
Extending Composable Data Services into SmartNICs

Craig Ulmer
Scalable Modeling & Analysis
Sandia National Laboratories

Livermore, CA, USA
cdulmer@sandia.gov

Jianshen Liu
Comp. Science & Engineering

UC Santa Cruz
Santa Cruz, CA, USA

jliu120@ucsc.edu

Carlos Maltzahn
Comp. Science & Engineering

UC Santa Cruz
Santa Cruz, CA, USA

carlosm@ucsc.edu

Matthew L. Curry
Scalable System Software

Sandia National Laboratories
Albuquerque, NM, USA

mlcurry@sandia.gov

Abstract—Advanced scientific-computing workflows rely on
composable data services to migrate data between simulation and
analysis jobs that run in parallel on high-performance computing
(HPC) platforms. Unfortunately, these services consume compute-
node memory and processing resources that could otherwise
be used to complete the workflow’s tasks. The emergence of
programmable network interface cards, or SmartNICs, presents
an opportunity to host data services in an isolated space within a
compute node that does not impact host resources. In this paper
we explore extending data services into SmartNICs and describe
a software stack for services that uses Faodel and Apache Arrow.
To illustrate how this stack operates, we present a case study that
implements a distributed, particle-sifting service for reorganizing
simulation results. Performance experiments from a 100-node
cluster equipped with 100Gb/s BlueField-2 SmartNICs indicate
that current SmartNICs can perform useful data management
tasks, albeit at a lower throughput than hosts.

Index Terms—SmartNICs, HPC data services, BlueField-2

I. INTRODUCTION

Scientific computing users leverage modeling, simulation,
and analysis (or ModSim) tools on high-performance comput-
ing (HPC) platforms to answer research questions that would
otherwise be difficult or impossible to resolve through physical
experiments alone. ModSim workflows are typically composed
of multiple processing steps that are executed by different
tools. For example, a scientific workflow may use mesh
generation tools to create input datasets, parallel simulation
tools to evaluate different real-world scenarios, visualization
tools to analyze the results, and I/O staging tools to aggregate,
index, and archive output data. The HPC community has
invested significant effort in developing and parallelizing each
of these tools to ensure workflows can scale to the tens of
thousands of compute nodes found in modern HPC platforms.

Systems researchers have constructed composable data ser-
vice libraries [1] for HPC platforms to make it easier for
developers to customize how data flows between different
tools in a workflow. These libraries include multiple software
components that can be combined to build application-specific
services. Components include low-level RDMA software for
moving data between compute nodes, key/value data stores for
organizing information in memory, and asynchronous compute
engines for processing in-transit data.

While composable data service libraries are important in
workflows, a criticism of current work is that services run in
the system’s compute nodes and consume resources that would

otherwise be available to ModSim tools. This paper explores
a new architecture option: hosting services in programmable
network interface cards (or SmartNICs). While slower than
servers, SmartNICs offer resource isolation and locality bene-
fits that are attractive for many data services. The immediate
research questions are: How should we construct software to
implement services on these devices? Can distributed services
perform useful work on SmartNICs? To answer these ques-
tions, we describe current composable data service libraries
and define requirements for enabling interoperability with
SmartNICs. We discuss a software-stack prototype and evalu-
ate its performance on current hardware. Finally, we present a
case study where a distributed, particle-sifting service runs on
a 100-node HPC cluster that features BlueField-2 SmartNICs.

II. COMPOSABLE DATA SERVICES FOR HPC PLATFORMS

A. Scientific Computing Workflows

Scientific computing workflows may involve multiple, par-
allel tools that run on different nodes in an HPC platform at
the same time. For example, the workflow depicted in Fig. 1
first uses a low-fidelity simulation to generate coarse-grained
results that deep-learning tools can use to make predictions
about the simulation’s general behavior. These predictions are
then used during a high-fidelity simulation to make better
decisions about optimizations such as load balancing. Out-
put results from the high-fidelity simulation are then routed
through visualization and I/O staging tools to extract insight
and reorganize data before it is archived to disk.

Low-Fidelity Simulation

High-Fidelity Simulation

In-Transit
Store

ML/DL 
Training

Results

VIZ

Parallel
File

System

Job
Mgmt

= Compute Node

= Parallel Simulation Job

= Data Management Job

= Analytics Job

IO

Parallel
File

System

Fig. 1: A workflow is mapped to HPC compute resources

The traditional means of passing data between workflow
tasks has been to write intermediate results to disk [2]. While
NVMe storage has dramatically improved performance [3],
I/O is still a significant impediment in workflows as data must
be transformed from an in-application representation to an



archival, on-disk format. Additionally, file I/O libraries can
be inconvenient for developers as the interfaces are primarily
designed to read and write data rather than process it.

B. Composable Data Service Libraries

As a means of improving how data flows between work-
flow tools, research groups have constructed composable data
service libraries for HPC platforms, including DataSpaces [4],
Mochi [1], and Faodel [5]. These libraries provide flexible
communication software that makes it easier to route data from
one application’s memory space to another’s without using the
file system. An important aspect of this work is that users
are presented with higher-level primitives than are normally
found in communication libraries. In addition to low-level
RPC and RDMA facilities, composable data service libraries
include key/value stores, REST API engines, and I/O drivers
for interacting with external data repositories. These features
simplify development and enable users to reason about their
data at higher levels of abstraction.

Faodel provides an example of a composable data service
library that supports multiple HPC platform architectures.
Faodel is open-source1 C++ software that includes drivers for
InfiniBand [6], RoCE [7], and Cray Aries [8] network fabrics.
Faodel is composed of several components: an RDMA porta-
bility library (NNTI) for low-level communication; a state-
machine engine (OpBox) for managing asynchronous tasks;
a memory-management library (Lunasa) for tracking memory
allocations for network-accessible objects; a directory service
(DirMan) for maintaining workflow configuration information;
a key/blob service (Kelpie) for safely transferring objects
between servers; and a lightweight web server (Whookie) to
allow users to query a remote service. In prior work we have
used Faodel for I/O staging and checkpointing [9], coupling
visualization applications to simulation codes, and insulating
users from platform-specific storage issues [10].

C. Data Processing Library Extensions

Researchers in the HPC and data science communities
have independently constructed advanced, data processing
libraries that greatly complement the functionality of com-
posable data service libraries. These libraries define robust
data structures for organizing information and are designed
to exploit the parallel-processing capabilities of modern CPUs
and GPUs. Popular data processing libraries in this space
include VTK-m [11], Kokkos [12], and Apache Arrow [13].

Apache Arrow is an open-source2 project centered around
an in-memory format specification and serialization protocol
for column-based table data. It is SIMD [14] and vectorization
friendly and relocatable, enabling zero-copy access in shared
memory. The project includes a number of libraries for effi-
ciently processing this data that are implemented in multiple
languages (including C++) running on multiple platforms.
In C++ an Arrow table is a two-dimensional data structure
with chunked arrays for columns and a schema. Tables can

1https://github.com/faodel
2https://github.com/apache/arrow

be processed without copying using reference-counted record
batches that hold contiguous portions of the data. Record
batches enable work to be spread across multiple processors.
Moreover, because of the contiguous property within a record
batch, data processing can further take advantage of data-
level parallelism using SIMD instructions that are generally
available on modern x86 and Arm processors. Apache Arrow
has been adopted by many research and commercial projects
such as Apache Spark [15], Dask [16], and Polars.

D. Service Placement
There are currently three locations in HPC platforms where

researchers typically host data management services: in situ, in
vitro, and in storage. In-situ approaches embed services inside
the individual tools of a workflow. This approach reduces the
overhead of interacting with a service, but increases build
complexity, sacrifices application resources to the service, and
causes faults in either side to affect both. In-vitro approaches
host services in external nodes within the platform. This
approach provides isolation but adds extra communication
overhead and increases the overall node count for a workflow.
Finally, in-storage approaches such as Skyhook [17] embed
data services within the platform’s storage nodes. While
storage nodes are an ideal location for these services, system
polices may forbid users from executing code in these servers
for security and reliability reasons.

III. SMART NETWORK INTERFACE CARDS

In recent years multiple hardware vendors have introduced
network and storage devices that feature user-programmable
CPUs or FPGAs. These resources enable developers to “push
down” application-specific functionality to remote hardware
to help customize queries and reduce the amount of data
returned. Multiple network companies have created powerful
SmartNICs that can inspect and process network data as it
moves between the host and the network. Current generation
SmartNICs feature multiple processor cores, sizable amounts
of volatile and nonvolatile memory, and direct access to high-
speed communication networks. As such, SmartNICs present
a new opportunity for hosting data services in HPC platforms.

A. NVIDIA BlueField-2 SmartNIC
NVIDIA has developed multiple SmartNIC products to

serve the security needs of cloud vendors. As illustrated in
Fig. 2, NVIDIA’s current-generation BlueField-2 SmartNIC
supplements a traditional network adapter with eight Arm A72
cores at 2.75GHz, 16GB of DRAM, 60GB of eMMC storage,
and two 100Gb/s network ports that can interact with Infini-
Band or Ethernet. Special-purpose hardware accelerators are
available for offloading encryption, compression, and regular
expression operations. At power on the BlueField-2 loads its
own OS (e.g., Ubuntu 20.04) from eMMC storage. This OS
operates independently from the host and is visible through
drivers that provide network and console access to the card.

Multiple researchers have explored leveraging BlueField
SmartNICs for different tasks. In iPipe [18] researchers cre-
ated an actor-based framework to allow computations to

https://github.com/faodel
https://github.com/apache/arrow


Host
CPUs

DRAM

Compute Node

Network

Host GPUs

BlueField-2
SmartNIC

ARM
CPUs

16GB 
DRAM

ConnectX-6 
Network
Interface

PCIe
Hardware Accelerators

60GB
eMMC

Fig. 2: Compute node with a BlueField-2 SmartNIC

be offloaded to SmartNICs. In prior work we benchmarked
the BlueField-2 [19] and demonstrated that its compression
hardware can provide significant performance improvements
when handling compressed, Apache Arrow data streams [20].
In “Smarter” NICs [21] portions of a molecular dynamics
applications were offloaded to SmartNICs to improve overall
performance.

B. Hosting Data Services in SmartNICs
Following the release of the InfiniBand-based BlueField-

2 adapter, multiple institutions have deployed HPC plat-
forms that feature SmartNIC-enabled compute nodes [21]–
[24]. These architecture offer an opportunity to migrate data
services into SmartNICs. We see multiple advantages in this
approach. First, hosting services in SmartNICs enables ser-
vices to be placed near applications in an isolated space that
does not consume host resources. As such, the host can offload
low-priority or asynchronous tasks that might otherwise im-
pede applications. Second, SmartNIC-enabled compute nodes
add compute and memory resources to the platform without
requiring additional network infrastructure. Finally, vendor
roadmaps indicate that future generations of SmartNICs will
include processor and accelerator enhancements. While current
SmartNIC hardware is sufficient for basic data management
tasks, upcoming products may take on greater responsibilities
in processing data pipelines.

IV. SMARTNIC SOFTWARE STACK FOR DATA SERVICES

To efficiently bridge the gap between resource-rich hosts
and resource-constrained SmartNICs running data manage-
ment services, we need a software stack that can orchestrate
these services among hosts and SmartNICs while minimizing
impact on applications and maximizing reuse of existing soft-
ware. This software stack must address communication issues
(e.g., How do applications interact with remote SmartNICs
over the network? How can SmartNICs work collectively?)
as well as computational issues (e.g., How are computations
defined and executed by services? How can the system be
extended with new operations?). In this section we define our
list of requirements for this software stack and discuss how a
suitable environment for hosting services in SmartNICs can be
constructed through the combination of the Faodel and Apache
Arrow libraries.

A. Service Requirements

Based on our experiences with workflow environments,
we identify five basic requirements we expect from an en-
vironment where services execute in embedded devices. (1)
Each service endpoint requires a unique identity that other
entities in the platform can reference and access via efficient
communication mechanisms. (2) Users must be able to control
the mapping of services to physical resources at runtime
and group several devices together in a way that allows the
devices to work together. (3) Users must be able to trigger
service computations locally and remotely. (4) The stack
should present a flexible data-processing API that is robust
and has community acceptance. (5) Data-parallel computations
must automatically exploit available CPU resources.

B. Communication: Faodel

We selected the Faodel library to serve as a foundation for
the communication portion of our software stack prototype
because it is open source, written in C++, has support for both
x86 and Arm, and includes existing primitives for working
with endpoints scattered about a platform. Specific details
about how Faodel fulfills our requirements follow.

• System-wide Accessibility: Faodel assigns a unique
identifier to each endpoint that is used to establish
both HTTP and RDMA communication. Faodel’s Kelpie
library provides an easy-to-use mechanism for safely
transferring key-labeled objects between endpoints using
RDMA mechanisms. Users can put, get, list, and delete
objects on local or remote endpoints.

• Resource Pools: Kelpie uses a simple pool abstraction for
grouping multiple endpoints together for related work. A
pool contains a list of endpoint members and a distri-
bution policy that maps key labels to pool members. By
supplying different pool configurations at start time, users
can change the behavior of their data flows.

• Dispatching Computations: While Kelpie is agnostic
about data formats and computations, it provides two
methods for invoking computations at endpoints. First,
an endpoint may run its own main loop that periodi-
cally inspects state and reacts to changes. Second, users
may invoke computations on objects at remote endpoints
through user-defined functions.

C. Computation: Apache Arrow

Apache Arrow was selected to implement the data compu-
tations in this work because it provides a rich set of primitives
for storing and querying tabular data, is open-source C++, and
is actively developed by a large community. Specific aspects
of Arrow that meet our requirements follow.

• Common Data Representation: Arrow’s tabular data
model is suitable for describing many kinds of scientific
datasets and provides a useful standard for data exchange.
In addition to efficient, in-memory data structures for
storing and processing tabular data, Arrow includes seri-
alization software for converting data to a standard, on-



wire format. This software simplifies development and
improves interoperability with other libraries.

• Data-Parallel Computations: One of the benefits of
Arrow’s robust, tabular data model is that users can spec-
ify high-level queries that can be processed efficiently
with parallel-processing techniques. Specifically, Arrow
includes a streaming data processing engine named
Acero [25] that processes complex user queries on tables.
Acero extracts a computational graph from a query and
then maps the data flow to local processing cores.

D. Integration Challenges

We faced two integration concerns while constructing our
software stack for data management services. First, small por-
tions of Faodel and Arrow target processor-specific features.
While both libraries had previously been ported to x86 and
Arm processors, extensive testing was required to ensure data
handoffs between the two architectures functioned correctly.
The second integration challenge involved finding a means of
transporting Arrow data using Faodel’s native objects. Our cur-
rent solution is to use Arrow’s IPC serialization mechanisms
to embed one or more tables in a Faodel object. A wrapper
class was developed to convert between an in-memory Arrow
table and the payload section of a Faodel object.

V. BLUEFIELD-2 PERFORMANCE EXPERIMENTS

We conducted multiple experiments to observe the low-
level performance characteristics of the BlueField-2’s embed-
ded processors when executing different operations from our
software stack. In this section we present measurements for
both the Faodel and Arrow portions of the stack.

A. Bookkeeping Overhead on the SmartNIC

Faodel provides a stress-test tool for measuring how quickly
a system can perform different tasks. Similar to stress-ng [26],
performance numbers lack meaning in isolation, but provide
a useful way to compare different architectures. Faodel’s
LocalKV test uses a workload that employs multiple threads
to put, get, and delete objects from a local, in-memory, 2D
hash map. Key names are intentionally picked to either seek
or avoid collisions. This test exercises common data processing
tasks, such as hashing, reference counting, lock handling, and
managing memory allocations.

We executed the LocalKV test on a diverse set of platforms
to observe how the BlueField-2’s processors performed com-
pared to other architectures. The processors included: a 32-
core AMD EPYC 7543P (Zen3) processor, a 68-core Knights
Landing (KNL) processor, and BlueField-1 and BlueField-2
SmartNICs with 16 and 8 Arm cores respectively. As de-
picted in Fig. 3, aggregate performance (decreases/increases)
as thread counts increase in the collision (seeking/avoiding)
experiments. Current server processors are roughly four times
faster when using the same number of threads, and an order
of magnitude faster when using all cores. Interestingly, the
BlueField-2 outperforms the data-parallel KNL processors,
which were employed in the previous generation of HPC
platforms and had known performance limitations [27].

20 21 22 23 24 25

Threads

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
Op

er
at

io
ns

/s

Collision Seeking
Zen3
BlueField-2
BlueField-1
Knights Landing

20 21 22 23 24 25

Threads

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Collision Avoiding

Zen3
BlueField-2
BlueField-1
Knights Landing

Fig. 3: Performance in Faodel’s LocalKV stress test

B. Processing Arrow Data

Our Arrow experiments with the BlueField-2 focused on
creating queries with inherit parallelism and verifying that
execution performance improves as the number of threads
increases. For this work we selected two types of queries
that operate on three-dimensional particle data. The first query
filters an input dataset based on a bounding box that is
picked to select 1/8th of the original particles. The second
query computes the squared magnitude of the velocity of each
particle and returns the minimum and maximum values. We
created a particle dataset with 8M records and then measured
the amount of time required to complete the queries using
a variable number of threads on the BlueField-2 and a host
system with a total of 32 Xeon E5-2698 processor cores.

0 10 20 30
Threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e 
(s

)

Filtering
SmartNIC
Host

0 10 20 30
Threads

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e 
(s

)

Aggregation
SmartNIC
Host

Fig. 4: Apache Arrow threading performance

The performance results presented in Fig. 4 confirm that
Apache Arrow can parallelize queries and leverage multiple
processor cores to improve performance. Latency drops sig-
nificantly when moving from 2 to 3 threads for both systems.
However, there are only minimal improvements beyond 5
threads. While the host is much more powerful than the
embedded processor on the SmartNIC, it is only 37.8% faster
than the SmartNIC when using 8 cores for this workload.

VI. PARTICLE-SIFTING EXAMPLE

As a means of demonstrating how SmartNICs can be
leveraged in HPC workflows, we constructed a particle-sifting
example that uses distributed SmartNICs to organize output
data from a simulation into a form that is easier for analysis
applications to consume. This example uses the SmartNICs in
the simulation’s compute nodes to sort, partition, and redis-
tribute the data in one or more passes. Sifting behavior can be



controlled by passing in different configuration information at
start time. We report performance measurements from a 100-
node cluster with 100Gb/s InfiniBand BlueField-2 SmartNICs
to explore the tradeoffs for different runtime configurations.

A. Reorganizing Particle Data

Scientists employ Particle-in-Cell (PIC) methods [28] in
simulation codes to model a wide variety of phenomena [29],
[30]. PIC codes track the discrete state of billions of particles
as they move about and interact with a model of a physical
environment. The sheer size of the particle data precludes users
from writing continuous snapshots to disk or storing more
than a single time step of data in the simulation’s memory.
The ability to rapidly sample and export sizable portions of
this data would provide an opportunity for users to apply
external analytics in a workflow to inspect how the state of
individual particles evolves over time. One of the obstacles
in exploiting this data, however, is reorganizing it from the
simulation’s perspective (i.e., temporal snapshots, where data
is sorted by time step and simulation rank) to a form that
analysis applications can leverage (i.e., particle tracks, where
data is sorted by particle ID and time step). It is therefore
useful for a workflow to provide data management services
that can transform the data from one representation to another.

We define multiple requirements for building a particle-
sifting service. First, the service must be implemented in
a distributed manner that spreads the data and work across
available resources to ensure efficient execution and memory
utilization. Second, processing elements (PEs) must be able
to accumulate data and operate asynchronously to allow the
system to react to dynamic runtime characteristics. Finally,
the service must minimize the amount of time required for a
simulation to inject a new wave of data.

B. Distributed Sifting Implementation

We constructed software on top of Faodel and Arrow to
implement a multistage sifting algorithm that uses a collection
of SmartNICs (or Hosts) as PEs in a linear pipeline. As
illustrated in Fig. 5, simulation ranks sample particle data for
the current time step and inject a copy of it to the PE hosted
at the local SmartNIC. Once a user-defined accumulation
threshold is crossed, the PE performs a compaction operation.
During compaction, the PE splits all of its accumulated data
into smaller objects based on bits in each record’s particle ID
field [20], and transmits each output object to its corresponding
PE in the next stage of processing. Particles become more
sorted as they move through each of the stages.

While PEs can be mapped to any physical SmartNIC or host
in the system, it is expected that multiple, neighboring PEs
will exist at a single location to reduce communication costs.
The actual steering of data between PEs is managed through
a combination of a key-labeling scheme and the use of Faodel
pools to determine where data is routed. The key-labeling
scheme concatenates the next stage’s ID and the currently-
matched Particle ID bits to pick a unique destination for the

data. Additional source info is embedded in a separate portion
of the key to avoid collisions with the data from other PEs.

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

P2(0)

P1(1)

P1(0)

4

5

6

7

0

1

2

3

P0(0)

PE Pool Membership

1 3

Simulation Sifting PEs

Stages: 2

Logical Dataflow

P0(1)

P0(2)

P0(3)

P0(4)

P0(5)

P0(6)

P0(7)

1 3Stages: 2

Fig. 5: Dataflow and placement for sifting particle data

Multistage sifting systems with low PE fanout and high
numbers of compute nodes can easily result in a few nodes in
the system becoming overwhelmed with all the simulation’s
data. To mitigate this problem, we use Faodel’s pool notation
to limit the number of nodes to which a PE can distribute
data. At start time, software generates a collection of pools in
the cluster that correspond to where different PEs reside. For
example, the network depicted in Fig. 5 shows three stages and
PEs that can split each object into four possible outputs. The
6th PE in stage 1 uses pool “P1(1)” to route to four possible
destinations, while the 6th PE in stage 2 uses “P2(0)” to route
to eight possible destinations.

C. Injection Overhead

The first step in reorganizing the particle data is for each
host in the simulation to sample its current data, convert it
to serialized Arrow data, and then transfer it to the local
SmartNIC. We constructed a benchmark to quantify injection
overheads and varied the transfer size from 1M–64M particles
(37MB–2.4GB). As presented in Fig. 6, transferring the data
to the card through Faodel’s primitives consumed 81% of
the overall injection time. For 64M particles, we observed an
overall transfer rate of 1.32GB/s.

1M 2M 4M 8M 16M 32M 64M
Particles

0.0

0.5

1.0

1.5

Ti
m

e 
(s

)

5.24 GB/s

1.77 GB/s

Transfer to SmartNIC
Convert to Arrow and Serialize

Fig. 6: Data preparation and injection overhead

D. Impulse Response

As a means of exploring sifting performance for different
configurations, we constructed an impulse response benchmark
that injects uniform data to each of stage 1’s PEs and then
measures the amount of time required for all compaction
events to take place in a synchronous manner. We varied



the number of splits performed by each PE and selected the
minimum number of stages that would be required to fully
distribute data across 100 SmartNICs.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1

25

50

75

100

Sm
ar

tN
IC

 N
od

e

4 Stages, 4 Splits per Stage

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1

25

50

75

100

Sm
ar

tN
IC

 N
od

e

2 Stages, 16 Splits per Stage

Split
Publish

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

1

25

50

75

100

Sm
ar

tN
IC

 N
od

e

1 Stage, 128 Splits per Stage

Fig. 7: SmartNIC sifting time for 100M particles

Fig. 7 presents the split and publish timings required to
process 100M particles on 100 SmartNICs. While performing
128 splits allows the work to be completed in a single pass,
doing so is slightly slower than doing 4-way splits over
4 stages of work. Our experiments indicate that 16 splits
per object yielded the best solution for the SmartNICs. In
most cases, split time was more expensive than the publish
time. Overall, the current implementation provides a relatively
uniform distribution of work and data across the nodes.

4 8 16 32 64 128
Splits per Stage

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e 
(s

)

SmartNICs
Hosts

Fig. 8: First stage overhead for 100M particles

Reducing first-stage overhead is important as it makes the
sifting network more responsive to injected data. We repeated
the previous experiment on 100 EPYC 7543P Zen3 server

nodes to measure the first-stage performance for a range of
splits. As depicted in Fig. 8, the 32-core host processors were
roughly four times faster than the 8-core Arm processors.

In the final set of measurements, we conducted impulse
response tests for 10M, 100M, and 1,000M particles. The
overall sifting times for 100 SmartNICs and 100 host systems
are presented in Fig. 9. Performance scaled linearly in both
cases. The host systems were again roughly four times faster
than the SmartNICs.

0 5 10 15 20 25
Total Time (s)

10M

100M

1,000M

Nu
m

be
r o

f P
ar

tic
le

s

0.13

0.66

6.06

0.39

2.23

22.88

SmartNICs - 16 Splits
Hosts - 16 Splits

Fig. 9: Total sifting time for different input datasets

E. Discussion

In terms of raw performance, the hosts are noticeably
faster than the SmartNICs at sifting the particle dataset in
a distributed manner. However, there are multiple scenarios
where lower performance is acceptable, such as when time step
snapshots take place infrequently or host memory is highly
constrained. In these examples it is valuable for the host to be
able to rapidly pass data to the SmartNIC, reclaim memory,
and return to the simulation.

The overhead of serializing data and injecting data to
the SmartNIC was substantially higher than expected and
a significant opportunity for improvement. Future work will
focus on optimizing the transfer path between the host and its
local SmartNIC. NVIDIA’s recent DOCA library [31] includes
host-to-card DMA transfer software that is expected to remedy
this problem. It is also likely that converting, serializing, and
injecting data in smaller fragments will help pipeline the
process.

This case study demonstrates that Faodel and Arrow can
provide a useful environment for hosting data management
services on a collection of SmartNICs. The ability to change
the behavior of the system by supplying a configuration
with different pool definitions enabled us to fine-tune the
implementation without rebuilding the software.

VII. SUMMARY

SmartNICs offer a new location in HPC architectures for
hosting data management services. Constructing a software
stack that can support these services involves developing a
communication plane that allows different endpoints in the
platform to interact with the SmartNIC, and data processing
software that can efficiently dispatch computations on datasets
that adhere to a well-defined data model. Future work with
SmartNICs must create a stronger coupling between the host
and its local SmartNIC, and take advantage of vendor-specific
features for accelerating performance.



ACKNOWLEDGMENT

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research under Field Work Proposal
Number 20-023266. Sandia National Laboratories is a mul-
timission laboratory managed and operated by National Tech-
nology & Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International Inc., for the U.S.
Department of Energy’s National Nuclear Security Adminis-
tration under contract DE-NA0003525. This paper describes
objective technical results and analysis. Any subjective views
or opinions that might be expressed in the paper do not
necessarily represent the views of the U.S. Department of
Energy or the United States Government.

REFERENCES

[1] R. Ross, G. Amvrosiadis, P. Carns, C. Cranor, M. Dorier, K. Harms,
G. Ganger, G. Gibson, S. Gutierrez, R. Latham, B. Robey, D. Robinson,
B. Settlemyer, G. Shipman, S. Snyder, J. Soumagne, and Q. Zheng,
“Mochi: Composing data services for high-performance computing
environments,” Journal of Computer Science and Technology, vol. 35,
pp. 121–144, 01 2020.

[2] E. Deelman, T. Peterka, I. Altintas, C. D. Carothers, K. K. van Dam,
K. Moreland, M. Parashar, L. Ramakrishnan, M. Taufer, and J. S. Vetter,
“The future of scientific workflows,” The International Journal of High
Performance Computing Applications, vol. 32, pp. 159 – 175, 2018.

[3] W. Bhimji, D. Bard, M. Romanus, D. Paul, A. Ovsyannikov, B. Friesen,
M. Bryson, J. Correa, G. Lockwood, V. Tsulăia, S. Byna, S. Farrell,
D. Gursoy, C. Daley, V. Beckner, B. Van Straalen, D. Trebotich, C. Tull,
G. Weber, N. Wright, K. Antypas, and Prabhat, “Accelerating science
with the NERSC burst buffer early user program,” in Proceedings of the
2016 Cray User Group Conference, 2016.

[4] C. Docan, M. Parashar, and S. Klasky, “DataSpaces: An interaction and
coordination framework for coupled simulation workflows,” in Proceed-
ings of the 19th ACM International Symposium on High Performance
Distributed Computing, 2010.

[5] C. Ulmer, S. Mukherjee, G. Templet, S. Levy, J. Lofstead, P. Widener,
T. Kordenbrock, and M. Lawson, “Faodel: Data management for next-
generation application workflows,” in Proceedings of the 9th Workshop
on Scientific Cloud Computing, 2018.

[6] G. Pfister, “An introduction to the InfiniBand architecture,” High Per-
formance Mass Storage and Parallel I/O, pp. 617–632, 2001.

[7] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn,
“RDMA over commodity Ethernet at scale,” in Proceedings of the 2016
ACM SIGCOMM Conference, 2016.

[8] B. Alverson, E. Froese, L. Kaplan, and D. Roweth, “Cray XC series
network,” Cray Inc., Tech. Rep. WP-Aries01-1112, 2012.

[9] M. T. Bettencourt, R. M. J. Kramer, K. Cartwright, E. G. Phillips, C. C.
Ober, R. P. Pawlowski, M. S. Swan, I. K. Tezaur, E. T. Phipps, S. Conde,
E. C. Cyr, C. D. Ulmer, T. H. Kordenbrock, S. L. N. Levy, G. J. Templet,
J. J. Hu, P. Lin, C. A. Glusa, C. Siefert, and M. W. Glass, “ASC ATDM
level 2 milestone #6358: Assess status of next generation components
and physics models in EMPIRE.” Sandia National Laboratories, Tech.
Rep. SAND2018-10100, 2018.

[10] G. J. Templet, M. R. Glickman, T. Kordenbrock, S. Levy, G. F. Lofstead,
J. Mauldin, T. J. Otahal, C. D. Ulmer, P. M. Widener, and R. A. Oldfield,
“Data services for visualization and analysis ASC level II milestone
(7186).” Sandia National Laboratories, Tech. Rep. SAND-2020-9451,
2020.

[11] K. Moreland, C. M. Sewell, W. Usher, L.-T. Lo, J. S. Meredith,
D. Pugmire, J. Kress, H. A. Schroots, K.-L. Ma, H. Childs, M. Larsen,
C.-M. Chen, R. Maynard, and B. Geveci, “VTK-m: Accelerating the vi-
sualization toolkit for massively threaded architectures,” IEEE Computer
Graphics and Applications, vol. 36, pp. 48–58, 2016.

[12] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling
manycore performance portability through polymorphic memory access
patterns,” Journal of Parallel and Distributed Computing, vol. 74, pp.
3202–3216, 2014.

[13] G. Lentner, “Shared memory high throughput computing with Apache
Arrow,” in Proceedings of the Practice and Experience in Advanced
Research Computing on Rise of the Machines (learning), 2019.

[14] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier, and
J. Schaffner, “SIMD-Scan: Ultra fast in-memory table scan using on-chip
vector processing units,” in Proceedings of VLDB Endowment, 2009.

[15] S. Salloum, R. Dautov, X. Chen, P. X. Peng, and J. Z. Huang, “Big data
analytics on Apache Spark,” International Journal of Data Science and
Analytics, vol. 1, pp. 145–164, 2016.

[16] M. Rocklin, “Dask: Parallel computation with blocked algorithms and
task scheduling,” in Proceedings of 14th Python in Science Conference,
2015.

[17] J. Chakraborty, I. Jimenez, S. A. Rodriguez, A. Uta, J. LeFevre, and
C. Maltzahn, “Skyhook: Towards an Arrow-native storage system,” in
Proceedings of the 22nd IEEE International Symposium on Cluster,
Cloud and Internet Computing, 2022.

[18] M. Liu, T. Cui, H. N. Schuh, A. Krishnamurthy, S. Peter, and K. Gupta,
“Offloading distributed applications onto smartnics using iPipe,” Pro-
ceedings of the ACM Special Interest Group on Data Communication,
2019.

[19] J. Liu, C. Maltzahn, C. Ulmer, and M. L. Curry, “Performance charac-
teristics of the BlueField-2 SmartNIC,” arXiv:2105.06619, 2021.

[20] J. Liu, C. Maltzahn, M. L. Curry, and C. Ulmer, “Processing particle
data flows with SmartNICs,” in Proceedings of the 2022 IEEE High
Performance Extreme Computing Conference, 2022.

[21] S. Karamati, C. Hughes, K. S. Hemmert, R. E. Grant, W. Schonbein,
S. Levy, T. M. Conte, J. S. Young, and R. W. Vuduc, ““Smarter” NICs
for faster molecular dynamics: a case study,” in Proceedings of the 2022
IEEE International Parallel and Distributed Processing Symposium,
2022.

[22] N. Diamond, S. Graham, and G. Clark, “Securing InfiniBand networks
with the Bluefield-2 data processing unit,” in Proceedings of the Inter-
national Conference on Cyber Warfare and Security, 2022.

[23] M. Bayatpour, N. Sarkauskas, H. Subramoni, J. M. Hashmi, and D. K.
Panda, “BluesMPI: Efficient MPI non-blocking all-to-all offloading
designs on modern BlueField Smart NICs,” in Proceedings of High
Performance Computing: 36th International Conference, ISC High Per-
formance 2021, 2021.

[24] W. Lu, L. E. Peña, P. Shamis, V. Churavy, B. M. Chapman, and
S. Poole, “Bring the BitCODE-moving compute and data in distributed
heterogeneous systems,” in Proceedings of the 2022 IEEE International
Conference on Cluster Computing, 2022, pp. 12–22.

[25] “Acero: A C++ streaming execution engine,” https://arrow.apache.
org/docs/cpp/streaming execution.html, [Online; accessed 2-February-
2023].

[26] C. King, “Stress-ng: A tool to load and stress a computer system,” http:
//kernel.ubuntu.com/git/cking/stress-ng.git, [Online; accessed 13-March-
2023].

[27] J. Liu, Q. Koziol, H. Tang, F. Tessier, W. Bhimji, B. Cook, B. Austin,
S. Byna, B. Thakur, G. Lockwood, J. Deslippe, and Prabhat, “Under-
standing the I/O performance gap between Cori KNL and Haswell,” in
Proceedings of the 2017 Cray User Group Conference, 2017.

[28] F. H. Harlow, “The particle-in-cell method for numerical solution of
problems in fluid dynamics,” Los Alamos National Laboratory, Tech.
Rep. LADC-5288, 1962.

[29] K. Matyash, R. Schneider, F. Taccogna, A. Hatayama, S. Longo,
M. R. Capitelli, D. Tskhakaya, and F. X. Bronold, “Particle in cell
simulation of low temperature laboratory plasmas,” Contributions to
Plasma Physics, vol. 47, 2007.

[30] E. Fourkal, B. Shahine, M. Ding, J. S. Li, T. Tajima, and C. M. C.
Ma, “Particle in cell simulation of laser-accelerated proton beams for
radiation therapy,” Medical physics, vol. 29 12, pp. 2788–98, 2002.

[31] I. Burstein, “NVIDIA data center processing unit (DPU) architecture,”
in Proceedings of the 2021 IEEE Hot Chips 33 Symposium, 2021.

https://arrow.apache.org/docs/cpp/streaming_execution.html
https://arrow.apache.org/docs/cpp/streaming_execution.html
http://kernel.ubuntu.com/git/cking/stress-ng.git
http://kernel.ubuntu.com/git/cking/stress-ng.git

	Introduction
	Composable Data Services for HPC Platforms
	Scientific Computing Workflows
	Composable Data Service Libraries
	Data Processing Library Extensions
	Service Placement

	Smart Network Interface Cards
	NVIDIA BlueField-2 SmartNIC
	Hosting Data Services in SmartNICs

	SmartNIC Software Stack for Data Services
	Service Requirements
	Communication: Faodel
	Computation: Apache Arrow
	Integration Challenges

	BlueField-2 Performance Experiments
	Bookkeeping Overhead on the SmartNIC
	Processing Arrow Data

	Particle-Sifting Example
	Reorganizing Particle Data
	Distributed Sifting Implementation
	Injection Overhead
	Impulse Response
	Discussion

	Summary
	References

