
Opportunistic Query Execution on SmartNICs
for Analyzing In-Transit Data

Jianshen Liu
Computer Science & Engineering

UC Santa Cruz
Santa Cruz, CA, USA

jliu120@ucsc.edu

Carlos Maltzahn
Computer Science & Engineering

UC Santa Cruz
Santa Cruz, CA, USA

carlosm@ucsc.edu

Craig Ulmer
Scalable Modeling & Analysis
Sandia National Laboratories

Livermore, CA, USA
cdulmer@sandia.gov

Abstract—High-performance computing (HPC) systems re-
searchers have proposed using current, programmable network
interface cards (or SmartNICs) to offload data management
services that would otherwise consume host processor cycles in a
platform. While this work has successfully mapped data pipelines
to a collection of SmartNICs, users require a flexible means of
inspecting in-transit data to assess the live state of the system.
In this paper, we explore SmartNIC-driven opportunistic query
execution, i.e., enabling the SmartNIC to make a decision about
whether to execute a query operation locally (i.e., “offload”) or
defer execution to the client (i.e., “push-back”). Characterizations
of different parts of the end-to-end query path allow the decision
engine to make complexity predictions that would not be feasible
by the client alone.

Index Terms—SmartNICs, HPC data services, BlueField-2,
decision engine, data query, data management

I. INTRODUCTION

The availability of low-cost ARM and RISC-V IP cores
has motivated several hardware vendors to include repro-
grammable resources in hardware products that have tradi-
tionally only offered fixed functionality. For example, storage
vendors sell computational storage devices (CSDs) that allow
users to perform data transformations at the disk to assist
in deduplication and error handling [1]. Similarly, network
vendors are including user-programmable processing resources
in their network cards and switches to offload collective
communication operations [2], enhance security [3], [4], and
present disaggregated storage to the host [5]. While the embed-
ded processors in these devices may be an order of magnitude
slower than host processors, vendors have demonstrated that
there is great value in placing small pieces of embedded soft-
ware in the hardware devices that are distributed throughout a
computing platform [6].

Multiple vendors have released information and software
development kits that enable end-consumers to implement
their own application-specific software for these devices [7],
[8]. As high-performance computing (HPC) systems re-
searchers, we are interested in developing software that will
enable us to migrate data management services from the
host processors in a platform to the embedded processors
distributed across its network and storage fabrics. Our work
has focused on using Apache Arrow [9] to define a standard
for processing in-transit data [10] and constructing data flows

that autonomously processes in-transit data as it propagates
through SmartNICs [11].

As more workloads are adapted to run in distributed network
and storage devices, there is a growing need for query inter-
faces that allow end users to remotely inspect the dynamic
content that individual devices manage. A key challenge in
implementing a query interface is determining where in the
system a query operation should execute. As illustrated in Fig-
ure 1, executing the query on the remote device (i.e., “offload”)
may minimize the data returned, but the computation may
overwhelm its embedded processors and compromise its other
duties. Deferring execution to the client (i.e., “push-back”)
may yield better query performance, but be hindered by the
cost of retrieving a large amount of raw data.

Host SmartNIC

query
exec

Decide: offload

Result

Host SmartNIC

query
exec

Decide: push back

Result

Client Network

In-Transit Data

Fig. 1: Query execution can be offloaded or pushed back

In this paper we explore the design of a decision engine that
resides on the target SmartNIC and uses predictive scheduling
to determine if a query should be offloaded or pushed back
to the client. This engine uses the Apache DataSketches
library [12] to rapidly characterize in-transit data and makes
predictions about different overheads of the two possible paths.
Our work demonstrates that (1) embedding the decision login
in the SmartNIC adds value as in-transit data content can be
leveraged in the decision making process and (2) predictions
can be made quickly enough to justify offloading on embedded
hardware.



II. IMPLEMENTING DATA SERVICES IN SMARTNICS

In HPC workflows researchers rely on composable data
service libraries [13] to route data between parallel jobs in
a computing platform. These libraries provide a variety of
components that enable users to construct application-specific
services for the workflow that can be hosted in other compute
nodes in the platform. Examples of data services include
staging data in memory for job-to-job handoffs in workflows,
transforming data to make it easier to exploit, and converting
from in-memory to on-disk formats to insulate jobs from I/O
overheads.

A. SmartNICs

Recently, multiple network vendors have produced pro-
grammable network interface cards (SmartNICs) that feature
embedded processing, memory, and storage resources that
can be programmed by end users. For example, the NVIDIA
BlueField-2 DPU [7] network card includes 8 ARM A72 cores,
16GB of DRAM, and 60GB of flash storage. While the card
was initially designed to serve as an on-path network security
device for cloud infrastructure, it can be configured to operate
in an off-path mode where the card appears as an embedded
compute node in the network fabric. Given that the VPI variant
of the BlueField-2 can support 100Gb/s InfiniBand or Ethernet,
HPC system researchers are building experimental platforms
that use the BlueField-2 as the high-speed NIC for compute
nodes [14].

In previous work [11] we have asserted that SmartNICs
provide an appealing substrate for hosting low-volume data
management services because they offer an isolated environ-
ment that has network access and is in close proximity to
host applications. As a means of exploring this space we
extended the Faodel [15] composable data service library to
allow communication endpoints to be placed in either the
hosts or SmartNICs of an HPC platform. We leveraged the
Apache Arrow [9] library to provide a robust environment for
representing and processing in-transit data. Arrow employs a
tabular data model and includes a computational framework
that automatically maps data-parallel operators to multiple
cores and SIMD hardware.

B. Particle-Sifting Example

A particle-sifting example from our previous work provides
an example of how we can offload data services into the
SmartNICs of compute nodes and implement useful data
processing pipelines. As illustrated in Figure 2, a particle
simulation tool runs on an array of compute nodes and
periodically generates write-optimized data that is converted
to an Arrow tabular format, serialized, and injected to the
local SmartNICs. Once a SmartNIC has collected a sufficient
amount of data, it reorganizes the data into smaller tables
with similar particle IDs and then transmits each partition to
a corresponding neighbor. As data passes through the system,
data becomes more organized until it is in a form that can be
written to disk or consumed by other applications. Offloading
this work to the SmartNICs allows researchers to dedicate a

compute node’s resources to solving compute-bound problems
instead of the asynchronous behaviors of I/O libraries.

Simula�on Nodes Storage

SELECT id FROM par�cles WHERE velocity > 10.0

Client

In-Network Si�ing

Fig. 2: A query interface provides users with a way to inspect
in-transit data

C. Dynamic Query Interface

An important but missing piece of this architecture is the
ability for users to dynamically inspect the in-transit data of
the SmartNICs distributed throughout the system. In addition
to serving as a mechanism for debugging data flows, query
interfaces offer an opportunity for users to gain insight from
the simulation’s live results and make better-informed steering
decisions for the overall workflow. The most straightforward
way to implement a query interface when using composable
data service libraries is through the creation of remote proce-
dure calls (RPCs). While RPCs provide an open environment
for interacting with a remote node, we recognize that it can
be tedious to define and insert RPC function handlers that can
support a wide range of domain-specific queries. As such, we
advocate for an approach that allows users to channel SQL
queries over a single RPC handler. In addition to simplifying
RPC complexity, this approach allows users to interrogate their
data in a well-known language and leverage a wide variety of
existing tools.

III. DYNAMIC QUERY DECISION ENGINE PLACEMENT

One of the advantages of a SQL-based query interface
for inspecting in-transit data on SmartNICs is that system
designers have the freedom to determine where different
portions of the query plan execute in the system. In queries
that return a small portion of the available data, it may be
beneficial to offload the query to the SmartNIC to minimize
data transfers. Conversely, in queries that are complex or do
not reduce the original data substantially, it may be better for
the SmartNIC to simply return the raw data and push-back
execution to the client. A decision engine is therefore required
to assess current conditions and predict which path is best.

Given the dynamic workloads and fluctuating resource en-
vironment within a SmartNIC, an important question arises
for system developers: Should the decision to offload or push
back be made at the client or the SmartNIC? We assert that
the SmartNIC is better poised to make this decision because
it has better access to information that affects how a query
is fulfilled. Specifically, the SmartNIC has local information



about runtime characteristics that may improve the predicted
amount of time required to process a query. More importantly
though, the SmartNIC has direct access to the content of the in-
transit data it maintains. This rapidly-changing data is valuable
for predicting query overheads and is challenging to propagate
to clients without incurring additional infrastructure costs.

A. Delivery of Query Workloads

When considering design alternatives for a query interface,
it is beneficial to be more specific about the mechanisms
by which query workloads are delivered in a distributed sys-
tem. Database management systems (DBMSs) process queries
through a multi-layered approach, converting a query into
different representations at different system layers [16], [17].
The first step in this process is to parse the query statement
and convert it into a logical plan. This operation may involve
significant computational overhead [18], [19] and is therefore
best performed by the client. A logical plan is then delivered
to a target through a network operation such as an RPC. A
target will retrieve relevant tables, execute its portion of the
logical plan, and then return results to the client. Finally, client
software evaluates any remaining pieces of the logical plan and
return results to the user.

The open source community has developed a number of
libraries that simplify the process of building query services.
In our work we leverage the following stack for logical query
declaration, execution, and transmission:
Substrait [20] aims to offer a cross-language specification for
data computing operations and a standardized format for query
plans. This facilitates the transformation of logical query plans
into binary substrait plans in formats like protobuf or JSON,
which are suited for network transfer.
Apache Arrow provides a data standard for the environment
that allows developers from multiple realms to represent,
process, and query their data. It utilizes a tabular data model,
which is suitable for many of our applications due to its
thriving open-source community, and includes built-in com-
pute operators with SIMD optimizations that can map to
parallel processors. Most importantly, the Acero component
of Apache Arrow provides semantics for constructing and
executing composable logical query declarations in C++.
Faodel provides a key/blob API that enables the exchange of
RDMA-transportable objects across a diverse set of commu-
nication endpoints. Furthermore, it has the ability to trigger
computations on objects located at remote endpoints using
user-defined functions. This feature facilitates the transmission
of query workloads to SmartNICs and the return of either
complete or intermediate results depending on the execution
decisions made by the SmartNICs.

B. Related Work

Dynamically offloading functions to SmartNICs can be
implemented using different scheduling approaches. One such
approach is reactive scheduling, where placement decisions
are based on the scheduler’s current internal state to han-
dle incoming workloads. An example of this approach is

the utilization of the deficit round-robin algorithm [21] for
scheduling distributed applications [22]. Another approach is
predictive scheduling, which aims to forecast the cost of a
workload request relative to the current context. Data stream
processing [23], search engines, online data mining [24], [25],
and query optimizers in databases [26] commonly adopt this
approach to determine beneficial plans for executing queries on
host systems. Our focus in this paper is on the second approach
for the decision engine’s implementation, given its potential
to enable dynamic offloading using mature data management
techniques in embedded systems.

IV. END-TO-END COST ANALYSIS

Developing an offload/push-back decision engine for Smart-
NICs requires an understanding of the dominant overheads in
the end-to-end query process. As depicted in Figure 3, there
are three types of overheads in the data path: serialization,
network transfers, and query execution.

Apache Arrow Faodel

Ti
m

e

Raw Data Deserialization

Query Execution

Result Serialization

Network Transfer

Result Deserialization

Offloaded

Network Transfer

Raw Data Deserialization

Query Execution

Pushed-back

Fig. 3: Conceptual time breakdown for offloaded and pushed-
back cases with components handled by different data service
libraries

A. Serialization Time

Each SmartNIC in the system manages a collection of in-
transit data objects in on-card memory. A data object holds
one or more Apache Arrow tables that have been serialized
to the Arrow inter-process communication (IPC) format. As
such the data must be deserialized into an Arrow table be-
fore a query can execute, whether the work is done on the
SmartNIC or at the client. Fortunately, Arrow’s IPC format is
designed to allow zero-copy reconstruction of an Arrow table
from an (uncompressed) IPC buffer simply by establishing
reference pointers into the buffer. Figure 4 (left) demonstrates
that deserialization performance is independent of table size,
remaining nearly constant for both hosts and SmartNICs.

In the case where a query is offloaded to a SmartNIC, it is
necessary to serialize the results into an IPC buffer in order to
allow it to be transmitted to the client. As depicted in Figure 4
(right), serialization time depends on table size.

B. Network Transfer Time

While the offloaded and pushed-back cases both transmit
serialized data from the SmartNIC to the client, query selec-
tivity may significantly reduce the amount of data returned in
the offloaded case. To create an estimate of network overhead,
we measured the round-trip time for a client to request varying
sizes of data from the SmartNIC using Faodel. As shown



Fig. 4: Arrow table deserialization and serialization times

in Figure 5, overhead is constant until tables are larger than
64KB.

Fig. 5: Time required to request different return sizes from a
remote SmartNIC with Faodel

C. Query Execution Time

While we expect query execution time to be the dominant
cost in our workload, it is challenging to estimate query
overhead because it largely depends on the characteristics of
both the input table and the query. The size of the input
table can linearly influence data scan time for various opera-
tions once the compute engine has sufficient work to occupy
available cores. However, users may embed a wide variety of
computations in a query using operations that have different
overheads. For example, we observed that a simple scan with
the “power” operation required substantially more CPU time
than another with logical operations such as “and” on a
BlueField-2 SmartNIC. Additionally, the relationship between
query conditions and input data distribution can impact the
computational overhead, as seen when rearranging the order
of multiple filtering conditions optimizes the data reduction
benefit from one filter to the next.

In database systems, the complexity of a query workload is
typically delineated through the process of cardinality estima-
tion [27], where the call count of every operation in a query
and the query result size are evaluated based on statistical
information (e.g., histogram and distinct counting) gathered
on the data without executing the query. Unlike cardinality
estimators in mature database systems (e.g., PostgreSQL [28]
and Spark SQL [29]) designed to run on host systems, imple-
menting one to run on SmartNICs emphasizes efficiency due to
the limited resources these devices have. Additionally, the in-
transit nature of the data managed by SmartNICs necessitates
the progressive updating and revising of each histogram as
new data is received, merged, or migrated.

Once the complexity of a query workload is captured, we
can combine the resource availability (e.g., available thread
count) of the target system (e.g., SmartNIC or host) to predict
the execution time of the workload.

V. DECISION ENGINE IMPLEMENTATION

As a means of exploring performance trade-offs in a func-
tion system, we supplemented our current SmartNIC software
stack with a query interface. This interface includes a decision
engine that employs predictive scheduling to determine if in-
coming queries should be offloaded to the SmartNIC or pushed
back to the client. A key challenge in this work is making
accurate predictions of the serialization, network transfer, and
query execution overheads associated with processing a query.
In this section we discuss the mechanisms by which we predict
these overheads and evaluate accuracy for workflows that
operate on particle datasets.

A. Predicting Serialization Time

While deserialization operates at a constant rate, serializa-
tion overhead depends on the size and content of an Arrow
table. To customize serialization overhead prediction to our
particle data use case, we constructed a synthetic corpus of
particle data tables and measured the amount of time required
to serialize each table on a BlueField-2 SmartNIC. Tables
employed 9 fields and ranged in length from 1 to 225 rows.
Utilizing a random forest regression for training, we achieved
a prediction accuracy with an error rate of less than 7%
(Figure 6) for particle data serialization.

Fig. 6: Differences in actual vs. estimated serialization time
for Arrow tables of various row counts on the BlueField-2

B. Predicting Network Transfer Time

We used the Faodel library for data delivery and invoking
query handling at the remote SmartNIC. While it is possible to
predict the network transfer time required for a query workload
based on both the schema of the resultant table object and the
number of rows in the table, our approach was to anchor the
prediction on the size of the table object to be transferred.
This approach simplifies network time modeling and insulates
it from future changes in the table schema.

In scenarios where the query workload is executed on the
SmartNIC, the size of the serialized object can be predicted
by considering the number of rows in the resulting table
(predicted in the following section), as depicted in Figure 7.
Conversely, when the query workload is to be pushed back
for execution, the total serialized size of the data objects
referenced by the query can be determined by aggregating
their respective sizes.

To construct a training dataset for predicting network trans-
fer time based on the data size to be transferred, we measured
the round-trip time of requests dispatched to a SmartNIC to



fetch local IPC buffers of varying sizes. We trained our model
using the random forest regression algorithm. Performance
results for the communication between an HPC compute node
and a local SmartNIC for a randomly generated table test set
are illustrated in Figure 8. This model consistently maintained
error rates within single-digit percentages on the test set.

Fig. 7: The residuals and percentage differences between the
actual and estimated serialization sizes

Fig. 8: Residuals and absolute percentage differences between
measured and estimated network transfer times against table
size in SmartNIC-hosted table retrieval

C. Predicting Query Execution Time

To predict query execution time we implemented an efficient
cardinality estimator for use on SmartNICs. It generates an
operation vector, representing the call count of every in-
volved query operation, to encapsulate the complexity of each
query workload, as illustrated in Figure 9. For maintaining
statistical information of in-transit data, we used the Theta
Sketch [30] and KLL Sketch [31] algorithms from the Apache
DataSketches library [12] to derive the distinct counting and
histogram statistics of particle data tables, respectively. One
benefit of this library that is relevant for processing in-transit
data streams is that it includes an interface for updating
created statistics over time. Furthermore, the library provides
parameters that enable the fine-tuning of the estimation’s accu-
racy, allowing us to evaluate the trade-offs between estimation
performance and system resource consumption.

Our cardinality estimator currently supports queries that
involve filtering, projection, aggregation, or any combination
of these operations. The estimator is also capable of estimat-
ing reducible conditions to maximize the value of statistics
generated for individual columns. Moreover, the estimator
can estimate queries that depend on multiple data sources.
This capability is particularly significant as it allows for the
estimation of workloads querying multiple data table partitions
simultaneously on a single SmartNIC. Figure 10 illustrates
the performance of the cardinality estimator using randomly

Fig. 9: The process of cardinality estimation to generate
vectors of operations as input to the model to predict query
execution time

generated test queries on data tables of varying sizes. SQL
representations of three queries are listed below.

(Q3) SELECT x,
power(vx, 2) + power(vy, 2) + power(vz, 2)
AS square_sum

FROM particles
WHERE square_sum <= 1310.0

(Q4) SELECT *
FROM particles
WHERE 3 + vx * 2 <= 100 OR sqrt(vy) > 20

(Q8) SELECT COUNT(id)
FROM particles
WHERE x >= 0.7 AND y < 0.3 AND z <= 0.1
GROUP BY particle_id

Fig. 10: Performance of cardinality estimation. The left figure
shows the absolute percentage difference between the esti-
mated and actual output rows of each test query. The right
figure displays the CPU time for estimation as a percentage of
the CPU time for query execution on a BlueField-2 SmartNIC.

The performance evaluation shows that the majority of
estimations have an error rate within 1% of the actual car-
dinality. However, some estimations may experience higher
errors due to the aggregation of multiple statistics’ biases. For
instance, in query Q8, the estimator uses histogram statistics
for the three filtering conditions and distinct counting statistics
for the one aggregation condition. Furthermore, it requires
applying the distinct counting statistics to a subset of the table
that resulted from filtering, which can introduce significant
errors if the data itself is biased. Figure 10 (right) emphasizes
the efficiency of conducting cardinality estimation on the
BlueField-2 SmartNIC, which is crucial for SmartNICs to
handle the functions of the decision engine efficiently.

To convert an operation counts vector, as depicted in Fig-
ure 9, into execution time, we again utilized machine learning
techniques. We used query templates to generate sufficient data
for model training. Each template was a C++ logical query
plan with placeholders that could be filled with randomly
generated constants to produce concrete logical plans. Each



record in our training dataset included operation counts, the
number of rows in the queried table, the thread counts, and
the actual time for workload execution. We employed the
random forest model to train the data. Figure 11 illustrates
the prediction performance on a set of test queries. It is
worth noting that our estimator supports operation counting
for sub-conditions, which enables fine-grained execution time
predictions for complex, composable query workloads.

Fig. 11: Difference between the actual and estimated execution
times for test queries on the BlueField-2. Thread count for
measurement and prediction are indicated at base of each bin.

VI. OPPORTUNISTIC QUERY EXECUTION CASE STUDIES

As a means of validating that our approach achieves a
benefit for end users, we conducted two query execution
case studies that perform a bounding-box threshold of particle
data. We used our prediction models to estimate the time
consumption associated with each activity in the offload and
push-back paths, and then measured the actual time of these
activities consumed by end-to-end queries. By comparing
these measurements, we can evaluate the effectiveness and
accuracy of our decision engine, which makes scheduling
decisions based on aggregating the predicted overheads listed
in this paper. A host with two Intel Xeon 16-core E5-2698
CPUs running at 2.30GHz and a Bluefield-2 SmartNIC were
used for these experiments.

In the first study, we analyze a query applied to a particle
dataset comprised of 6,177,731 rows:

SELECT * FROM particles

WHERE x >= 0.7 and y < 0.3 and z <= 0.1
(CQ1)

The actual execution of this query results in 55,517 rows,
comprising 0.9% of the original data. The cardinality estimator
predicts 55,036.7 rows, showing a difference of 0.865% from
the actual row count. For this particular query, the operation
vector is generated as follows:

TABLE I: The operation vector produced for the case study
Query CQ1

and kleene filter greater equal less less equal select table rows
12355500 6177730 6177730 6177730 6177730 55036.7 6177731

The second study uses a query slightly different from the
first one to examine the crossover point where offloading and
pushing back result in similar execution costs:

SELECT * FROM particles

WHERE x >= 0.5 and y < 0.55 and z <= 0.67
(CQ2)

Executing this query on the same dataset yields 1,136,847
rows, which represents 18.4% of the total row count. The

cardinality estimator predicts a return of 1,152,860 rows,
indicating a minor discrepancy of 1.41%.

The estimated and actual time consumption, aggregated
from the time factors for each of the two scenarios, are
depicted in Figure 12. The query execution time for the
SmartNIC is both measured and estimated using six threads,
whereas, for the host, it is measured and estimated utilizing 32
host threads. This bias is intentionally introduced to account
for the host’s superior availability of computing resources.
Despite this adjustment, the comparison reveals that for the
first query, choosing offloaded execution significantly reduces
execution latency by 74.64% due to low-percentage selectivity.
This outcome can be attributed to the high network transfer
cost that dominates the total execution latency in the scenario
of pushed-back execution. As for the second query work-
load, execution latency is comparable whether conducted on
the SmartNIC or the host. Specifically, while the estimation
slightly leans towards pushing back, keeping execution on the
SmartNIC reduces latency by 1.38% due to higher-percentage
selectivity.

Fig. 12: Analysis of time consumption for offloaded vs.
pushed-back execution with case study queries

The case studies show that high-precision cost prediction
for query workloads can be achieved efficiently. In our cases,
the estimation process uses less than 2% of the CPU time
required for executing the corresponding query workload on
the BlueField-2. Despite being resource-efficient, our approach
exhibits adaptability to dynamic workloads and execution
environments on SmartNICs, which is valuable for practical
HPC workflows.

VII. SUMMARY AND FUTURE WORK

Optimizing data query workload execution via dynamic
offloading across systems of different architectures is chal-
lenging. However, data management techniques open avenues
for developing a workload placement decision engine for
SmartNICs, tailored to the HPC data processing landscape.
Importantly, our decision engine’s predictive approach may
extend to embedded systems with similar hardware capabilities
(e.g., computational storage devices) to exploit data service of-
floading benefits. It is worth noting that several factors, includ-
ing network bandwidth variation, system resource fluctuation,
and performance interference among different data services,
could impact dynamic offloading performance. Addressing
these factors remains vital in our future work to enhance the
efficiency of dynamic queries on SmartNICs.



ACKNOWLEDGMENT

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research under Field Work Proposal
Number 20-023266. Sandia National Laboratories is a mul-
timission laboratory managed and operated by National Tech-
nology & Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International Inc., for the U.S.
Department of Energy’s National Nuclear Security Adminis-
tration under contract DE-NA0003525. This paper describes
objective technical results and analysis. Any subjective views
or opinions that might be expressed in the paper do not
necessarily represent the views of the U.S. Department of
Energy or the United States Government.

REFERENCES

[1] S. Bates, “Computational Storage Real World Deployments,”
https://www.snia.org/educational-library/fms-2020-computational-
storage-track-computational-storage-real-world, Nov. 2020, publisher:
Flash Memory Summit.

[2] R. L. Graham, D. Bureddy, P. Lui, H. Rosenstock, G. Shainer, G. Bloch,
D. Goldenerg, M. Dubman, S. Kotchubievsky, V. Koushnir et al., “Scal-
able hierarchical aggregation protocol (sharp): A hardware architecture
for efficient data reduction,” in 2016 First International Workshop on
Communication Optimizations in HPC (COMHPC). IEEE, 2016, pp.
1–10.

[3] S. Grant, A. Yelam, M. Bland, and A. C. Snoeren, “Smartnic perfor-
mance isolation with fairnic: Programmable networking for the cloud,”
in Proceedings of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications, technologies, archi-
tectures, and protocols for computer communication, 2020, pp. 681–693.

[4] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. An-
drewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung et al., “Azure
accelerated networking:{SmartNICs} in the public cloud,” in 15th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18), 2018, pp. 51–66.

[5] J. Min, M. Liu, T. Chugh, C. Zhao, A. Wei, I. H. Doh, and A. Kr-
ishnamurthy, “Gimbal: enabling multi-tenant storage disaggregation on
smartnic jbofs,” in Proceedings of the 2021 ACM SIGCOMM 2021
Conference, 2021, pp. 106–122.

[6] M. Liu, S. Peter, A. Krishnamurthy, and P. M. Phothilimthana,
“E3:{Energy-Efficient} microservices on {SmartNIC-Accelerated}
servers,” in 2019 USENIX Annual Technical Conference (USENIX ATC
19), 2019, pp. 363–378.

[7] I. Burstein, “Nvidia data center processing unit (dpu) architecture,” in
2021 IEEE Hot Chips 33 Symposium (HCS). IEEE, 2021, pp. 1–20.

[8] J. Dastidar, D. Riddoch, J. Moore, S. Pope, and J. Wesselkamper, “Amd
400g adaptive smartnic soc–technology preview,” IEEE Micro, 2023.

[9] G. Lentner, “Shared memory high throughput computing with Apache
Arrow,” in Proceedings of the Practice and Experience in Advanced
Research Computing on Rise of the Machines (learning), 2019.

[10] J. Liu, C. Maltzahn, M. L. Curry, and C. Ulmer, “Processing particle
data flows with smartnics,” in 2022 IEEE High Performance Extreme
Computing Conference (HPEC). IEEE, 2022, pp. 1–8.

[11] C. Ulmer, J. Liu, C. Maltzahn, and M. L. Curry, “Extending composable
data services into smartnics,” in Proceedings of the 2nd Workshop on
Composable Systems, 2023.

[12] L. Rhodes, K. Lang, A. Saydakov, J. Thaler, E. Liberty, and J. Malkin,
“Apache DataSketches: A software library of stochastic streaming algo-
rithms,” https://datasketches.apache.org/.

[13] S. Ramesh, A. D. Malony, P. Carns, R. B. Ross, M. Dorier, J. Soumagne,
and S. Snyder, “Symbiosys: A methodology for performance analysis of
composable hpc data services,” in 2021 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2021, pp. 35–45.

[14] T. Kordenbrock, G. Templet, C. Ulmer et al., “Viability of s3 object
storage for the asc program at sandia.” Sandia National Lab.(SNL-NM),
Albuquerque, NM (United States); Sandia . . . , Tech. Rep., 2022.

[15] C. Ulmer, S. Mukherjee, G. Templet, S. Levy, J. Lofstead, P. Widener,
T. Kordenbrock, and M. Lawson, “Faodel: Data management for next-
generation application workflows,” in Proceedings of the 9th Workshop
on Scientific Cloud Computing, 2018.

[16] G. Graefe, “Query evaluation techniques for large databases,” ACM
Computing Surveys (CSUR), vol. 25, no. 2, pp. 73–169, 1993.

[17] A. Deshpande, Z. Ives, V. Raman et al., “Adaptive query processing,”
Foundations and Trends® in Databases, vol. 1, no. 1, pp. 1–140, 2007.

[18] G. Douglas and R. Lawrence, “Improving sql query performance on
embedded devices using pre-compilation,” in Proceedings of the 31st
Annual ACM Symposium on Applied Computing, 2016, pp. 961–964.

[19] F. Waas and C. Galindo-Legaria, “Counting, enumerating, and sampling
of execution plans in a cost-based query optimizer,” in Proceedings of
the 2000 ACM SIGMOD international conference on Management of
data, 2000, pp. 499–509.

[20] J. Nadeau, “Substrait: Cross-Language Serialization for Relational Al-
gebra,” https://substrait.io/.

[21] M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit
round robin,” in Proceedings of the conference on Applications, tech-
nologies, architectures, and protocols for computer communication,
1995, pp. 231–242.

[22] M. Liu, T. Cui, H. N. Schuh, A. Krishnamurthy, S. Peter, and K. Gupta,
“Offloading distributed applications onto smartnics using iPipe,” Pro-
ceedings of the ACM Special Interest Group on Data Communication,
2019.

[23] C. C. Aggarwal and P. S. Yu, “A survey of synopsis construction in data
streams,” Data streams: models and algorithms, pp. 169–207, 2007.

[24] S. Heule, M. Nunkesser, and A. Hall, “Hyperloglog in practice: Algo-
rithmic engineering of a state of the art cardinality estimation algorithm,”
in Proceedings of the 16th International Conference on Extending
Database Technology, 2013, pp. 683–692.

[25] A. Metwally, D. Agrawal, and A. E. Abbadi, “Why go logarithmic if we
can go linear? towards effective distinct counting of search traffic,” in
Proceedings of the 11th international conference on Extending database
technology: Advances in database technology, 2008, pp. 618–629.

[26] Y. E. Ioannidis, “Query optimization,” ACM Computing Surveys (CSUR),
vol. 28, no. 1, pp. 121–123, 1996.

[27] K. Youssefi and E. Wong, “Query processing in a relational database
management system,” in Fifth International Conference on Very Large
Data Bases, 1979. IEEE Computer Society, 1979, pp. 409–410.

[28] J. D. Drake and J. C. Worsley, Practical PostgreSQL. ” O’Reilly Media,
Inc.”, 2002.

[29] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi et al., “Spark sql:
Relational data processing in spark,” in Proceedings of the 2015 ACM
SIGMOD international conference on management of data, 2015, pp.
1383–1394.

[30] A. Dasgupta, K. Lang, L. Rhodes, and J. Thaler, “A frame-
work for estimating stream expression cardinalities,” arXiv preprint
arXiv:1510.01455, 2015.

[31] Z. Karnin, K. Lang, and E. Liberty, “Optimal quantile approximation
in streams,” in 2016 ieee 57th annual symposium on foundations of
computer science (focs). IEEE, 2016, pp. 71–78.


