the above are thin wrappers around
a core tool TossApplication that maps data from the IOSS interface to Catalyst.

7.1.1. FAODEL support for IOSS

Mesh data in IOSS is principally represented by the Ioss: :DatabaseIO class, descendant of
which define a specific storage format, e.g., Tocgns: :DatabaseIO is the Ioss: :DatabaseIO
subclass for interfacing with the CGNS library. As part of this milestone, we implemented
Iofaodel::DatabaselO, a new subclass of Toss: :DatabaseIO for interfacing the FAODEL.
FAODEL is fundamentally a DHT, the key abstraction that it presents to its users is a mapping
between keys and blobs, cf. Chapter 3. As a result, the principal function of
Iofaodel::DatabaselO is to map mesh data managed by IOSS into this format.

FAODEL provides support for a two-dimensional key space, with each key consisting of a row
and a column. The row identifies the process that generated the key. The column of the key
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uniquely identifies the data that is being stored and describes its relationship to other IOSS
objects in the hierarchy.

In IOSS, we created a unique name for each Property and Field by identifying its role in the
hierarchy and identifying the State the data belongs to. The State identifies a specific time-step;
time-invariant data is assigned a State of -1. The structure of keys for Properties and Fields are
shown below.

/State/<STATE>/Entity/<ENTITY_TYPE>/Name/<ENTITY_NAME>/Property/BasicType/<TYPE>/Name/<NAME>

/State/<STATE>/Entity/<ENTITY_TYPE>/Name/<ENTITY_NAME>/Field-
/RoleType/<ROLE>/BasicType/<TYPE>/Name/<NAME>

where:

STATE is an integer, 1..N indicating which output set it belongs to, or —1 if it is not
time-dependent.

* ENTITY_TYPE is the type of the geometric entity, e.g., NodeBlock or StructuredBlock
that "owns" the data.

* ENTITY_NAME is the name of the above and is often specific to the application that created
is. For example, Exodus data usually has a NodeBlock named "nodeblock_1"

* ROLE can be MESH, TRANSIENT, and others that describe how the simulation uses that piece
of data. MESH data doesn’t change over time whereas TRANSIENT data does. The other ROLE
type have a similar implication.

* TYPE is the basic datatype of the data stored by the field, e.g., REAL, INT64, etc.
* NAME is the name of the field or property

While this naming scheme handles the bulk of the mesh data stored by FAODEL, there are a
couple of cases that have to be treated specially. First, for an I0SS: :GroupingEntity of type
Ioss: :Region, the name assigned to the object is not independently meaningful; the name mey
be used to distinguish between Ioss::Region objects within a single execution contenxt, but it
is not guaranteed to be unique across execution contexts. As a result, the /Name/<ENTITY>_NAME
substring is omitted from keys that identify fields or properties that belong to GroupingEntities of
type REGION. The second special case, is data that is necessary to properly represent the mesh but
is not captured in either the fields or properties of a GroupingEntity. For example,
GroupingEntities of type STRUCTUREDBLOCK have several attributes that are not represented in
their fields or properties.
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7.1.2. io shell

IOSS includes io_shell, a tool for manipulating mesh data in multiple formats (e.g., CGNS,
Exodus). A common use-case for io_shell is to copy mesh data stored in one format to another
format (e.g., copy the contents of a CGNS file to an Exodus file). As part of this milestone, we
extended io_shell to support mesh data stored by FAODEL. By adding support for FAODEL to
io_shell, we were able to begin to test our ability to store and retrieve mesh data in FAODEL
while the integration with SPARC and Catalyst/ParaView was still under development.

As part of this milestone, we also added an entirely new function to io_shell: the ability to
compare the mesh data stored in two different formats. By providing a new command-line option
(-compare) to the invocation of io_shell, the user could verify that two sets of mesh
represented the same underlying mesh. In addition to being able to copy data from existing mesh
files into FAODEL, this functionality allowed us to ensure that the FAODEL representation of the
mesh was equivalent to the original mesh file. Early testing using this new feature of io_shell
was critical to our identification many errors and gaps in the original implementation of
Iofaodel::DatabaselO.

7.2. Extensions to SPARC

Changes to SPARC were minimal and limited to a few classes and a schema files. These changes
served to allow SPARC’s volume and surface writer to create concrete versions of the abstract
class Toss_DatabaseIO. The machinery to write mesh data to IOSS wasn’t changed.

7.3. Catalyst enhancements

Catalyst was enhanced to use IOSS instead of the previous Catalyst-direct interface which require
a bit more modifications to SPARC including a new Class in the hierarchy. The IOSS-based
Catalyst was delivered ahead of schedule due to its association with this L2 milestone work.

7.4. Sandia Analysis Workbench (SAW)

The Sandia Analysis Workbench (SAW) [7] is a tool used internally at Sandia National
Laboratories. It allows users to construct and manage workflows using graphical tools. SAW has
significantly simplified the process of running important modeling and simulation tasks in
production environments at Sandia. However, it is perhaps less well-suited to the dynamic and
rapidly-evolving software environment found in research projects such as the one described in
this report. Nonetheless, as part of this milestone, we constructed three different proof-of-concept
workflows for visualizing data generated by SPARC: in situ, file-based, and in-transit. We have
successfully demonstrated the operation of all three workflows running SPARC on Eclipse.
Although our initial results ran each of the workflow components on a single rank, we are
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confident, given the functionality that we have demonstrated elsewhere in this report, that there
are no significant obstacles to running at larger scale in the future.

The workflow diagrams from SAW are shown in Figures 7-1 (in situ), 7-2 (file-based), and 7-3 (in
transit). One of the challenges that we encountered with the in transit SAW workflow was that it
requires FAODEL to be started as an independent process before SPARC starts. Similarly, the
SAW workflow needs to know that Catalyst has completed before shutting down FAODEL. In this
initial SAW workflow implementation, input from the user is required to ensure that FAODEL has
successfully started and that it can be safely shut down. In the future, we plan to eliminate these
two points of user interaction by exploiting existing functionality in FAODEL.
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A main goal of workflow research is to make the development and deployment of the core
simulation an easier and more stable process while still enabling a variety of post-processing
tools. There are a few takeaways that highlight the impact each workflow has for SPARC.

* In situ is the easiest workflow to run considering the complete workflow is launched as a
single MPI job. However there is a hidden development cost that impacts SPARC
developers directly. In addition to the memory trade offs detailed in the previous section,
the build for in situ is considerable more complex that for either file based or in transit
workflows due to the time and memory required to load in situ libraries. In particular, the
Catalyst/ParaView libraries can be quite large as they were designed to be part of a stand
alone application. Other in situ tools may be more amenable to minimizing library size.

* File based workflows are a bit more complex as they do require a two step process to run to
completion, data generation and data post-processing. But this cost has largely been
accounted for in that there are many tools designed for this workflow. So while the
complete workflow is slightly more complex to run, the development process will have
examples which to follow and tools that can be extended for new analysis algorthims.

* In transit workflows have a minimal impact on the simulation development teams if IOSS is
already being used for mesh I/O. As described previously, there may be some work to
enable a particular IOSS data management layer. However the bulk of the development
complexity is squarely in the domain of the post-processing development team. As an
added benefit, any instability induced by the post-processing code does not impact the
execution of the simulation as FAODEL servers as a data mediator insulating the core
simulation. Lastly, in transit workflows offer the opportunity for interactivity between the
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simulation and post-processing. This would require some work on the development team
but may pay off if the workflow can be made more efficient overall.

While it’s clear that IOSS-enable applications can be used in the workflows described above,
there are examples of extant codes that still use the Exodus or CGNS API directly. In these cases
it’s difficult to engage anything other than file based workflows without significant changes to the
code base. In lieu of refactoring the codes to use I0SS, it should be possible to develop a data
mediator to replay the Exodus and CGNS data written to disk in a way that engages in transit
workflow machinery. This is in line with the Catalyst driver tools developed for this work and is a
direct analogy to the second half of the in transit workflow.
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8. FUTURE WORK

This milestone provided an opportunity to highlight the utility of in transit workflows and data
services for applications of importance to the ASC program. Since in transit workflows and data
services are not currently used in production, there was an expectation that creating a workflow
for a “real” application would expose weaknesses and limitations in both our software and the
HPC systems. In some cases, we were able to address these issues through clever software
engineering; however, a long-term solution for production computing requires an evolution in our
HPC systems to better support the needs of these types of workflows. In this chapter, we describe
a strategic plan for Sandia’s CSSE program to both improve our computing environment to
support the use of data-services in workflows; expand the role of data services to support the
anticipated needs for ASC applications, high-performance data analytics and heterogeneous
platforms; and finally to collaborate with others to increase our potential impact in the HPC
community.

8.1. Evolving the Computing Environment to Support Data Services

One of CSSE’s objectives as written in the FY20 Implementation Plan is to “invest in and
consequently influence the evolution of the computational environment.” We see support for data
services as a necessary evolution to enable more dynamic application workflows, integration of
high-performance data analytics, and efficient utilization of heterogeneous platforms — all
capabilities expected for future generations of high-performance computing deployments. Here
we discuss R&D that could drive the community toward a more accommodating environment.

8.1.1. Dynamic Resource Management

For more than two decades, distributed-memory HPC systems have provided a static
resource-allocation model that requires the user to explicitly allocate and manage compute-node
resources using a batch scheduler. Workflow tools like SAW work with schedulers to deploy jobs
within a workflow, but have to develop clever software-engineering solutions to deal with
complex policies and security models. In this milestone, we used a fixed allocation of nodes for
FAODEL, but the ability to spawn, grow, and shrink resources to satisfy application demand
would enable a much more efficient usage for data services. In addition, our long-term vision for
data services goes far beyond data management to include, for example, services for real-time
system monitoring, enhanced visualization, on-demand analysis, high-performance data analytics,
and others. A more dynamic resource-management approach could also enable more efficient
utilization of HPC platforms.
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The work to explore more dynamic resource management schemes to support data services
requires a coordinated co-design effort between a number of CSSE teams including system
software, I/0, Visualization and Analysis and our vendor partners (e.g., HPE, IBM, Intel,
NVIDIA). Preliminary research to explore different approaches is still quite far from being
production-ready, but we have initiated some work with organizations in our production
computing group to better understand HPC workloads to see if approaches like oversubscribing
HPC resources could enable a more flexible allocation model on dedicated partitions of an HPC
system.

8.1.2. Security Models Designed to Support Data Services

HPC systems have adopted security models that often hinder the ability for independent jobs, like
applications and data services, to communicate. While there are well-defined protocols for this
type of communication in other environments (e.g., TCP/IP), the proprietary interconnects of our
HPC vendors do not have a standard solution because there was little demand for this type of
communication from other customers. Since the Cielo system at Sandia, we have had specific
language in our procurement contracts to ensure vendors enable this type of communication, but
the solution has been somewhat obscure an unsatisfactory. For example, on Mutrino, we had to
acquire a credential from a running job, then start the next job with the same credential using a
not-so-well known command tacked into our batch scheduler. We experienced issues of
credentials expiring and general “bugginess” in their implementation that made generating data
for this milestone a challenge.

To make data-services a viable option for production workflows, we need to solve this issue. We
believe this is not a research issue, it is an engineering and design issue. We need to work with the
community of laboratory researchers and HPC vendors to adopt a common solution. Now that
there is growing interest service-based approaches (see Section 8.3), we believe a common
solution is achievable.

8.1.3. Enhancing Workflow Tools to Support Data Services

Next Generation Workflows has made tremendous progress over the last several years, and
although it has become an effective production tool, it is still missing some capability that would
make it a powerful vehicle for workflows leveraging data services. First, the workflows, by design
assume a somewhat serial execution model where upstream components complete before
executing downstream portions of the workflow. Our vision for data services is for a more
interactive relationship between the components. We require concurrent execution of the
workflow components that is not easy to initiate in current IWF tools, in part because of the
limitations in resource management mentioned in Section 8.1.1. Our data analysis and
visualization team is already actively engaged and productively contributing to NGW. Our I/O
team is involved in working with NGW on a portable path forward for data management and we
plan to work with NGW on adapting the tools to enable the effective use of data services in
application workflows. In the same way that we see IOSS as a key enabler and vehicle to impact
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ASC codes, NGW will be a critical partner in promoting and enabling data services as a viable
solution in the future.

8.1.4. Containerized workflows for in situ visualization

Container-based technology has become an increasingly important part of HPC systems.
Containers provide many of the benefits of traditional (i.e., hypervisor-based) virtualization (e.g.,
isolation, portability) but with much lower installation, execution, and maintenance overheads. In
the context of workflows, two new container-based tools have recently emerged to facilitate the
deployment of in situ workflows.

BeeFlow [2] is built on the Build and Execution Environment (BEE [5]). BeeFlow is a workspace
management system that manages workflows that include explicit dependencies created by in situ
analysis tasks.! BeeFlow provides coordination to enable simulation and analysis tasks to
exchange data but does not itself provide any mechanism for exchanging data between tasks. As a
result, the functionality provided by BeeFlow is largely orthogonal to the functionality provided
by the combination of FAODEL and 10SS. However, it may be possible to combine these two
approaches. Although the dataflow design of BeeFlow does not currently support FAODEL-based
dependencies, it would be possible, in principle, to modify the dataflow design of BeeFlow to
support workflows that include FAODEL.

Containers have also been used to simplify and accelerate the process of building and distributing
in situ and in transit workflows. Shudler et al. [23] demonstrated that the combination of Spack
and Singularity may make it easier to manage containers that include in situ (or in transit)
analysis using SENSEI. In principle, this approach could be extended to handle containers that
include FAODEL.

8.2. Expanding the Role of Data Services and In Transit Analysis

A second, somewhat obvious, area for future work is to promote the proliferation and expansion
of data services and in transit approaches. The most practical means to achieve this is to focus on
application developers who can benefit from Data Services and in transit workflows.

8.2.1. I0SS as a Vehicle for Delivery of R&D Capability

Perhaps the most valuable outcome of the ATDM I/O project was a well-defined I/O-support
activity that enabled our R&D team to engage directly with teams from ASC Integrated Codes.
CSSE has now taken over this support role which includes explicit support for IOSS. Given the
ubiquity of the IOSS mesh interface and its flexibility in writing to disparate types of data stores,
the Catalyst/ParaView tool demonstrated in this milestone, could be replaced with any number of

IChen et al. [2] only discuss in situ analysis; the make no mention of in transit analysis. Nonetheless, it does not
appear that anything in their design would preclude its use for in transit workflows.
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Figure 8-1. An in transit workflow with multiple data consumers

post-processing applications and data services that also use the IOSS interface. With
improvements and extensions, this work will serve as a basis for new workflows with a number of
core data producers and consumers.

8.2.2. Data Services to Enable Effective Utilization of Heterogeneous Platforms

HPC systems are becoming more heterogeneous through incorporation of various configurations
of non-volatile memory, smart networks, and emerging non-Von Neumann hardware for Al,

ML [21, 6], and scientific computing [22], and others. We plan to explore data services as a
convenient data-management interface and performance-portability layer between conventional
HPC applications and these components. In addition, there are opportunities to leverage some of
these devices for the deployment of data services. For example, in a recently funded ASCR
proposal, members of this team are planning to evaluate SmartNIC technology for FAODEL
services. This ASCR work will build on some of the work coming out of this L2 milestone and
our CSSE program expects to leverage and perhaps supplement their work by exploring other
ways to leverage SmartNICs for system software, networking, and I/O.

8.2.3. SPARC ROM Building

A specific follow-on activity of this L2 milestone is an emerging collaboration with Jaideep Ray
and Kenny Chowdhary to implement their ROM building for UQ and V&V work. This is
particularly interesting as they have experienced problems where SPARC runs from their
parameter study overwhelms the file system requiring rerunning many of their runs. The result is
that a ROM-building activity that should take a few days ends up taking a couple weeks to run to
completion. In addition, Greg Weirs is interested in using the in transit workflow to compute
statistics of flow fields computed by SPARC.
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8.3. Integration with other software

Our work is not happening in a vacuum. In this section we describe other software tools which
have the potential to play complementary roles as we evolve the data services vision.

8.3.1. Enhancing Internal Workflow Tools to Support Data Services

Next Generation Workflows has made tremendous progress over the last several years, and
although it has become an effective production tool, it is still missing some capability that would
make it a powerful vehicle for workflows leveraging data services. First, the workflows, by design
assume a somewhat serial execution model where upstream components complete before
executing downstream portions of the workflow. Our vision for data services is for a more
interactive and dynamic relationship between components. We require concurrent execution of
the workflow components that is not easy to initiate in current IWF tools, in part because of the
limitations in resource management mentioned in Section 8.1.1.

Sandia data analysis and visualization researchers are already actively engaged and productively
contributing to NGW. Similarly, SNL I/O researchers are involved in working with NGW on a
portable path forward for data management. We plan to work with NGW on adapting the tools to
enable the effective use of data services in application workflows. In the same way that we see
IOSS as a key enabler and vehicle to impact ASC codes, NGW will be a critical partner in
promoting and enabling data services as a viable solution in the future.

8.3.2. Interoperating with External Projects

The problems addressed by the types of workflows explored in this milestone are not unique to
the Laboratories. Other computing research and development groups within DOE are actively
working to develop solutions which have reached varying degrees of maturity and deployment.
Several of these projects represent potential opportunities for future collaboration:

* The Software Technology portfolio of the Exascale Computing Project [17] contains
several products focused on data and visualization which are of potential interest. VTK-m is
most closely related to the software already developed, adding shared-memory parallelism
to the Paraview software suite. ADIOS provides code coupling and I/O support for
applications whose needs span the storage hierarchy; a potential integration for ADIOS
might specify a FAODEL service as a data destination, where that data might then be
extracted using the IOSS interfaces developed for this project. ExalO’s objective is a set of
parallel I/O libraries based on the HDF5 container format which are storage
hierarchy-aware. As FAODEL already has the ability to persist its data using HDFS5, an
integration with ExalO could potentially prove useful. Lastly, the DataLib collection of I/O
and middleware tools is similar in objective and scope to FAODEL and should be
considered as a useful comparator for both functionality and performance use cases.
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* ALPINE/Ascent [8] is an infrastructure developed by Lawrence Livermore National
Laboratory that provides tools for defining the inputs, outputs, and data flow of in situ
computations on HPC platforms. Ascent translates declarative specifications of data flow
and actions into run-time in situ computational steps. It performs a role similar to the
Catalyst software used in this project. It also provides functionality similar to the SAW
tools, but with the ability to define data flow graphs for in situ computations as opposed to
in transit ones. As such, it may be possible to integrate the data flow graphs used by Ascent
with either the in situ or in transit FAODEL distributed hash table for data access.

* Conduit & Mesh Blueprint [9] are tools also developed at LLNL which provide facilities
for definition and interchange of scientific data. Conduit features methods for defining and
encapsulating an hierarchy of data objects for in-memory use or for transport across address
spaces. Blueprint leverages the capabilities of Conduit to provide an interface for defining
computational meshes. These tools are part of the same ecosystem as the ALPINE and
Ascent software described above. Blueprint defines a computational mesh data model
functionally similar to that of IOSS, which is itself historically based on the Exodus mesh
file format. Several potential integrations with the FAODEL and IOSS software stacks
could be explored, for examples:

— FAODEL could be modified to add the ability to output a Conduit Node which
conforms to the Mesh Blueprint protocol, providing interoperability in either in situ or
in transit workflows with the Conduit ecosystem.

— FAODEL currently performs serialization for its data transfers in an ad hoc manner
without strong support for hierarchical data. The Conduit tools could be of use here.

» SENSEI [1] is an in situ execution framework which has similar goals to ALPINE and its
related tools, but forms a separate software stack. SENSEI provides similar facilities for
introducing in situ processing into an application and managing the data items used by that
processing. Notably, SENSEI uses the VTK data model and can interface directly with
Paraview/Catalyst while eliminating many data copying overheads. Of probably more
potential integration interest, SENSEI uses ADIOS as a means of abstracting the destination
of data after in situ processing (potentially sending data to another compute node).
Integrating FAODEL as an ADIOS data route could make possible multi-stage workflows
in which SENSEI in situ components are connected to FAODEL-based in transit ones.
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8. CONCLUSIONS

SPARC’s use of the IOSS interface provides the ability to switch between workflows with ease.
This also allows data analyst developers to develop and test algorithms with a running SPARC
simulation without changing the SPARC code. This is important for codes that have gone through
V&V where any change could invalidate the V&V certification process.

Workflows vary by how they impact a running simulation in terms of sharing resources on local
nodes. For Catalyst there is no conflict with the graphics hardware since Catalyst doesn’t use the
graphics cards on SNL HPC systems. This may change if VTKm is deployed in the
Catalyst/Paraview dyad. It’s obvious that this won’t be the case for other Data Analysis tools.
When those become part of this ongoing study further performance testing will help in
understanding the implications of sharing graphics hardware. The in situ case clearly has a direct
impact on the simulation processes. It may be that the bottleneck in the in sifu workflow is in the
time or memory it takes to process a chunk of output data. These chunks may be field data from a
time step. Another delay we observe in Catalyst is the time and communication required for
parallel rendering.

Candidates for post-processing include anything that works with output data but isn’t required for
the running application. There may be cases where developers want a post-processing algorithm
to become part of the physics simulation. In those cases developing and testing that particular
algorithm in one of these workflows can minimize the changes to the applications. Once perfected
the algorithm can be refactored into the simulation’s code base where V&V processes can be
re-run.

The different workflow types offer tradeoffs in how simulation and post-processing tools share
resources:

* In file-based workflows, the resources of interest are I/O bandwidth, file system disk space,
and to a lesser extent imposed load on the parallel file system itself. While an application is
not directly affected by disk space allocation, shared parallel disk arrays must continually
be managed to ensure space is available. Applications which open and close many files can
place abnormal load on file system metadata services, which frequently do not scale as
readily as their bulk data transfer operations. Contention for I/O bandwidth is typically the
main disadvantage of file-based workflows, as shared parallel file systems have only so
many paths to disk. This contention can manifest as delay in completion of write operations
in the application. However, this may be preferable if the parallel file system is not heavily
shared. Finally, the resources used by separate later analysis steps must be considered.

* in situ workflows primarily address I/O contention by reducing the amount and duration of
I/O write phases. The downside of this tradeoff is realized as increased application CPU
usage (to perform analysis activities within application processes), increased
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time-to-completion for the application, and typically increased memory usage by analysis
data structures. Not all post-processing tasks are suitable for in situ execution, and those
which are performed in situ can pose software engineering and maintenance problems for
application developers.

* In transit workflows represent a tradeoff of increased complexity vs. added flexibility.
Using a data management service such as FAODEL avoids both the penalties of filesystem
I/0O as well as the resource usage and software coupling concerns associated with in situ
workflows. This project has demonstrated that there are significant potential benefits
available to applications. This project has also demonstrated that the integration effort
associated with in transit workflows can also be significant, and that performance
evaluations and tuning are important to fully realize their advantages. Other resource
considerations include the need for extra computational resources for in transit data
management and post-processing jobs, as well as the need to coordinate their scheduling
with applications. In transit workflows also introduce the possibility of varying the degree
of asynchrony present in the workflow according to resource availability or other concerns.

Lastly, a tool like SAW can be of great benefit, coordinating and managing the complexities of an
in transit workflow comprised of multiple data sources and consumers. An example of this is the
case of building Reduced Order Models (ROM). Here a large number of simulations produce data
gathered to build a ROM which can then be used in parameter studies for UQ and V&V analysis.

59



APPENDIX A. Build and Execution Process

A.1. Repositories

During the development of the milestone, the team used multiple git repositories across multiple
projects. Table A-1 details the projects, the repository’s location and the final set of commit
hashes used for the experiments present in this report. In addition, each repository has been
tagged with FY20_ASC_L2_Milestone_7186 as a permament marker.

A.2. Building the Milestone Projects

Maintaining builds across all the required projects quickly became a tedious and difficult task that
distracted the team from doing the actual work of the milestone. In an effort to reduce the
workload on the individual team members, a repository of build scripts was developed to
coordinate the build. At the highest level are superbuild scripts that clone, configure and build all
the projects. For each project, a well-known branch or commit hash is used that gives developers
a consistent point from which to work. Alternatively, developers can quickly change one or more
of the project branches before starting a new build.

A detailed description of the build process using the superbuild scripts can be found in the
DSVA/building repository located at https://cee-gitlab.sandia.gov:/dsva/building.

A.3. Running the Milestone Projects

The milestone focused on the HIFIRE-1 simulation using a common configuration with the only
changes being the post-processing driver.

A.3.1. Running the in-situ case

The typical HIFIRE-1 configuration uses exodus for the surfaces and cgns for the volumes. The
Catalyst driver is selected by prefixing either with catalyst-. In addition, a Catalyst script is
specified as a property in the input deck which drives the visualization.

Prior to launch the environment must be configured so the Catalyst driver can find its required
components are that available as shared libraries or python modules.
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export CATALYST_ADAPTER_INSTALL_DIR=$TRILINOS_BUILD_ROOT/../install-seacas-plugin-atsl-hsw_shared
export PYTHONPATH=$PARAVIEW_ROOT/lib/python3.7/site-packages/_paraview.zip:$PYTHONPATH
SPARC_EXEC=$SPARC_BUILD_ROOT/bin/sparc

With this configuration and environment in place, runing the HIFIRE-1 simulation is launched the
same as any SPARc job.

srun $SPARC_EXEC -1 sparc-catalyst.yaml

At each timestep when the results are written, the Catalyst driver executes the visualization script
which produces images.

A.3.2. Running the in-transit case

Running the in-transit case is very similar to the in-situ case. The input deck is modified to select
the FAODEL driver by prefixing exodus or cgns with faodel- and the environment is setup in a
similar way. In addition to the Catalyst driver, the FAODEL configuration information must also
be specfied.

export CATALYST_ADAPTER_INSTALL_DIR=$TRILINOS_BUILD_ROOT/../install-seacas-plugin-atsl-hsw_shared
export PYTHONPATH=S$PARAVIEW_ROOT/lib/python3.7/site-packages/_paraview.zip:SPYTHONPATH

export FAODEL_CONFIG=mutrino-sparc-iom.conf

export FAODEL_RESOURCE_URI=/ioss/dht

SPARC_EXEC=$SPARC_BUILD_ROOT/bin/sparc

Prior to launching the SPARC simulation, the FAODEL DHT service must be started. The DHT
is mostly self-contained and launched using a play script that configures and executes the required
FAODEL components. As part of the startup, a Directory Manager is created that acts as a service
registry where SPARC can find the DHT.

srun SFAODEL_INSTALL/bin/faodel play ioss-dht.play

Next the simulation is launched as before.

srun $SPARC_EXEC -1 sparc-catalyst.yaml

At each timestep when the results are written, the FAODEL driver transfers the data to the
FAODEL DHT where it is held in memory.

When the simulation is complete, the FAODEL DHT continues to run and the
faodel2catalyst_exodus or faodel2catalyst_cgns tools can be executed to pull data from the DHT
and copy it to the same Catalyst plugin used by the driver in the in-situ case. Using the same
visualization script as in the in-situ case, the faodel2catalyst tools generate images for each
timestep written to the DHT.

Additional information about how to configure and run the experiments described in Section 6
can be found in the README file in the experiment data repository, located at
https://cee-gitlab.sandia.gov/dsva/fy20-12-experiments.

61



29

Project Sub-project Repository URL Final Commit Hash
building https://cee-gitlab.sandia.gov:/dsva/building 2064308c66cd5db742c¢01e6513d8cd1b693206b53
DSVA seacas https://cee-gitlab.sandia.gov:/dsva/seacas 9d6806f965167e65bb7269a6dffead1fef02567d
fy20-12-experiments https://cee-gitlab.sandia.gov:/dsva/fy20-12-experiments d4cbdb60a48eac0e183b934a66ed63e7101306e8
FAODEL faodel https://gitlab.sandia.gov:/faodel/faodel d2d463cS5abb0c3acad4e7989e314d71eb6d063e61
sparc https://cee-gitlab.sandia.gov:/sparc/sparc 9158a72d5dfe22b30f35d8be3ea51378f39ab678
ear99 https://cee-gitlab.sandia.gov:/sparc/sparc-ear99 7t5baf5e55013841e818f964e8e0ce703aa702ef
itar https://cee-gitlab.sandia.gov:/sparc/sparc-itar 820c937e36efe87c43aeb5b75f1162cda072b36b
performance-ear99 https://cee-gitlab.sandia.gov:/sparc/sparc-performance-ear99 e57fd23a110dfc7600875¢92dbbaf6a2447c6a40
performance-itar https://cee-gitlab.sandia.gov:/sparc/sparc-performance-itar 6a2ccda6096dd47388b0e27800e54a742f79a24a
SPARC regression-ear99 https://cee-gitlab.sandia.gov:/sparc/sparc-regression-ear99 30126d98a0beb29a2454e0eab4fa9f26bd39577b
regression-itar https://cee-gitlab.sandia.gov:/sparc/sparc-regression-itar 4651402970fb712ee62b3d6c0f809eee70b99bea
verification-ear99 https://cee-gitlab.sandia.gov:/sparc/sparc-verification-ear99 8ca46f571cc0834f8954f3f924be06fefb4bead9
verification-itar https://cee-gitlab.sandia.qgov:/sparc/sparc-verification-itar  4a83ae70df03e2e235c61cffe320d6d4b66£3351
pressio https://cee-gitlab.sandia.gov:/sparc/pressio 2900b58a395dcf85843d99d3e35e6bbd7eb11553
trilinos https://cee-gitlab.sandia.gov:/sparc/Trilinos 09280747ac873aa2eb1705774abace997b37e66f

Table A-1. git repositories used for ASC Milestone 7186
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