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ABSTRACT

The performance of NVIDIA’s latest A100 graphics processing unit (GPU) is benchmarked for
computing and data analytic workloads relevant to Sandia’s missions. The A100 is compared to
previous generations of GPUs, including the V100 and K80, as well as multi-core CPUs from two
generations of AMD’s EPYC processors, Zen and Zen 2. Computing workloads such as sparse
matrix operations (e.g. HPCG benchmark) and numerical solver-heavy applications based on
Trilinos and Kokkos see a moderate 1.5x to 2x speedups compared to the V100, consistent with
the increased core count and memory bandwidth of the A100. Training and inference on machine
learning (ML) models such as ResNet-50 for image classification and BERT-Large for natural
language processing show the same 2x speedup over the V100.

However, these ML workloads also benefit from increased tensor core capabilities in the V100
and A100 GPUs, yielding a 3.5x speedup using a mixed (single + half) precision strategy for
floating point operations. While the performance gap between GPUs and CPUs remains moderate
(3x to 8x) for high-performance computing applications, these new hardware features of recent
GPU generations give 50x to 100x speedups in out-of-the-box ML workloads compared to CPUs.
With additional A100 features still undergoing testing (INT8, structural sparsity, multi-instance
GPUs) with clear applications for ML workloads, the A100 GPU seems an extremely promising
hardware accelerator for artificial intelligence (AI) and data analytics research at Sandia.
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1. INTRODUCTION

1.1. The NVIDIA A100

Graphics processing units (GPUs) are parallel computing architectures that excel at
single-instruction multiple-data (SIMD) parallelism. The original purpose of these accelerators
was computer graphics, where each pixel on the screen needs to be updated using the same
formula but with different data (i.e. position in the scene). However, the same principle applies to
many matrix operations needed in high performance computing (HPC) and high performance data
analytics (HPDA) workloads, and GPUs have seen considerable success as accelerators for
scientific applications. GPUs typically have two orders of magnitude more cores than CPUs, but
much less memory and specialized optimizations.

The NVIDIA A100 GPU is NVIDIA’s latest flagship device for datacenter usage, and boasts
several performance improvements over previous generations. Key specifications are listed in
Table 1-1 below, but effectively the A100 has 1.4x the compute performance and 1.7x the
memory bandwidth over its’ predecessor, the NVIDIA V100. As with all new GPU releases, it is
expected that these upgrades will directly translate into moderate (e.g. roughly 2x) speedups for
existing HPC codes.

Table 1-1. Summary of key specifications for the Kepler, Volta, and Ampere GPUs on
Kahuna. Specifications taken from the relevant SKU: Tesla K80 [1], V100 32GB PCIe
[2], and A100 40GB PCIe [3]

.
GPU FP64 Compute FP32 Compute Tensor Compute Memory Bandwidth

(TFLOPS) (TFLOPS) (TFLOPS) (GB) (GB/s)
K80 1.8 5.6 - 12 480
V100 8.2 16.4 112a 32 900
A100 9.7 / 19.5a 19.5 / 156a 312a 40 1600
a Using tensor cores

However, the most interesting improvements lay in two main new hardware developments:
improved support for mixed precision and integer operations in tensor cores, and the
multi-instance GPU (MIG) capability which allows each device to be subdivided. Tensor cores
were a new feature in the Volta generation, specialized to accelerate operations on stacks of
matrices (thus the name tensor core) with reduced precision. This is a common workload in
machine learning (ML) and deep learning (DL), and marked a departure from previous trends that
had only focused on improving the traditional GPU cores. In the Ampere generation, the tensor
cores have been significantly improved and have increased support for low-precision and sparse
operations that are common in ML/DL inference workloads. Successive generations architectures
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have added low precision types, starting with Volta’s FP16 support; INT8, INT4, and INT1 with
Turing; and TF32, BF16, and FP64 (tensor core) with Ampere.

On the other hand, the MIG capability is a direct response to the increased use of containerization
and virtualization needed by commercial cloud providers such as Amazon Web Services, Google
Cloud, or Microsoft Azure. MIG allows each A100 to be partitioned and carry out multiple
sandboxed calculations; in the case where each process does not require the full capabilities of the
A100 (i.e. ML/DL inference), this allows greater utilization of the GPU. MIG capabilities can be
configured via nvidia-smi but currently require elevated privileges. Until some mechanisms
(e.g. SLURM plugin) are developed that enable users to turn on these features, they are likely to
remain of limited use on a cluster like Kahuna and therefore outside the scope of the current
work.

Lastly, it is also worth mentioning that a new SKU of A100 GPU with 80 GB of on-card memory
was released during the development of this report. In addition to the obvious advantage of fitting
larger models or more batches on the device, the memory bandwidth is also increased by a factor
of 25% to 2000 GB/s. As many relevant workloads seem to be bandwidth-limited, this could yield
additional speedups. However, the 80 GB SKU is only available in the SMX form factor rather
than more traditional PCIe connectivity, requiring a specialized motherboard and node
configuration. As with MIG, this remains a promising avenue of increased capability but not one
that is immediately applicable at this time.

1.2. Node Configurations on Kahuna

The Kahuna HPDA cluster is a hybrid production/research environment with a variety of
available hardware configurations. The five hardware configurations tested in this report are listed
below in Table 1-2. The primary goal of this benchmarking is to compare the A100 (i.e. Ampere
configuration) against GPUs of previous generations (i.e. Kepler and Volta), with a secondary
objective of comparing GPU performance to modern high-core count CPUs such as the AMD
EPYC processors (i.e. Zen and Zen2).

1.3. Bandwidth Performance

One straightforward benchmark is to see whether the bandwidth specifications from Table 1-1 are
easily achievable. Both CPU to GPU and on-card GPU bandwidth are important. While we
expect an incremental increase in on-card bandwidth in line with typical improvements from each
generation, the availability of PCIe Gen 4 should give the A100 up to a 2x increase in transfer
bandwidth between host and GPU memory when compared older PCIe Gen 3 accelerators.

1.3.1. Methods

The bandwithTest sample provided with the CUDA SDK was used to measure host-to-device
and device-to-host bandwidth. Pinned host memory was used with the "shmoo" mode to test a

12



Table 1-2. Hardware configurations on Kahuna used for testing.

Name CPU Memory GPU I/O
Zen Dual-socket AMD EPYC 7601 1 TB - PCIe Gen 3

(2.2GHz, 64 cores total)
Zen2a Dual-socket AMD EPYC 7452 256 GB - PCIe Gen 4

(2.2GHz, 64 cores total)
Kepler Dual-socket Intel E5-2698v3 512 GB 1 K80 PCIe Gen 3

(2.35GHz, 64 cores total)
Volta Dual-socket Intel Xeon Gold 6130 768 GB 4 V100 CPU-GPU: PCIe Gen 3

(2.1GHz, 32 cores total) GPU-GPU: NVLink
Ampere Dual-socket AMD EPYC 7452 256 GB 1 A100 PCIe Gen 4

(2.2GHz, 64 cores total)
a Same node as Ampere but setting CUDA_VISIBLE_DEVICES= such that the A100 is not available

wide range of transfer sizes. Pinned memory cannot be swapped out of memory by the operating
system, and therefore leads to higher and more stable performance. Bandwidth was averaged over
100 cudaMemcpyAsync() calls. Local variants of bandwidthTest that use warmup calls,
multiple (i.e. 4 or 8) streams to pipeline the copies, or the use of numactl to ensure the optimal
CPU-memory-GPU topology did not result in significant changes in performance.

The BabelStream (formerly GPU-STREAM) benchmark [4] was used to measure on-card
memory bandwidth. BabelStream carries out four bandwidth-limited kernels: addition,
multiplication, triad (a DAXPY-like operation), and a dot product. Due to their memory-bound
nature (i.e. very little compute compared to load/store operations), these kernels give an accurate
representation of bandwidth between global memory and the CUDA cores. An array size of
409600000 was used, resulting in a total memory usage of ≈9.8 GB and a runtime of 5
milliseconds per function call on Ampere, as per the recommendations. Increasing the array size
did not change the observed performance.

1.3.2. Results and Discussion

The results for both bandwidth tests can be seen in Figure 1-1. Figure 1-1a shows that the A100
does have nearly double the CPU-GPU bandwidth of the other cards. This is in line with both the
listed specification in Table 1-1 and the theoretical limits of PCIe 4 over PCIe 3 (i.e. 32 GB/s and
16 GB/s, respectively). However, the bandwidthTest only reaches approximately 80% of the
peak theoretical bandwidth, despite attempts to use more sophisticated copy pipelining.
Additionally, device-to-host transfers for the A100 show high variability and decreased
performance at large transfer sizes. It is worth noting that the Ampere environment has AMD
EPYC-based CPUs, which use a multi-chip module design that leads to a nonuniform memory
access (NUMA) model. Preliminary tests with numactl did not increase A100 performance on
Ampere, but testing the A100 GPU in an Intel-based system would be extremely useful to rule out
any NUMA issues.
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Figure 1-1. Performance of (a) host-to-device from the bandwidthTest sample and
(b) on-card memory bandwidth from BabelStream. Larger throughput is higher per-
formance, and all tests were run on 1 GPU (including 1 K40) to avoid any inter-GPU
communication.

The on-card bandwidth performance in Figure 1-1b is much more straightforward, with all cards
performing between 75% - 90% of the card specifications. Note that when comparing to Table
1-1, the performance for the Kepler card is given for the full K80, but only 1 K40 was tested to
avoid any complications from inter-GPU communication; therefore, the expected peak bandwidth
should be halved.
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2. SCIENTIFIC COMPUTING

2.1. High Performance Conjugate Gradient (HPCG)

The High Performance Conjugate Gradient (HPCG) benchmark [5] is designed to emulate
scientific workloads with balanced compute and memory operations. HPCG is meant to
complement the High Performance LINPACK (HPL) benchmark [6], which is used in the Top500
ranking of supercomputers. Routines such as matrix-matrix multiplication in HPL scale cubically
for FLOPS but only quadratically with memory access; as a result, HPL will tend to favor
compute-heavy architectures such as GPUs. In contrast, the routines in the HPCG benchmark,
such as sparse matrix-vector multiplication and symmetric Gauss-Seidel smoothing, scale linearly
with both compute and memory operations. This leads to memory access patterns that are more
difficult to optimize on GPUs. Most highly-ranked Top500 systems typically only achieve
between 1-3% of the HPL throughput when running the HPCG benchmark, with a handful of
systems reaching 10% of peak performance [7].

2.1.1. Methods

The HPCG benchmark was run on all five test architectures from Table 1-2. The Zen and Zen2
executables were built from the HPCG 3.1 Reference Code available on the HPCG Software
webpage [8] using GCC 9.3.0 and OpenMPI 4.0.2. Optimization flags were taken from an AMD
EPYC handout on tuning HPC workloads [9], with the addition of the -march=znver1 or
-march=znver2, respectively. The December 2019 executable for CUDA 10 was used for the
Kepler and Volta tests, with GCC 9.3.0, OpenMPI 3.1.3, and CUDA 10.0.130 modules loaded.
The September 2020 executable for CUDA 11 was used for the Ampere tests, with GCC 9.3.0,
OpenMPI 4.0.2, and CUDA 11.0.2 modules loaded.

System sizes were chosen based on recommendations in notes included with the December 2019
executable, generally aiming to fill a significant fraction (i.e. more than a quarter) of available
memory to ensure reliable benchmarking. The Zen test used a local region of 128x256x256 with
64 processes, yielding a memory footprint of 383 GB, while the Zen2 test used a region of
128x128x128 with 64 processes for a usage of 95 GB; in both cases, this corresponds to roughly
38% utilization of system memory. The GPU tests used 1 process per GPU with a local region of
256x256x256, using 8 GB of memory for the Kepler (33% usage) and Volta (25% usage) tests.
For the Ampere test, the 3.1 HPCG executable actually uses just over 11 GB (28% usage) for the
256x256x256 local region. It is unclear what is responsible for the increase in memory usage
between HPCG 3.0 and 3.1, although it does not appear to have impacted the performance
numbers reported here. Tests were run with a benchmarking runtime of 1 minute, which is
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typically enough to give representative performance numbers compared to official HPCG runs of
30 minutes.

2.1.2. Results and Discussion

The total performance can be seen in Figure 2-1. There is a slight increase in performance
between Zen generations, while the trend is more significant for the different GPU generations:
the V100 is twice the speed of the K80 and the A100 is again 1.5x faster than the V100. This
tracks almost exactly with the improved memory bandwidths of the cards, as seen in Table 1-1.
This supports the statement that the sparse operations in the HPCG benchmark are
bandwidth-limited on the GPUs. As the GPUs are bandwidth-limited and cannot reach peak
compute throughput, the performance of the CPU-based systems stay within an order of
magnitude to the GPUs. The 64-core Zen systems roughly match half the performance of the K80
(i.e. one K40), although it is worth mentioning that the overall problem sizes for the Zen runs are
much larger than the GPU runs as system memory is typically much larger than on-card
memory.

Zen Zen2 Kepler Volta Ampere
(64 cores) (64 cores) (1 K80) (1 V100) (1 A100)

0

50

100
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200

250

GF
LO

P/
s
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5.0x

8.8x

Figure 2-1. Double precision performance in GFLOPS of the reference HPCG bench-
mark. Larger GFLOPS is higher performance (larger = better typically colored as blue
bars throughout the report). Speedups reported relative to the 64 core Zen platform.

One noteworthy point of dicussion is the use of the reference implementation on Zen and Zen2.
As noted in the output, these implementations are designed to be portable and therefore may be
suboptimal. In particular, data reorganization (often referred to as "coloring" variants) and
performant or architecture-specific communication protocols other than MPI are allowed
optimizations. These strategies have enabled higher throughput on a variety of systems [10, 11],
and some vendors also provide optimized HPCG binaries (e.g. Intel MKL [12]). There exists a
Kokkos-based implementation (KHPCG) [13] that contains a coloring strategy and could
potentially be used to provide a consistent benchmark across all devices, as Kokkos is a hardware
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abstraction library designed specifically to enable portability of scientific code among different
hardware accelerators [14]. The KHPCG implementation was not used for two reasons. First, a
comment in the CMake configuration notes that the colored variant of HPCG may not provide
valid results, leaving only an equivalent strategy to the reference implementation. Even so,
KHPCG would be preferable if it allowed consistent benchmarking across both CPUs and all
three GPUs. Unfortuantely, the second issue precludes this advantage as well: at the time of
writing, the cuSPARSE module of Kokkos does not run on CUDA 11 due to the use of a
deprecated sparse matrix-vector routine [15]. When this bug is resolved, it is certainly worth
revisiting KHPCG.

2.2. Albany LandIce Model

Many HPC applications at Sandia are built on top of Kokkos [14], a portability library for
hardware accelerators, and Trilinos [16], a linear algebra suite using Kokkos. Albany [17] is a
finite element partial differential equation (PDE) solver leveraging Trilinos, and the Albany
LandIce model (previously known as Albany/FELIX [18, 19]) for studying ice sheets was chosen
for use in the performance study of A100 GPUs. This module is actively being ported to GPUs
[20, 21], and offers a unique workload important to the Sandia mod-sim community that is not
captured by traditional linear algebra benchmarks.

2.2.1. Methods

Trilinos and Albany were built for all five test architectures using a combination of CMake
configurations in the Albany LandIce performance test repository [22]. Specifically, the Weaver
configuration informed the GPU builds while the Blake configuration informed the multicore
CPU builds. Table 2-1 highlights the main differences between each architecture build for
Trilinos. All configurations used the Boost 1.73.0, HDF5 1.10.6, NetCDF 4.7.3, PNetCDF 1.12.1,
LAPACK 3.8.0, and OpenMPI 3.1.3 modules available on Kahuna via the gcc7-support or
gcc9-support module packs. Albany then simply points to the respective Trilinos build and uses
the same environment. Key configuration parameters for Albany include the
NUM_GPUS_PER_NODE and the automatic differentiation type and size. For automatic
differentiation, the SFad type was used with a size of 12, which is large enough to run any input
from the performance test repository.

Table 2-1. Key differences for Trilinos configurations between architectures.

Name Arch Flags Host/Device Compilers
Zen Kokkos_ARCH_ZEN OpenMP/- GCC 7.5.0/-
Zen2 Kokkos_ARCH_ZEN2 OpenMP/- GCC 9.3.0/-
Kepler Kokkos_ARCH_KEPLER37 Serial/CUDA GCC 7.5.0/CUDA 10.2.89
Volta Kokkos_ARCH_VOLTA70 Serial/CUDA GCC 7.5.0/CUDA 10.2.89
Ampere Kokkos_ARCH_ZEN2 Serial/CUDA GCC 9.3.0/CUDA 11.0.2

Kokkos_ARCH_AMPERE80
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In the LandIce model, the finite element assembly (FEA) was used for benchmarking as this is
one of the components actively being ported to GPUs and corresponds to approximately 50% of
the cost [20]. The majority of the tests in the performance repository are designed to run on
several multi-GPU nodes. The enthalpy FEA test using a tetrahedron element shape (as seen in
Figure 2-2) in the green-3-20km subdirectory was used in this work as this case fits in memory
on a single GPU. Using a single GPU test is more desirable here since it is more consistent across
the environments available on Kahuna, especially between Volta (with 4 GPUs on one node) and
Ampere (with 4 GPUs split across four nodes). It is worth noting that for this specific test case,
better absolute performance could potentially be gained by using an Albany build with an SFad
size of 4; however, this should not effect the relative performance discussed here.

Figure 2-2. Visualization of the Greenland ice sheet (GIS) tetrahedron mesh used in
the green-3-20km test case. Cell edges shown in gray, with contours of surface
air temperature shown as a representative type of data used in the enthalpy finite
element assembly calculation.

2.2.2. Results and Discussions

Figure 2-3 shows the wall time for the assembly portion of the FEA calculation excluding the
initial setup. As with the HPCG benchmark, Zen2 shows a slight improvement over Zen and the
GPUs continue to outperform the CPUs. The Kepler configuration is excluded as the
green-3-20km test case does not fit GPU memory on the K80, leading to significantly decreased
performance due to host-to-device transfers. However, the performance delta is closer in this case,
as the V100 is only twice as powerful as a dual-socket CPU system. The A100 is only 1.5 times
faster than the V100, which is more in line with the compute improvements between the two
generations.
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Figure 2-3. Wall time of the finite element assembly component of the Albany LandIce
model run for enthalpy with tetrahedron elements on the green-3-20km test case.
Smaller time is higher performance (smaller = better typically colored as orange bars
throughout the report). Speedups reported relative to the 64 core Zen platform.
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3. MACHINE LEARNING

Sandia researchers leverage machine learning techniques to analyze data and support mission
needs in a wide variety of ways. The availability of low-cost, high-performance GPUs has had a
profound impact on the community. For researchers that were already well-versed in machine
learning techniques, GPU improvements have enabled researchers to explore larger problems and
iterate over datasets more rapidly. For researchers that are new to machine learning, the
availability of GPU-enhanced tools and frameworks makes it easier for individuals to apply
machine learning techniques to their specific problems. In this chapter we explore the A100’s
performance characteristics when processing four different machine learning workloads that are
relevant to Sandia applications:

Training a ResNet-50 Image Classifier: ResNet [23] is a deep convolutional neural
network (CNN) architecture that can be trained to classify many different types of
objects in images. While existing models have been trained to identify everyday
objects, Sandia researchers often need to perform additional training to identify
objects that are unique to a specific mission problem space. This training is
computationally expensive and involves exposing the neural network to hundreds of
thousands of labeled examples.

Object Detection in YOLOv4: Surveillance researchers require a fast and efficient
means of locating and tracking objects in video data. You Only Look Once (YOLO)
[24] is a one-stage object detector that is optimized to identify many objects in a
video at real-time speeds.

Video Interpolation in DAIN: Surveillance researchers sometimes work with low
frame-rate video sources and require a means of determining what activities took
place between a pair of frames. The Depth-Aware video frame INterpolation (DAIN)
model [25] extracts and exploits depth information to estimate the in-between frames
of a video. Processing videos can be time intensive due to the computational overhead
of each interpolation and the sheer number of frames in a video.

Natural Language Processing with BERT-Large: Google’s BERT (Bidirectional
Encoder Representations from Transformers) [26] is a powerful technique that
researchers are leveraging in many natural language processing (NLP) tasks (e.g.,
word and sentence prediction, summarization, classification, etc.). Users typically
start with a Google-supplied model that was trained on a massive corpus of text and
then apply their own representations to “fine tune” the model to a specific need.

20



3.1. Image Localization with ResNet-50 v1.5

The ResNet family of models are an example of 2D convolutional neural networks (CNNs)
combined with skip connections/residual blocks. These types of models have applications in
image classification and localization. TensorFlow is a popular Python machine learning
framework with excellent GPU support. Training and inference for image localization via the
ResNet-50 model [23] was carried out as an example of a canonical TensorFlow workload.

3.1.1. Methods

NVIDIA provides Docker containers for ease of reproducibility via NVIDIA GPU Cloud (NGC),
as well as reference implementations of several machine learning workloads (including both
ResNet and BERT) in their DeepLearningExamples repository. Although the same CUDA 11.0
and cuDNN 8 libraries are available natively on Kahuna, the Docker container for TensorFlow 1
with Python 3 from November 2020 was used to ensure proper configuration of the TensorFlow
installation [27]. However, there were several pushes to the DeepLearningExamples repository
that improved Ampere performance that were not included in the container. The implementations
from the commit 92829376a were used to provide the most favorable performance for the A100
GPUs [28]. This updated implementation has an almost 30% increase in mixed precision
performance (i.e. using single precision via traditional CUDA cores and half precision via tensor
cores) for ResNet-50 training on the A100 and was used for all container-based TensorFlow
tests.

The ResNet-50 model was trained on the ImageNet dataset. Specifically, the classification with
localization task from the 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
challenge was used [29]. The 2012 ILSVRC dataset consists of 1.2 million images for training
and 50,000 for validation. The full dataset is 155 GB and therefore fits nicely into system
memory on all test architectures. The reported numbers load the images directly from a
network-attached Ceph filesystem. Isolated runs have been done by first loading the dataset to
local disk or directly into memory with no changes to performance. The model is trained to
provide labels and bounding boxes for an object in each image from a choice of 1000 possible
classes. Throughput is measured by the number of images that can be trained/infered upon per
second. For training, 200 warmup steps were taken before average throughput was calculated on
500 batches. Batch size was 128 for single (FP32 on the V100 and FP32/TF32 on the A100)
precision and 256 for mixed precision. Mixed precision runs also use a static loss scaling factor of
128 to help prevent half precision underflow during the backpropagation of the gradient [30]. For
inference, 50 warmup steps were taken before average throughput was calculated on 400 batches,
and no loss scaling was used as inference requires only forward propagation. The Accelerated
Linear Algebra (XLA) optimized graph compiler [31] takes the execution graph of TensorFlow
operations and performs operations such as kernel fusion (i.e. combining clusters of operations
into single kernels for lower launch overhead) and library calls (i.e. packing operations to allow
the use of optimized libraries such as cuDNN and cuBLAS). ResNet training and inference were
run with and without XLA.
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3.1.2. Results and Discussion

Table 3-1. Throughput for training the ResNet-50 v1.5 model for image classification
with TensorFlow 1. Single precision is FP32 on Volta and FP32/TF32 on Ampere, while
mixed precision (AMP) utilizes both single precision and half precision on the tensor
cores. XLA is the Accelerated Linear Algebra optimized compiler. Batch sizes of 128
and 256 were used for single and mixed precision, respectively. Speedup is reported
for mixed + XLA relative to single + XLA on the same GPU and also to 1 V100.

GPU Single Single + XLA Mixed Mixed + XLA Speedup with Speedup
(img/s) (img/s) (img/s) (img/s) mixed precision from 1 V100

1 V100 368 400 1053 1217 3.04x -
4 V100 1402 1561 3983 4723 3.02x 3.88x
1 A100 774 906 1903 2143 2.37x 1.76x

Throughput for ResNet training is shown in detail in Table 3-1, and a visual comparison of
training and inference for 1 V100 and 1 A100 GPU is shown in Figure 3-1. There are several
points to consider: generational improvements from Volta to Ampere, the use of XLA, and finally
the use of mixed precision. The generational improvements are fairly straighforward and track
with the results seen in the HPC sections. Although the theoretical compute for tensor core
operations is closer to 3.0x for the A100 over the V100, a speedup between 1.5x and 2.0x is
observed. This is similar to the HPC workloads and could indicate a bandwidth limited workload.
In the case of ResNet, XLA results in moderate 10% to 20% speedups in training and up to 40%
during inference. XLA is included by default in recent TensorFlow distributions and can be
controlled both programmatically and via environment variable [32]; therefore, it is always worth
considering the use of XLA whenever possible.

Mixed precision is perhaps the most interesting statistic since the greatest changes in the A100 are
the use of TF32 during single precision and increased tensor core (i.e. half precision) capabilities.
For ResNet-50, mixed precision yields speedups from 2.4x to 3.0x during training and 1.5x to
2.0x during inference, as seen in Table 3-1 and Figure 3-1. It is also worth noting that A100 mixed
precision inference for ResNet-50 quickly plateaus, reaching maximum throughput at a batch size
of 32. This differs from the behavior of all other inference runs and may indicate an additional
bottleneck, requiring further investigation. Despite this discrepancy, the diminishing marginal
returns in batch size also indicate that partitioning the A100 via MIG could provide additional
speedups. For example, increasing batch size from 64 to 256 only gives a marginal increase in
inference speed, but using a MIG setup with 4 partitions would still fit the batches of 64 in each
partition’s memory and potentially offer a 4x speedup based on the observed performance.

3.2. Object Detection with YOLOv4

You Only Look Once (YOLO) is a state-of-the-art framework for real-time object detection in
images and videos. One of the recent iterations of the framework, YOLOv4, was chosen for
benchmarking [24]. The YOLOv4 benchmarking complements the image detection ResNet tests
from Section 3.1. Both architectures use 2D convolutional layers with skip connections, but
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Figure 3-1. Performance of training and inference of the ResNet50v1.5 model for im-
age classification with localization. Larger throughput is higher performance, with all
other details matching Table 3-1.

ResNet used TensorFlow and YOLOv4 is implemented in DarkNet, a C-based neural network
framework [33].

3.2.1. Methods

The AlexeyAB fork of DarkNet was compiled for each of the target architectures. The Zen and
Zen2 builds used GCC 9.3.0 and were built with AVX and OPENMP support. Although not included
in the original Makefiles, the respective -march flags were also added to the compiler flags. The
Kepler and Volta builds used GCC 7.5.0, CUDA 10.2.89, and cuDNN 8.0.4.30. The Ampere build
used GCC 9.3.0, CUDA 11.0.2, and cuDNN 8.0.4.30. All GPU executables were built with GPU
and CUDNN support; additionally, Volta and Ampere were also built with CUDNN_HALF to allow the
use of mixed precision via the tensor cores.

3.2.2. Results and Discussion

The evaluation of 20288 images from the Common Objects in Context (COCO) 2017 test set [34]
was carried out to measure the throughput of object detection. The results are shown in Figure
3-2. One can see that GPUs are considerably faster for this workload than the HPC benchmarks -
the evaluation task takes over 4 hours on 64 cores but less than 4 minutes on a single A100
GPU.

The Zen results are omitted as they are more than 3x slower than the Zen2 results, despite the
nearly identical compilation procedures. As this is the only test thus far to depend on OpenMP for
parallelization, it is possible that there are significant architecture improvements for shared
memory parallelization in the new Zen processors that explain this performance difference. It is
also worth noting that the Kepler results are run on a single K40 GPU, i.e. only half of the K80.
Presumably a straightforward speedup of 2x can be gained by parallelizing across both GPUs
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Figure 3-2. Wall time of bounding box detection in the COCO 2017 test set using
YOLOv4. Smaller time is higher performance, and speedups reported relative to the
64 core Zen2 platform.

(even if only by dividing the image set into two). As the goal of this report is determining the
performance of the A100 GPUs, neither of these two performance issues were investigated
further.

3.3. Video Interpolation with DAIN

The Depth-Aware INterpolation (DAIN) model [25] combines previous models for motion
estimation and motion compensation [35] with depth information to provide state-of-the-art
performance for video frame interpolation. The tested model is implemented in PyTorch, which is
another popular Python-based ML framework and alternative to TensorFlow.

3.3.1. Methods

A Python virtual environment (venv) with PyTorch 1.7.1+cu110 and TorchVision 0.8.2+cu110
served as the starting point for installation of the DAIN model. The DAIN implementation was
originally designed to run on an older version of PyTorch. Necessary changes include updating
the compiler arguments to use C++14 instead of C++11, as well as enabling compute capabilities
3.7, 7.0, and 8.0 for use with K80s, V100s, and A100s, respectively. Additionally, one of the
plugins required mild restructuring to abide by PyTorch’s new interface of only using static
functions for forward/back propogation. A fork of DAIN containing these changes can be found
on Sandia’s CEE-GitLab [36]. The CUDA extensions and necessary plugins were built with the
GCC 7.5.0, CUDA 11.0.2, and cuDNN 8.0.4.30-11.0 modules loaded. These plugins were then
installed into the Python venv containing PyTorch.
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Pre-trained model parameters for DAIN on the Vimeo90K triplet dataset [37] are available online
and were used during this benchmark. The Middlebury dataset for optical flow [38] was used for
testing as the demo script for running through the dataset is provided in the DAIN repository. The
Middlebury training set consists of twelve test cases with start and end frames as input;
additionally, the ground truth interpolations are also available for scoring accuracy of the model.
Each picture has a resolution of 640 by 480 and no alpha channel (which cannot currently be used
by the DAIN model).

3.3.2. Results and Discussion

An example interpolation is shown in Figure 3-3 and average speedups for each interpolation in
the Middlebury training set between GPUs is given in Figure 3-4. The depth-aware portion of the
model seems to be functioning properly as objects in the foreground (e.g. the beanbags in Figure
3-3) are prioritized over background objects (e.g. shirt and neck). No CPU timings are given as
certain components of the model strictly require GPUs. Both the V100 and A100 see large
speedups over the single K40, but in this case, the A100 only sees a speedup of around 1.2x
relative to the V100. Several tests carried out with larger images (2048 by 1536) show the same
result, indicating that this is not a problem of low resolution not providing enough compute to the
GPU. It is clear that some work is needed to update the implementation to gain more performance
from the A100.

(a) (b)

(c) (d)

Figure 3-3. Demonstration of video frame interpolation with DAIN, with the (a) start
frame, (b) end frame, (c) ground truth interpolation, and (d) output of the DAIN model.
Images are the Beanbags case from the Middlebury test set.
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Figure 3-4. Average speedup of video frame interpolation on the Middlebury train-
ing set using DAIN. Larger speedup is higher performance, and speedups reported
relative to 1 K40.

3.4. Natural Language Processing with BERT-Large

The Bidirectional Encoder Representations from Transformers (BERT) model [26] is another
canonical example of a ML workflow with open-source implementations available in TensorFlow.
BERT is designed for natural language processing (NLP) and consists of two phases: a
pre-training phase where general relationships are formed, and a smaller fine-tuning phase to
obtain better performance on specific tasks.

3.4.1. Methods

The same NVIDIA container and model implementation from the DeepLearningExamples
repository as in Section 3.1 were used. Training and inference for the fine-tuning stage are tested
here as this is the more relevant workload for single GPU nodes (whereas pre-training would
benefit heavily from a dense GPU machine such as the DGX series from NVIDIA). A pre-trained
BERT-Large checkpoint from NGC was obtained as the starting point for training [39]. Version
1.1 of the Stanford Question Answering Dataset (SQuAD) was used as the fine-tuning dataset
[40]. Fine-tuning used a learning rate of 5e-6, a sequence length of 384, and a document stride of
128. Training throughput was taken as an average over 2 epochs, while prediction throughput is
measured over the entire validation set. Batch sizes were set to avoid running out of GPU
memory as listed in Table 3-2. Given the success of XLA during ResNet, XLA was turned on by
default during all BERT tasks. Although a combined FP32/TF32 strategy (multiply in TF32 and
accumulate in FP32) is used by default on the A100, a full FP32 run was done by using the
NVIDIA_TF32_OVERRIDE environment flag to quantify the advantage of the TF32 format [41].
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3.4.2. Results and Discussion

Table 3-2. Throughput in sequences per second for fine-tuning and validation the
BERT-Large model for natural language processing. FP32 is pure single precision,
FP32/TF32 is the default "single" precision mode for the A100, and AMP is mixed
single and half precision using tensor cores. XLA is enabled throughout. Speedup is
reported for FP32/TF32 and AMP compared to pure FP32 on each GPU.

GPU Batch Sizes Run Mode FP32 Only FP32/TF32 AMP
(FP32/TF32/AMP) (seq/s) (seq/s) (seq/s)

1 V100 10 / - / 24
Fine-tuning 14.2 - 52.4 (3.69x)
Prediction 42.6 - 148.0 (3.47x)

1 A100 10 / 16 / 32
Fine-tuning 15.7 57.9 (3.68x) 101.5 (6.46x)
Prediction 49.8 176.1 (3.53x) 290.9 (5.84x)

Throughput for BERT fine-tuning and prediction is listed in Table 3-2. The mixed precision
results show the 2x speedup of the A100 over the V100 that is observed in other workloads.
However, the investigation of pure FP32 on the A100 reveals not much improvement over the
V100, while the use of FP32/TF32 provides a factor of 3.5x speedup. The implementation is
clearly not optimized for pure FP32 on the A100 since one would expect a speedup between 1.5x
and 2x from the V100; however, even assuming the empirically observed 2x speedup from the
V100, an additional 1.75x factor is gained from using the FP32/TF32 mode. Since this is little to
no penalty to accuracy incurred by the use of FP32/TF32, it is recommended to leave this as the
default math mode.
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4. CONTAINERIZATION

4.1. Case Study for TensorFlow

TensorFlow 2 (TF2) is a significant departure from TensorFlow 1 (TF1), primarily marked by
subsuming the Keras package as a submodule of TF2. Keras enables researchers to prototype
model architectures quickly, and thus TF2 + Keras is one of the most popular ML packages in
use. The goals of this section are two-fold: to compare TF1 and TF2 implementations, and to
compare native TF2 to the optimized NVIDIA TF2 container. The ResNet model from Section
3.1 is used as a case study.

4.1.1. Methods

Two environments for TF2 were tested: native pip and NVIDIA container via Singularity.
Singularity is a container runtime similar to Docker but with the advantage of running in
userspace (i.e. without elevated privileges) [42]. Singularity images can be built from Docker
containers, and therefore provide a convenient mechanism for running containerized workflows
on traditional computing clusters where Docker may not be installed. The native environment can
be easily achieved by installing TF2 directly via pip, and will likely be the most straightforward
approach for most users. A Python virtual environment (venv) was created with the venv module
to contain the TF2 package. The CUDA 11.0 and cuDNN 8.0.4.30 modules were loaded on
Kahuna while using the native TF2 venv. Note that only version 2.4.0 (released on December
11th, 2020) and beyond have built-in support for CUDA 11 and the Ampere GPUs, and that
currently pip TF2 packages do not have XLA support. For the Singularity-based environment,
the corresponding NVIDIA container with Python 3 from November 2020 to Section 3.1 was
used but with TF2 instead of TF1 installed.

Instead of using NVIDIA’s DeepLearningExamples implementation of ResNet which only runs
on GPUs, we use the TF2 official model garden repository [43]. This requires installing the
tf-models-official python package in our environment, which is simply done in the native
TF2 venv but less easy for the Singularity container. A new Docker container that installed all
necessary Python packages was built using the NVIDIA container as a base, making sure that the
NVIDIA-provided TF2 packages were not overwritten. This Docker container was tagged as
sserita/nv-tf2-models, saved as a Docker archive, copied to Kahuna, and rebuilt as a
Singularity image (see A.6 for detailed instructions). It is worth noting a slight difference in
versioning. The native environment uses version 2.4.0 for TF2 and the model garden for CUDA
11 support. Meanwhile, the version of TF2 in the Singularity container is constrained to 2.3.1,
necessitating the use of version 2.3.0 for the model garden. The TF2 model garden contains a
ResNet-50 implementation that can use the same 2012 ILSVRC dataset from Section 3.1, which
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was used for the comparative runs here. Training throughput was taken as an average over the first
epoch (excluding the first batch which includes some initialization). The Zen2 and 1 K40 run on
Kepler timed out before completing the first epoch; however, all other runs showed no large
variation throughout the epoch, so it is expected that the timed out runs are still representative of
the overall throughput.

4.1.2. Results and Discussion

Table 4-1. Comparison of ResNet-50 training in Singularity-based TF1 and native TF2.
Single precision is FP32 on Volta and FP32/TF32 on Ampere, while mixed precision
(AMP) utilizes both single precision and half precision on the tensor cores. Batch
sizes of 128 for TF1 single precision and 256 for all other runs were used.

GPU Environment Single Single + XLA Mixed Mixed + XLA
(img/s) (img/s) (img/s) (img/s)

1 V100
TF 1, Sing.a 368 400 1053 1217
TF 2, Sing. 369 392 1054 1008
TF 2, Native 370 - 1057 -

1 A100
TF 1, Sing.a 774 906 1903 2143
TF 2, Sing. 723 885 1954 1686
TF 2, Native 711 - 1961 -

a Taken from Table 3-1
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Figure 4-1. Performance of model training of ResNet50v1.5 using native CUDA &
cuDNN and a standard pip installation of TensorFlow 2. Batch sizes of 64 were
used on Kepler and 256 otherwise. Single precision is FP32 except for FP32/TF32 on
Ampere, and XLA is not enabled. Larger throughput is higher performance.

A comparison of Singularity-based TF1, native TF2, and Singularity-based TF2 is shown in Table
4-1. There are no significant differences in performance between TF1 and TF2 without XLA
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enabled. Singularity does not seem to add any overhead as the container-based runs match native
TF2 performance. However, the mixed precision with XLA seems to have more inconsistent
results for the TF2 runs. Recall that there were also some performance issues with XLA and
mixed precision for the TF1 runs on Ampere that required using the latest implementation of
ResNet in the DeepLearningExamples repository. It seems possible that a similar performance
issue is occurring here and cutting-edge features such as mixed precision + XLA are not a high
priority for the model garden maintainers, especially while XLA is not enabled by default yet.

Despite the issues with mixed precision and XLA, it is a clear advantage to the container-based
approach that TF1 and TF2 are available with features such as XLA enabled at no additional
computational cost. The alternative is compiling TensorFlow from source via Bazel and ensuring
the native environment is setup properly. The only disadvantage of using Singularity is user
unfamiliarity. Many users have a workflow revolving around pip packages and Python virtual
environments, while Singularity is not mainstream yet. In this case, users would only need to
know the flags to enable GPU support (i.e. -nv) and mounting data directories (e.g. -B
/path/to/imagenet:/path/in/container). For more advanced use cases, such as
parallelizing training over multiple nodes via Keras parameter servers, Singularity containers
would also need to be launched with the correct ports exposed to enable interworker
communication.
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5. CONCLUSION

5.1. Role of the A100 in HPDA Workloads

In general, the moderate speedup of 1.5x to 2x can be expected for HPC codes that only use the
traditional CUDA cores, correlating well with the higher compute throughput and memory
bandwidth of the A100 over the V100. Compared to the only 10% increase in performance from
Zen to Zen2, this is still a significant gain from previous GPUs and results in overall speedups on
the order to 3x to 8x for the A100 over multi-core CPUs. Workload such as sparse numerical
solvers, the Trilinos/Kokkos software stack, and the mod-sim community will all benefit from
these incremental but substantial generational improvements.

Most of the new features in the A100 can be used much more heavily in machine learning
workloads, as shown in Figure 5-1. In particular, the introduction of the TF32 format sees a
moderate increase with no loss of accuracy. Together with using the tensor cores to train in single
+ half precision, these mixed precision strategies yield a factor of 3.5x in both model training and
inference. Overall, the ML workloads benchmarked here give speedups of the A100 over
multi-core CPUs between 50x and 100x. These performance improvements are shown for image
classification, object detection, and natural language processing tasks, which are increasingly
relevant to Sandia’s projects.
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Figure 5-1. Speedup of 1 A100 over the 64-core Zen 2 CPU over traditional HPC (e.g.
Albany LandIce, HPCG) and machine learning (YOLOv4, ResNet) workloads.
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Several novel features of the A100 were not benchmarked here but could yield further speedups
for ML and data analytic workloads. The tensor cores were tested through the use of FP16, or half
precision for floating point numbers. Tensor core improvements post Turing accelerate small
integer data types, which are used in the TensorRT library for low-latency ML inference.
Additionally, the multi-instance GPU (MIG) capability could allow the GPU to be partitioned and
more effectively utilized for models that do not require the full capabilities of the A100 GPU (i.e.
multiple instances of inference can be carried in parallel). Testing for these features and their
impact on workloads relevant to Sandia’s mission are ongoing.
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APPENDIX A. Build and Run Instructions

This appendix is designed to provide a short overview of instructions needed to build and run
each experiment. For detailed instructions, please see the relevant README.md file in the
amp-testing repository.

A.1. CPU-GPU Bandwidth

The bandwidthTest sample can be compiled and run via the following procedure:

1. Navigate to the bandwidthTest folder in the CUDA samples (usually
samples/1_Utilities/bandwidthTest)

2. Load the CUDA/11.0.2 module and adjust the Makefile to point to the module using the
$CUDA_HOME variable

3. Compile bandwidthTest

4. Run bandwidthTest -mode=shmoo to test a wide range of transfer sizes

A.2. BabelStream

The BabelStream executable can be built and run via the following procedure:

1. Clone the repository from https://github.com/UoB-HPC/BabelStream

2. Load the relevant CUDA module

3. Compile with make -j CUDA.make

4. Run with -device 0 -s 409600000 to run on a single GPU with the array size given in
Section 1.3
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A.3. HPCG

HPCG needs to be handled differently based on the CPU or GPU run. For GPUs, the relevant
HPCG executable needs only to be downloaded and extracted from the HPCG software page. For
CPUs, the reference HPCG can be built by:

1. Download, unzip, and extract the reference code from
https://www.hpcg-benchmark.org/software/index.html

2. Copy or symlink the config/Make.Kahuna-* files to the setup folder in the HPCG source

3. Load the appropriate GCC, GCC support, and OpenMPI modules

4. Set up a build directory

5. configure with one of the copied/symlinked Makefiles (e.g. ‘pwd‘/../configure
Kahuna-<arch>)

6. Compile with Make

Running HPCG can then be done in the following way:

1. Load the relevant modules (CUDA and OpenMPI for GPU, GCC and OpenMPI for CPU)

2. Run the HPCG executable with either mpirun -np <num of cores> for CPU or mpirun
-np <num of GPUs> for GPU, and setting the X, Y, and Z dimensions as the first three
command line arguments

3. Optionally set the runtime using the fourth command line argument. This was not done for
this benchmarking, defaulting to 60 seconds for the benchmark execution time

A.4. Albany LandIce

The Albany LandIce model is perhaps the most complex native software stack used during this
benchmarking. Luckily, much of the configuration is saved in several scripts so reproducing the
build should be straightforward.

Note: These scripts used the June 2020 set of Kahuna modules, not the newer December 2020
ones. The modules can either be swapped out for the older set, or hopefully minor version
updates should enable it to work on the newer modules.

1. Clone Trilinos

2. Make a build directory and copy/symlink the relevant do-cmake-trilinos-<arch>,
nvcc_wrapper_<arch>, and env.<arch>. Note that Zen2 uses env.ampere and Zen uses
env.volta-kepler.

3. Source the env.<arch> file to load the proper modules

4. Run do-cmake-trilinos-<arch> to configure the build against the loaded modules
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5. Build Trilinos with Make (highly recommended on a compute node with make -j 12 at
least)

6. Clone Albany

7. Make a build directory and copy/symlink the relevant directory do-cmake-albany-<arch>
and env.<arch>, analogous to above.

8. Ensure that the Trilinos installation from the previous step can be found by CMake (i.e.
Trilinos’ <install>/lib/cmake is in $CMAKE_PREFIX_PATH).

9. Source the environment, configure, and build Albany just as with Trilinos

Running Albany is also one of the more involved steps. There was an attempt to automate this
with mild success in the gen_input.sh script, but the overall steps are:

1. Decompose the mesh with the decomp utility if needed (i.e. if using more than one
processor)

2. Use Albany to populate the mesh with requisite data for the type of finite element assembly
(i.e. enthalpy or velocity)

3. Run the finite element assembly calculation in Albany

Both Albany steps should use mpirun -np <num of cores/GPUs>, just as with HPCG above.
Due to their size, the meshes are not available in the repository but are available in
/home-emu/sserita/data/ali-perf-test-meshes.

A.5. TensorFlow 1

Unlike Albany, the environment for the TF1 experiments is straightforward as only the NVIDIA
container needs to be downloaded:

1. Load the Singularity module

2. Download the NVIDIA container from NGC: singularity pull
docker://nvcr.io/nvidia/tensorflow:20.11-tf1-py3

However, the TF1 experiments require significant setup for ImageNet and SQuAD, the respective
datasets for ResNet and BERT. For ImageNet:

1. Download and extract the ILSVRC 2012 training, validation, and bounding boxes datasets.
This requires an account with ImageNet.

2. Preprocess the validation data by mapping each suffix to the proper synset

3. Preprocess the bounding box data for each synset

4. Generate the TFRecords from the training/validation images and preprocessed metadata
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BERT preprocess for fine-tuning is less onerous as the SQuAD dataset is much smaller, but I had
issues with using the automated bertPrep.py script. In the end I just manually downloaded the
datasets after scraping the URLs out of the Downloader classes in DeepLearningExamples
repository.

1. Download and extract the NVIDIA pretrained BERT-Large checkpoint from NGC. Note:
Had trouble with unzip on Kahuna, but unzip worked fine inside Singularity container.

2. Download the SQuAD training, dev, and evaluation sets

As noted in Section 3.1, the best performance was observed when using a more recent
implementation of the models. This workflow is as follows:

1. Clone the DeepLearningExamples repository

2. Copy the relevant driver scripts: training_perf.sh and inference_benchmark.sh for
ResNet, and run_squad.sh for BERT fine-tuning.

3. Modify the scripts to use relative paths to the DeepLearningExamples repositories. This
could have probably been achieved with no modifications and the use of the $PYTHONPATH
variable.

4. Run the benchmarking scripts with the relevant parameters (e.g. batch size, precision,
XLA) inside the Singularity containers

As noted in Section 4.1, the -nv and -B flags are needed for Singularity to enable GPUs and make
the datasets available (if not in the user’s home directory).

A.6. TensorFlow 2

The datasets from the TF1 experiments can be reused, so only new environments need to be set up
for the experiments. For native TF2:

1. Create and activate the virtual environment

2. Install the TensorFlow and model garden packages via pip install -r
tf2-tests/requirements.txt

For building the Docker container with the model garden prerequisites:

1. Set the working directory to tf2-tests/model-garden-docker

2. Build the Docker container locally. For example, docker build . -t
sserita/nv-tf2-models:nv20.11-models2.3.0

3. Push the Docker container up to Docker Hub (e.g. docker push
sserita/nv-tf2-models:nv20.11-models2.3.0)

4. Pull the container down with Singularity on Kahuna: singularity pull
docker://sserita/nv-tf2-models:nv20.11-models2.3.0
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Hosting the container on Docker Hub is not always desired, so there are two alternatives. First,
the Sandia Docker repository available on Nexus can be used for hosting, although this requires
users to be added to the wg-nexus-deployment metagroup. Alternatively, the Singularity
container can be built on Kahuna through the use of Docker archives as follows:

1. Save the Docker image as an archive: docker save
sserita/nv-tf2-models:nv20.11-model2.3.0 -o nv-tf2-models.tar

2. Copy the archive to Kahuna (pretty slow)

3. Build the Singularity container directly from the archive: singularity build
nv-tf2-models.sif docker-archive://nv-tf2-models.tar

Running follows a similar philosophy where the driver script is copied out of the repository. In
this case, no modifications/$PYTHONPATH manipulations are necessary since the model garden
package is available in the environment. Note that the native and container-based runs use
different driver scripts due to the different versions of TensorFlow.

1. Clone the TensorFlow Model Garden repository

2. Checkout tag v2.4.0 or v2.3.0 based on whether looking for native or container driver
script

3. Copy the driver script
official/vision/image_classification/classifier_trainer.py

4. Run classifier_trainer.py in the native or container environment

A.7. YOLOv4

The canonical YOLOv4 implementation needs DarkNet, which follows a similar process for
compiling as HPCG and Albany.

1. Clone DarkNet (the AlexeyAB version)

2. Source the relevant yolo-tests/configure/env.<arch>

3. Copy or symlink the relevant Makefile from yolo-tests/configure

4. Make DarkNet

Running YOLOv4 needs the parameters and COCO test2017 dataset, both of which are
lightweight. My runs are essentially the first six steps of https://github.com/AlexeyAB/
darknet#how-to-evaluate-ap-of-yolov4-on-the-ms-coco-evaluation-server.
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